ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ АВТОМАТИЗИРОВАННЫХ СИСТЕМ НАУЧНЫХ ИССЛЕДОВАНИЙ

УЛК 681.3

С.П.Скобелев

ОБОБЩЕННЫЕ МОДЕЛИ НЕИДЕАЛЬНЫХ ИЗМЕРИТЕЛЬНЫХ ЦЕПЕЙ В МЕТОДАХ ТЕСТОВЫХ ПЕРЕХОДНЫХ ПРОЦЕССОВ

(г. Куйбышев)

Методы тестовых переходных процессов (МТШ) применяются при создания средств сбора измерительной информации, в частности, при построении групповых преобразователей сигналов параметрических датчиков /I /. Для анализа МТШ используются модели в виде дифференциальных уравнений второго порядка, которые описывают переходный процесс в различных по физической природе преобразователях (тепловых, электри ческих, электромагнитных) /2/. В операторной форме такие модели можно представить выражением

$$\overline{\mathcal{Y}_0}(p) = \frac{t}{\rho^2 + 2\delta \rho + \omega_0^2} \quad , \tag{I}$$

где $\overline{y}_0(\rho)$ - изображение нормированной реакции $\overline{y}_0(t)$ на тестовое ступенчатое возмущение, δ - декремент затухания, ω_0 - собственная частота.

Модель (I) — традиционна и широко применяется для описания динамических свойсть измерительных преобразователей /3/. Вместе с тем, универсальность модели (I) явилась причиной некоторых нежелательных упрощений и отклонений в исходных эквивалентных схемах измерительных цепей с индуктивными и емкостными датчиками в сравнении с общепринятыми. Их можно избежать в том случае, когда ряд обобщаемых преобразователей ограничен более однородным видом датчиков или измерительных цепей. В статье ставится задача определения такой модели, которая предназначена для преобразования сигналов только параметрических датчиков (индуктивного, емкостного и резисторного). Ведется анализ полученной модели, учитывношей как информативные, так и неинформативные параметры датчиков, оказывающих влияние на преобразование с помощью МТПП.

В табл. І изображены эквивалентные схемы измерительных цепей, в которых ключевые элементы идеальны, а операционный блок (ОБ), реа-

Таблица і Идеализированные эквивалентные схемы измерительных цепей с неидеальными датчиками

Номер	Вид схемы	Обозначения
1	Ri X LX CL	Б _х -вых параметр индуктивного датчика R ₄ - его сопротивление С ₄ - собств. емкость Е - ЭДС истечника R _i - его внутреннее сопротивление
2	R _{sc} L _{sc} C _x R _p	Сх - вых, параметр емкостного датчика. Rse - сопротивление токолюдв. Lgc - их индуктивность Rpc - сопротивление утечки потерь R - режимное сопротивление I - источник тока Ri - его внутренней сопротивл
3	$\begin{bmatrix} R_{L} & R & C & C_{R} \end{bmatrix} \begin{bmatrix} L_{R} & \\ R_{L} & R_{L} \end{bmatrix}$	Rx-вых параметр датчика LR-собств. индуктивность СR - собств. емкость С-режимная емкость R - входное сопротивление I-источник тока Ri-его внутреннее сопротивление

лизующий тот или иной вариант MTIII, имеет токовый вход с нулевым сопротивлением (схема I) или вход напряжений с входным сопротивлением

R (схемы 2,3). Неидеальность датчиков учитывается собственными неинформативными параметрами: C_2 R_2 (схема I), L_C , R_{SC} , R_{PC} (схема 2), L_R , C_R (схема 3).

Обобщенная модель измерительных цепей, приведенных в табл. I, имеет вид

$$\mathcal{G}(p) V(p) \frac{\alpha_2 p^2 + \alpha_1 p + \alpha_0}{p^2 + \beta_1 p + \beta_0} , \qquad (2)$$

где $\mathcal{U}(\rho)$, $V(\rho)$ — изображения реакции и возмущения, α_{\bullet} , α_{1} , α_{0} , δ_{0} — коэффициенты, значения которых приведены в табл.2 Полагая $\delta_{0}=2\delta_{0}$ а $\delta_{0}=\mathcal{W}_{0}^{2}$, можно записать

$$\mathcal{Y}(p) = V(p) \frac{a_2 p^2 + a_1 p + a_0}{p^2 + 2\delta p + \omega_0^2}$$
(3)

Карактер переходного процесса, как и в традиционной модели (I). пределяет коэффициент успокоения $\beta=$. Реальные соотношения параметров эквивалентных схем в табл. 2 таковы, что $\beta>>1$, и тестовий переходный процесс в измерительных цепях имеет явно выраженный апериодический характер, причем оригиналы (I) и (3) могут быть представлены одним выражением вида

$$\overline{y}(t) = A_0 + A_1 e^{P_1 t} + A_2 e^{P_2 t},$$

$$\text{THE } \overline{y}(t) = \frac{y(t)}{y(t)}, P_{1,2} = \omega_b(\beta \pm \sqrt{\beta^2 - 1}) - \text{kophu kapakrepuctureckoro ypas-}$$

нения.

