возможность объективного контроля и архивации данных, мобильность и низкая стоимость конечного варианта прибора.

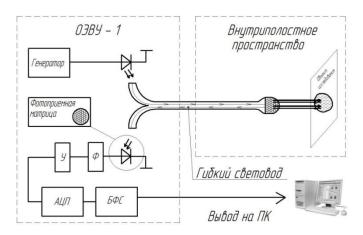


Рисунок 1 - Устройство оптоэлектронного эндоскопа

Список использованных источников

- 1. Гинекология: учебник / Б. И. Баисова и др.; под ред. Г.М. Савельевой, В.Г. Бреусенко. 4-е изд., перераб. и доп. 2011. 432 с.
- 2. Патент РФ 2377947 МПК G02B23/24. Эндоскоп [Текст]/ Гребенников П. А., Киселева Г. П.; заявители: Гребенников П. А., Киселева Г. П., от 10.01.2010

УДК 533.6.08

ИЗМЕРИТЕЛЬ СКОРОСТИ НАБЕГАЮЩЕГО ПОТОКА НА НИЗКИХ ОРБИТАХ

А. В. Тютерев, К. Е. Воронов

г. Самара, «Самарский национальный исследовательский университет имени академика С.П. Королёва»

Физико-химическое состояние верхних слоев атмосферы, вариации параметров в зависимости от воздействующих факторов, уточнение и коррекция теоретических моделей поведения базируются на результатах космических исследований. Расширить информационную базу можно за счет использования портативного измерителя скорости набегающего потока, выполненного на основе наноспутников, выводимых в качестве попутного груза.

В качестве исходного принят принцип работы с использованием процесса ионизации молекул и атомов остаточного газа и последующего определения распределения по скоростям при движении заряженных частиц в электростатическом поле.

Для определения исходных параметров проведена оценка концентрации остаточного газа на высотах 400 – 800 км [1] результаты занесены в таблицу 1.

400 450 500 550 600 650 700 750 800 Высота, км. Концентрация 1.428 9.625 2.712 1.813 1.54 3.263 1.964 1.202 6.96 · 10¹³ \cdot 10¹³ \cdot 10¹² $\cdot 10^{13}$ ·10¹¹ · 1014 · 10¹³ ·10¹³ · 10¹³ частиц, п м³

Таблица 1 – Концентрация частиц на заданных высотах

За исходную модель принята простейшая двухэлектродная системах сепарации по скоростям [2] (рисунок 1).

Выполнено моделирование параметров движения заряженных частиц в системе отклоняющих электродов показано на рисунке 2.

По результатам моделирования уточнены требования к системе формирования измерительного потока остаточного газа, проведена оценка параметров модуля ионизации, модуля управления отклоняющей системы, приемной части измерительного преобразователя.

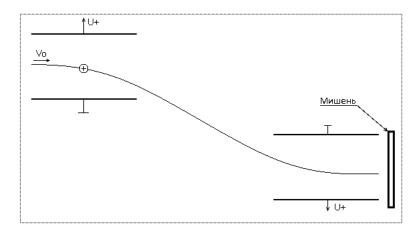


Рисунок 1 – Модель двухэлектродной системы сепарации.

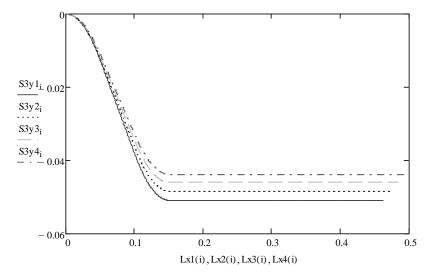


Рисунок 2 – Моделирование зависимости

Список использованных источников

- 1. ГОСТ 4401 81 Атмосфера стандартная[Текст] Введ. 1982-01-07. М.: Издательство стандартов, 2004. 180 с.
- 2. Савельев И. В. Курс общей физики, том II. Электричество[Текст]/ И. В. Савельев. М.: Наука, 1970. 431с.

УДК 621.373.122; 681.518.3

АНАЛИЗ УПРОЩЁННОЙ МОДЕЛИ ФОРМИРОВАНИЯ СИГНАЛА АВТОДИННОГО ДАТЧИКА ОТ ВИБРИРУЮЩЕЙ ЛОПАТКИ ТУРБИНЫ

К.А. Игнатков

г. Екатеринбург, УрФУ имени первого Президента России Б.Н.Ельцина

Автодины являются простейшими приёмопередающими устройствами, представляющими собой функционально лишь совокупность автогенератора и средств выделения автодинного отклика, что делает привлекательным примение первичных ИΧ качестве перемещений элементов турбоагрегатов в бортовых системах полетной диагностики самолётов. В известных нам работах анализ процесса формирования автодинного отклика при решении данной рассмотрен с позиций «частотного» подхода, используя понятие частоты