ПРОЕКТИРОВАНИЕ И ТЕХНОЛОГИЯ РЭС

УДК 621.38

МОДЕЛИРОВАНИЕ ВИБРОУСТОЙЧИВОСТИ ЭЛЕКТРОННЫХ БЛОКОВ БЕСПИЛОТНЫХ АВИАЦИОННЫХ СИСТЕМ

В.А. Зеленский, Д.Н. Овакимян, В.С. Кириллов «Самарский национальный исследовательский университет имени академика С.П. Королёва», г. Самара

Ключевые слова: беспилотные авиационные системы, вибрационная устойчивость, собственная резонансная частота, амплитудно-частотная характеристика

На электронные блоки беспилотных авиационных систем воздействуют механические вибрации в диапазоне, как правило, от 50 до 500 Гц. Моделирование вибрационных воздействий позволяет избежать ошибок проектирования и аварийных ситуаций на стадии эксплуатации [1]. На рисунке 1 представлен анализ механических напряжений и расчет резонансных частот платы расширения полетного контроллера.

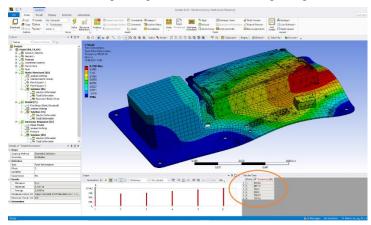


Рисунок 1 – Анализ механических напряжений и резонансных частот

Из 3Dмодели удалены элементы, которые существенно не влияют на частотные характеристики устройства. После этого модель формата STEP импортирована в программный пакет Ansys, выбраны материалы конструкции, нанесена сетка и определены краевые условия моделирования. Исследование проводилось в соответствии с ГОСТ Р

52230-2004. Отклик на вибрационные воздействия в диапазоне до 500 Гц показан на рисунке 2. На амплитудно-частотной характеристике наблюдается пик на частоте порядка 400 Гц, что говорит о попадании собственной резонансной частоты блока в диапазон входных вибрационных воздействий, что недопустимо.

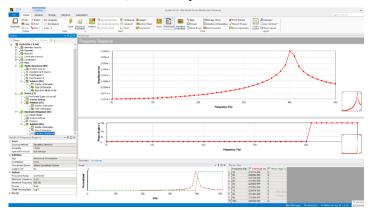


Рисунок 2 – Амплитудно-частотная характеристика конструкции

Таким образом, выполненный анализ показывает необходимость применения дополнительных мер по виброзащите конструкции.

Список использованных источников

1. Зеленский В.А., Овакимян Д.Н., Серпуховитов С.С. Анализ виброустойчивости печатной платы полетного контроллера / Сборник трудов «Актуальные проблемы радиоэлектроники и телекоммуникаций». — Самара: ООО «Артель», 2021. С. 123-125.

Зеленский Владимир Анатольевич, д.т.н., профессор каф. КТЭСиУ, vaz-3@yandex.ru. Овакимян Давид Николович, директор Центра беспилотных систем, dd55@bk.ru Кириллов Владимир Сергеевич, магистрант гр. 6131-110403D, vskirilov2015@yandex.ru

УДК 681.518.2

АЛГОРИТМ КОМПЛЕКСИРОВАНИЯ НАВИГАЦИОННЫХ СИГНАЛОВ В ПОЛЕТНОМ КОНТРОЛЛЕРЕ

В.А. Зеленский, Д.Н. Овакимян, В.С. Кириллов, М.В. Капалин «Самарский национальный исследовательский университет имени академика С.П. Королёва», г. Самара

Ключевые слова: сигма-точечный фильтр Калмана, расширенный фильтр Калмана, полетный контроллер, угловые координаты