а коэффициенты A_0 , A_1 , A_2 для оригинала модели (3) имеют вид $A_0 = \eta^2$, $A_1 = \frac{\alpha_2 \left(-\beta + \sqrt{\beta^2 - 1}\right) + \beta^* - 2^2 \left(\beta + \sqrt{\beta^2 - 1}\right)}{2\sqrt{\beta^2 - 1}}$,

$$A_{2} = \frac{\alpha_{2} (\beta + \sqrt{\beta^{2} - 1}) - \beta^{x} + \gamma^{2} (\beta - \sqrt{\beta^{2} - 1})}{2\sqrt{\beta^{2} - 1}}$$

причем $\beta = \frac{2}{200}$ — безразмерный параметр, аналогичный коэффициенту успожоения, — безразмерный параметр (частота). где $(a_0)^2 = a_0$. Выражения для компетите A_0 , A_1 , в традиционной

выражения для предиционной нодели существенно отличаются. Различие особенно заметно, если представить оригинал (3) в виде

Параметры моделей измерительных цепей

	אר	7 - 1 - 1 - 1 - 2 - 0 0, = - 1 - 0 0 = 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	B. = 2 + 12 . 6 - 12 14 (1+ Rx)	The Real Comments	. Cz = CR C,	g(t)= V(t), Y=IR
Номер схемы	2	92=1, 9,= 1+ 1, 0,= 1	B1 = 7 + 7 + 7 = 18	Bo = Do (- Rps + 1)	To = Cx Roc , Lsi Rs.	$y(t) = V(t)$, $V = L \cdot R$
HOM	7	$Q_0 = \frac{1}{L_{\star}C_{\perp}}$, $Q_2 = \frac{1}{C_{\perp}}$, $Q_2 = 1$,	6 = 2 + 1 = 20	8 = IL TC (1 + Ri)	Z_= Los , Zo=R; C2 ,	$y(t) = i(t), Y = \frac{E}{Ri}$

$$\bar{y}(t) = a_2 \frac{d^2 y^*(t)}{dt^2} + \beta^* \omega_0 \frac{dy^*(t)}{dt} + \gamma^2 \bar{y}_0(t),$$
 (5)

где $y^*(t) = \frac{1}{\omega_0^2} \bar{y_0}(t)$, а $\bar{y_0}(t)$ – оригинал модели (I). Из выражения (5) следует, что оригинал рассматриваемой модели отличается двумя слагаемыми, содержащими первую и вторую производные оригинала модели (I). Это видно и из сравнения числителей моделей (I) и (3).

Анализ показывает, что при t - 0 $\bar{q}(t) - a_2$. В схемах I,2 $\overline{y}(t)$ —1, причем определяющим является первое слагаемое в выражении (5). В схеме 3 $\overline{y}(t)$ —0. При t— ∞ $\overline{y}(t)$ —t2. Очевидно, что характер изменений $\overline{y}(t)$ в промежуточные моменты времени зависит не только от β и ω_{j} , но и от параметров β^{*} и γ . На рис. I изображены характеристики $\overline{\mathcal{Y}}(t)$ для индуктивных датчиков, параметры которых приведены в табл.З.

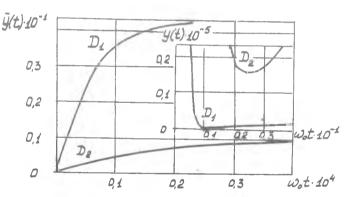


Рис. І. Реакция измерительной цепи $\overline{\mathcal{U}}(t)$ и ее начальный участок

Таблица З

Вид датчика	Lx10, TH	R_{L} , OM	$C_2 10^{-12} \phi$	$\omega_{0}10^{7}, \frac{1}{c}$	B102	B*10 ⁻³	2
D_1 D_2	I,0 150,00	20,0 70,0	50,0 120,0		3,37 14,73	0, 674 0,165	0,2I3 0,II8

От реакции идеальных измерительных цепей функции $\overline{y}(t)$ отлицаются импульсным выбросом при t - 0 , который быстро затужает пои малых $\omega_0 t$. Аналогичный характер имеет $\psi(t)$ в цепи с емкостным датчиком. В цепи с резисторным датчиком импульсный выброс отсут-CTBYET.

