Далее, были получены газовые сенсоры, изучение свойств которых происходит с помощью газа NO2.

Результаты: Были получены газовые сенсоры, основанные на пленках из окисленных УНТ. Было выяснено, что при помещении данных сенсоров в газ NO2, увеличилась их проводимость, тем самым была увеличена чувствительность датчика. Помимо этого, данный эксперимент показал, что такие пленки достаточно просты в производстве.

Зайцев Андрей Игоревич, студент гр. 6231-030401D, каф. наноинженерии, направление подготовки «Прикладные математика и физика», Sir.zayz@yandex.ru

УДК 538.958

ОПТИЧЕСКИЕ СВОЙСТВА СТРУКТУР КАРБИДА КРЕМНИЯ НА ПОЛИКОРЕ, ПОЛУЧАЕМЫХ МЕТОДОМ МАГНЕТРОННОГО РАСПЫЛЕНИЯ

Л.В. Курганская, О.В. Рябенкова, А.В Щербак «Самарский национальный исследовательский университет имени академика С.П. Королева», г. Самара

Ключевые слова: карбид кремния, оптические параметры, спектр отражения, эллипсометрия.

Карбид кремния является одним из перспективных материалов электронной техники. Он имеет высокую термо - и радиационную устойчивость, большую механическую прочность, очень малую скорость диффузии и самодиффузии примесей, очень слабую химическую активность, что обусловлено высокой энергией связи в решетке карбида кремния (5эВ) [1-3]. Пленочные структуры карбида кремния перспективны для силовой электроники, оптоэлектроники, микросистемной техники. Применение карбида кремния в указанных областях ставит задачу исследования оптических свойств структур на основе этого материала.

Целью работы является исследование оптических параметров слоев карбида кремния на поликоре, получаемых методом магнетронного распыления.

В данной работе исследовались образцы структур карбид кремния на поликоре (SiC/поликор), полученные методом магнетронного распыления [4]. Слои карбида кремния были выращены на поликоре размером 25х25 мм. Выращенные слои карбида кремния имели зеркальную поверхность. Толщина получаемых слоев SiC находилась в пределах от 3,5 до 4,0 мкм.

Для исследования оптических параметров карбида кремния в области видимого и У Φ спектра используется метод нормального отражения естественного света, который основан на связи между вещественной и

мнимой частями комплексной амплитуды отраженного луча [5]. По измеренному спектру отражения естественного света были рассчитаны спектры показателя преломления и коэффициента поглощения.

Измерения эллипсометрических параметров исследуемых структур SiC/поликор проводились на спектральном эллипсометре VASE (variable angle spectral ellipsometer) при углах падения от 65° до 70° в диапазоне длин волн от 200 до 1000 нм. Угол наклона плоскости поляризации падающего излучения к плоскости падения при всех измерениях был равен 45° [6]. На основании полученных данных были определены спектры показателя преломления и коэффициента поглощения слоев карбида кремния на поликоре.

Спектры оптических параметров исследуемых структур SiC/поликор полученные двумя различными способами хорошо согласуются между собой и могут быть использованы для контроля структур карбид кремния на поликоре.

Список использованных источников

- 1.Лучинин В., Таиров Ю. Отечественный полупроводниковый карбид кремния: шаг к паритету // Современная электроника. 2009. № 7.
- 2.Лучинин В., Таиров Ю. Карбид кремния алмазоподобный материал с управляемыми наноструктурно-зависимыми свойствами // Наноиндустрия. 2010, № 1. с. 36-40.
- 3.Полищук А. Полупроводниковые приборы на основе карбида кремния настоящее и будущее силовой электроники // Компоненты и технологии. 2004. № 8.
- Чепурнов В.И. Способ получения карбида кремния / АС СССР №1436544 от 08.07.1988.
 - 5. Уханов Ю.И. Оптические свойства полупроводников. М.: Наука, 1977. 366 с.
- 6.Алексеев С.А., Прокопенко В.Т., Скалецкий Е.К. и др. Введение в прикладную эллипсометрию. СПб.: ГУ ИТМО, 2005. 200 с.

УДК 621.382.2/3

ПРИМЕНЕНИЕ КАРБИДОКРЕМНИЕВЫХ ИЗМЕРИТЕЛЕЙ СВЧ МОЩНОСТИ НА ОСНОВЕ ГАЛЬВАНОМАГНИТНЫХ ЭФФЕКТОВ В АЭРОКОСМИЧЕСКОМ ПРИБОРОСТРОЕНИИ

Л.В. Курганская, А.В. Щербак, З.М. Яшкин «Самарский национальный исследовательский университет имени академика С.П. Королева», г. Самара

Ключевые слова: СВЧ-мощность, радиоэлектрический эффект, эффект Холла, термоЭДС.

Область сверхвысоких частот, охватывающая диапазоны от дециметровых до субмиллиметровых длин волн $(10^{11}-10^{12}~\Gamma ц)$, широко используется в аэрокосмическом приборостроении, а именно, в бортовых системах космических аппаратов в негерметичном исполнении, в