- $\rho$  коэффициент отражения абсолютно плоского и гладкого образца материала контролируемой поверхности;
  - $\lambda$  длина волны излучения;
  - $\Psi$  угол падения.

В основу интерферометрического метода положена зависимость разности фаз между зондирующим и опорным пучками, создаваемой шероховатой поверхностью. [3]

Сущность контактного метода заключается в том, что остро заточенная игла, имеющая контакт с исследуемой поверхностью, приводится в поступательное перемещение по определенной трассе относительно поверхности.

В целом все методы имеют свои преимущества и недостатки. К преимуществам оптических методов можно отнести бесконтактность с поверхностью что позволяет не нарушать целостность поверхности.

К преимуществам контактных методов можно отнести то что они обеспечивают высокую точность благодаря малому радиусу кривизны алмазной иглы.

### Список использованных источников

- 1. ГОСТ 2789-73. Шероховатость поверхности. Параметры и характеристики// Госстандарт СССР.-23.04.1973.
- 2. ГОСТ 25142-82. Шероховатость поверхности. Термины и определения// Госстандарт СССР. 18.02.1982.
- 3. Лукьянов В:С. Параметры шероховатости поверхности/ В.С. Лукьянов,, Я.А.Рудзит.- М.: Изд-во стандартов, 1979.- 162с.

# УДК 620.179.18

# ОПТОЭЛЕКТРОННАЯ СИСТЕМА КОНТРОЛЯ ГЕОМЕТРИИ ЛОПАТОК ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ

Р.Ю. Лефаров, С.А. Данилин Самарский университет, г. Самара.

Обеспечение высокой надежности турбоагрегатов, увеличение их эксплуатационного ресурса, невозможно без организации входного контроля кривизны и качества поверхностей деталей. Поэтому оказывается востребованной разработка экономичных и эффективных автоматизированных средств входного контроля кривизны и качества поверхностей деталей турбомашин. [2]

Разработанная оптоэлектронная система позволяет оптическим методом определить бесконтактно кривизну лопаток газотурбинных двигателей. В основе лежит светодиод типа АЛ107 излучающий в максимуме спектральной плотности в пределах от 0,9 до 0,98 мкм.

Открытый гальванический фотоэффект позволяет использовать светодиод не только в качестве источника излучения, но и в качестве фотоприемника. Консоль в которую помещены два светодиода типа АЛ107, оснащена моносветоводной вставкой, что позволяет сформировать монотонную амплитудную характеристику, эффективно излучать и принимать зондирующий сигнал рисунок 1а.

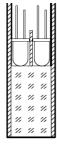





Рисунок 1а – Консоль

Рисунок 1б – Электронный модуль

Исследуемое устройство (рисунок 1б) спроектировано на платформе для разработки на базе микроконтроллера ATmega328P, шаговых двигателей 28ВYJ-48, Funssor NEMA 17 и драйверов ULN2003, A4988. Схемная реализация устройства позволяет устанавливать диапазон исследуемой поверхности от 0 до 120°, устройство представлено на рисунке 2.

Разработанное автоматизированное устройство служит для определения геометрии лопаток газотурбинных двигателей [3].

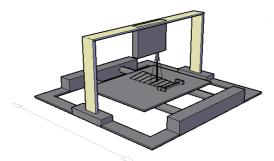



Рисунок 2 – Демонстрационная модель работы устройства

Использование предлагаемого способа определения угловых положений поверхностей и устройства, расширяет диапазон измеряемых угловых положений контролируемых поверхностей посредством увеличения времени совместного существования излученного и отраженного световых потоков. [1]

## Список использованных источников

- 1. А.с. 1682784 СССР, МКИ G01B 21/22. Способ определения угловых положений поверхности объекта и устройство для его осуществления / А.И. Данилин, В.А. Медников, С.П. Прохоров, А.Г. Медников (СССР). №4659964/28; заявл. 28.12.88; опубл. 07.10.91, Бюл. № 37. 4 с.
- 2. Пат. 2337330 Российская Федерация, МПК  $^7$  G 01 H 9/00. Способ измерения раскрутки и амплитуды крутильной составляющей колебаний лопаток турбомашин и устройство для его осуществления / Данилин А.И., Арефьева О.В.,; заявл. 09.01.07; опубл. 27.10.08, Бюл. № 16. -2c.
- 3. Пат. 2341781 Российская Федерация, МПК  $^7$  G 01 M 15/14. Способ измерения амплитуды колебаний лопаток турбомашин и устройство для его осуществления / Данилин А.И., Арефьева О.В.; заявл. 05.02.07; опубл. 20.12.08, Бюл. № 19. 2c.

УДК 531.781.2(088.8)

# ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ МЕТОДА ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ КОЛЕБАНИЙ ЛОПАТОК, ОСНОВАННОГО НА НЕЛИНЕЙНОЙ АППРОКСИМАЦИИ СИГНАЛОВ ПЕРВИЧНЫХ ПРЕОБРАЗОВАТЕЛЕЙ

А.Ж. Чернявский, С.А. Данилин, Е.Е. Дудкина Самарский университет, г. Самара

Обеспечение высокой эксплуатационной надежности энергоагрегатов, в частности газотурбинных двигателей (ГТД), является современного машиностроения. проблемой ответственными деталями ГТД являются лопатки компрессора и турбины, работающие сложных эксплуатационных условиях больших знакопеременных нагрузок, высоких температур, эрозионных коррозионных воздействий.

Авторами предложена новая реализация дискретно-фазового метода [1, 2], при которой техническое состояние контролируемой лопатки оценивается по степени различия формы импульсов первичного преобразователя  $(\Pi\Pi)$ , формируемых динамически нагруженной (колеблющейся) и ненагруженной лопатками. Колебания лопаток, как собственные, так и вынужденные, приводят к неравномерности скорости прохождения лопаток около датчика, что приводит к искажению формы информационного сигнала.

В докладе представлены результаты экспериментальных исследований разработанного измерителя динамических перемещений лопаток (ИДПЛ), предназначенного для проверки основных положений разработанной математической модели информационного сигнала ДФП динамических