При времени $t_{min} = \frac{1}{C_1 - D_2} \ln \frac{A_2 P_2}{|A_1| P_1}$ функция y(t) достигает минимума, при $t>t_{min}$ — монотонно возрастает, имея перегиб, которому соответствует максимум производной $\frac{d\mathcal{G}(t)}{d\mathcal{G}(t)}$

Импульс в начале переходного процесса препятствует различания метопа постоянной времени /1/. Необходимы специальные меры по блокировке сравнивающего устройства или фильтрации $\mathcal{G}(t)$. Реализация

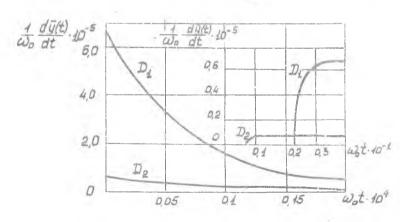
метода возможна при t > tmin . В соответствии с методом первой производной /I,2/ измеряется максимальное значение $\frac{dU(t)}{dt}$ в момент перегиба функции U(t):

$$\frac{dy(t)}{dt}\Big|_{max} = A_1 P_1 e^{P_1 t_{max}} + A_2 P_2 e^{P_2 t_{max}}$$

rge

$$t_{max} = \frac{1}{p_1 - p_2} \ln \frac{A_2 p_1^2}{|A_1| p_2^2}$$

На рис.2 представлены производные $ar{arphi}(t)$ для датчиков D_t , D_2 .



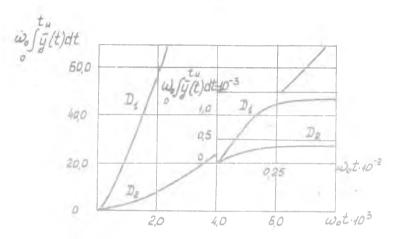
Р и с. 2. Безразмерная производная реакции и ее начальный -VUACTOR

Время t_{max} ограничивает динамические возможности метода. Кроме того, смещение максимума на t_{max} ухудшает свойство подавления диссипативных параметров, что подробно рассматривалось /2/.

И наконец, при использовании метода интегрирующего преобразования фиксируется интеграл от реакции $\overline{\psi}(t)$ в заданное время t_{μ} :

$$\int_{0}^{t_{H}} \overline{y}(t) dt = A_{0} t_{H} + \frac{A_{1}}{P_{1}} (1 + e^{P_{1} t_{H}}) + \frac{A_{2}}{P_{2}} (1 + e^{P_{2} t_{H}}).$$

Интегрирование начального импульса $\psi(t)$ приводит к его сглаживанию (рис.3).



Р и с. 3. Безразмерный интеграл реакции и его начальный участок

Таким образом, получена обобщенная модель измерительных цепей с параметрическими датчиками, на основе которой выявлен ряд ограничений МТПП, связанных с влиянием собственных неинформативных параметров модель может быть эффективно использована для определения чувствительности к информативным и неинформативным параметрам. Результаты расчета полезны при проектировании преобразователей сигналов датчиков, инвариантных к мещающим факторам и обладающих высокими метрологическими показателями.

Литература

- I. С к о б е л е в О.П. Методы преобразования и устройства сбора измерительной информации Куйбышев, 1980. 83 с.
- 2. Метод начальной производной в первичных преобразователях /А.А.Болтянский, D.Н.Секисов, О.П.Скобелев, Н.М.Старобинский. Измерительная техника, 1972, № 8, с. 29-32.

3. Н у б е р т Г.П. Измерительные преобразователи неэлектрических величин. -Ленинград: Энергия, 1970. - 360 с.

удк 53.087.4

В.Г.Гашников, А.В.Логвинов

О РАЗРАБОТКЕ В СТАНДАРТЕ КАМАК АВТОМАТИЗИРОВАННОИ СИСТЕМЫ ИЗМЕРЕНИЯ И КОНТРОДЯ ПАРАМЕТРОВ ВАКУУМНОГО ОБОРУДОВАНИЯ

(г. Куйбышев)

Многоканальные системы измерения физических параметров в станпарте КАМАК обычно включают в себя внекрейтовые нормализаторы выходных сигналов датчиков и типовые модули КАМАК: коммутаторы, АШП, регистры и т.д. Измерение и контроль параметров вакуумного оборудования требует применения различных вакуумных датчиков, датчиков давления в охлаждающей системе, датчиков температуры. Состояние исполнительных механизмов индицируется с помощью конечных выключателей, выпардих дискретные сигналы. Количество измеряемых физических параметров исчисляется десятками, а количество дискретных параметров доходит до нескольких сотен. Реализация такой системы на основе типовых модулей КАМАК имеет ряд недостатков. Использование внекрейтовых нормализаторов по числу датчиков приводит к разнотипности и громоздкости аппаратных средств. Для измерения только 16-ти вакуумных параметров потребуются следующие аппаратные затраты: лестнадпать промышленных вакуумметров, обеспечивающих вилочение и питание патчиков, и в которых предусмотрен нормализованный выходной сигнал, один коммутатор в стандарте КАМАК, один АШП в стандарте КАМАК.

Измерение таким же образом других параметров закуумного оборудования приводит к аналогичным аппаратным затратам. При реализации программного обеспечения такой системы трудно достигнуть независимости его от конкретной конфигурации оборудования.

В КуАИ разработана серия специализированных иногоканальных модулей КАМАК для измерения различных физических параметров. Из ее состава для контроля вакуумного оборудования могут быть использованы следующие модули:

ПСВД - 26-канальный модуль измерения вакуума;

ПСИД — 16-канальный модуль измерения давления с помощью индуктивных датчиков;

57