позволяет отслеживать корректность функционирования процессора и его программного обеспечения. Если сигнал не поступает вовремя, это может указывать на то, что процессор застрял в бесконечном цикле.

С появлением необходимости в аппаратном мониторинге стали популярны так называемые «супервизорные устройства», предназначенные для микропроцессоров. Они выполняют различные функции, связанные с контролем работы процессора. От простых генераторов с ручным сбросом до сложных мониторинговых систем на основе микроконтроллеров с датчиками температуры и АЦП – спектр этих устройств весьма широк. Важно отметить, что использование супервизорных устройств повышает стабильность и надежность работы микропроцессоров в различных условиях. Благодаря им можно оперативно выявлять и исправлять возможные сбои в работе процессора, что позволяет обеспечить более эффективную работу всей системы.

Список использованных источников

- 1. Березин, И. И. Микроклимат учебных комнат, помещений жилых и общественных зданий, лечебно-профилактических организаций: учебное пособие / И. И. Березин, В. В. Сучков, Л. Ф. Талипова, А. К. Сергеев. Самара: ОФОРТ, 2016. 98 с.
- 2. Рамон Даллас-Арена и Джон Г. Вебстер, Датчики и формирование сигналов, Джон Уайли, Нью-Йорк, 1991.
- 3. Дэн Шейнголд, редактор "Руководства по взаимодействию с преобразователями", Analog Devices, Inc., 1980.

УДК621.396

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОПТИЧЕСКОГО АТТЕНЮАТОРА

В.М. Гречишников, Д.Р. Воеводкин «Самарский национальный исследовательский университет имени академика С.П. Королева», г. Самара

Оптические аттенюаторы являются неотъемлемой частью волоконнооптических цифроаналоговых преобразователей, применяемых в системах в системах контроля пространственных положений подвижных объектов. Основной проблемой при их разработке является обеспечение требуемого коэффициента ослабления передаваемого сигнала. Один из вариантов оптической схемы аттенюаторов основан на экранировке части излучения, проходящего в зазоре между двумя градиентными линзами. Расчетная схема аттенюатора приведена на рис. 1.

Коэффициент передачи аттеню
атора определяется соотношением $K = 1 - \frac{S(x)}{S_0} \,, \ \, \text{где} \, S(x) \, \text{экранированная часть входного торца линзы,} \ \, S_0 \, -$

полная площадь входного торца линзы. Задачей математического моделирования аттенюатора является определение положения экрана в плоскости входного торца приемной линзы в зависимости от заданного значения коэффициента ослабления $x=f(K,r_{9})$ при различных радиусах градиентных линз r_{9} . Аналитическое решение этой задачи приводит к необходимости решения трансцендентного уравнения. В связи с этим на языке Python реализована функция поиска x значений, при которых обеспечивается требуемое значение коэффициента ослабления K.

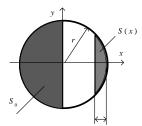


Рисунок 1 — Расчетная схема аттенюатора

Проведен вычислительный эксперимент, в ходе которого получены значения координаты положения прямоугольного экрана

при
$$K = \frac{1}{2^{2^{i-1}}}$$
, $i = 1, 2, 3, 4$ и $r_{9} = 1$ мм.

Результаты расчета значений координат экрана от коэффициента ослабления при $r_{2}=1$ *мм* приведены в таблице.

Проведенные эксперименты показали, что при изменении радиуса линзы пропорционально изменяются значения x. Это позволяет использовать приведенные в таблице результаты для определения координаты x для произвольных значений радиусов r_{II} . Для этого полученные значения необходимо умножить на поправочный коэффициент

$$R=\frac{r_{II}}{r_{\ni}}.$$

Список использованных источников

- 1.Волоконные датчики: перспективы промышленного применения [Электронный ресурс]. URL. : http://www.russianelectronics.ru/developer-r/review/2193/doc/54040/ (дата обращения 10.02.2019).
- 2.Grechishnikov V.M., Teryaeva O.V., Parshina A.V., Adjustable Weight Assigning Element for Multi-Sensor Data Transducer, 14TH International scientific –

technical conference on actual problems of electronic instrument engineering (APEIE) – 44894 Proceedings APEIE– 2018. – Novosibirsk, Volume 1, Part 2. – P. 49-51, 2018, 10.1109/APEIE.2018.8545459

Гречишников В.М.- д.т.н., профессор, заведующий кафедрой электротехники, e-mail: gv@ssau.ru/

Воеводкин Данил Сергеевич, студент гр. 6205-09301, тел. 8-9042735480

УДК 536.521

АКУСТООПТИЧЕСКИЙ ПИРОМЕТР ДЛЯ МЕТАЛЛУРГИЧЕСКОЙ ПРОМЫШЛЕННОСТИ

А.А. Мухамадиев, В.Х. Ясовеев Уфимский университет науки и технологий, г. Уфа

Качество выпускаемой продукции является основным фактором в металлургической отрасли и определяется соблюдением необходимых параметров технологического процесса. Наиболее важным является значения температуры металла различных на производства. Поверхность металла может быть измерена с определенной точностью при использовании пирометров разного типа. В тоже время, необходимо учитывать всю сложность технологических процессов, в результате которых происходит, как изменение излучательной способности объекта измерения, так и изменение окружающей его среды. Применяемые на сегодняшний день пирометры, не позволяют обеспечить определение температуры с необходимой точностью на всей широте требуемого диапазона работы, вследствие того, что коэффициент излучения поверхности исследуемого объекта может быть неизвестным или быстро меняет значение в короткий интервал времени. В целом, необходимо отметить, что вопросы разработки и совершенствования пирометров, удовлетворяющих современным требованиям, оказываются весьма актуальными.

Среди факторов, оказывающих влияние на метеорологические характеристики необходимо отметить следующие:

- 1. Изменяющееся во времени состояние поверхности при разных технологических процессах, что приводит к изменению параметра относительной излучательной способности.
- 2. Изменяющееся свертывание и завихрение потоков жидкого металла приводящее к постоянному изменению относительной излучательной способности.
- 3. Изменяющийся количественный и качественный газовый состав между пирометром и измеряемой поверхностью, приводящий к потере энергии при определенных диапазонах длин волн.