J_{260} — обратный ток эмиттера, мкА; J_{KOR} — обратный ток коллектор-эметтер, мкА.

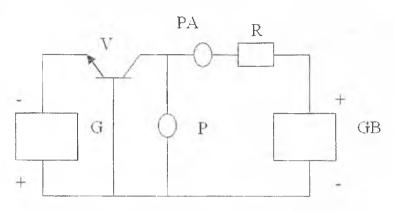


Рис. I. Схема испытания на безотказность транзисторов 2Т385-AM2M

После проведения этих испытаний данные были обработаны и сравнены с данными отбраковки, полученными ранее при испытаниях транзисторов на стенде с импульсным источником тока. На основании этого были определены пороговые уровни отбраковки. Они составили для перехода коллектор-база $\Delta U_{56} \leq 0.45~B$, а для перехода эмиттер-база $\Delta U_{56} \leq 0.25~B$.

Для контроля транзисторов был разработан стенд. В состав стенда входят следующие узлы: генератор импульсов тока, адаптер для подключения транзисторов с добавочным сопротивлением и осциллограф С1-112.

ОСОБЕННОСТИ ПРИМЕНЕНИЯ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ ПРИ ТЕПЛОФИЗИЧЕСКОМ КОНСТРУИРОВАНИИ

С.В. Микерин

Самарский государственный аэрокосмический университет, г. Самара

Проблема расчета температурного состояния конструкций электронных модулей различного уровня иерархии не теряет своей актуальности. Для се решения целесообразно использовать тепловую модель в виде совокупности неоднородных анизотропных параллелепипедов. Такая тепловая модель обуславливается применением численных методов для решения уравнений теплопроводимости. Одним из

наиболее предпочтительных методов при этом является метод конечных элементов.

В настоящее время существует ряд методик расчета теплового режима РЭС на основе конечных элементов. Метод этот является универсальным методом решения широкого круга краевых задач, поэтому возрастает важность разработки методики и математической модели, учитывающей особенности конкретной области применения. С точки зрения конечноразностной методики расчета теплового режима конструкций синтез математических моделей сводиться к следующему:

- Синтезируется принципиальные аэрогидравлические схемы движения теплоносителя, отводящие тепло от объекта охлаждения в окружающую среду.
- 2. Каждый блок принципиальной схемы описывается зависимостями, связывающими его входные и выходные параметры с возмущающими воздействиями.
- 3. Синтезируется общая математическая модель системы обеспечения тепловых режимов на основе ее принципиальных схем и описания блоков этих систем.
- 4. Синтезированная математическая модель используется для анализа параметров Системы обеспечения тепловых режимов (СОТР) и их соответствия предъявляемым требованиям.

Расчетной областью является тепловая модель в виде совокупности неоднородных параллелепипедов. Соответственно выбраны конечные элементы в виде параллелепипедов с линейной аппроксимацией температуры в приделах элемента. Такие конечные элементы, кроме соответствия тепловой модели по форме, позволяют упростить вычислительные процедуры формирования системы уравнений.

Алгоритм автоматизированного разбиения на конечные элементы и нумерации узлов в данном случае удобно построить на основе учета особенностей расчетной области и выбора конечных элементов. Пространственная сетка конечных элементов образуется совокупностью взаимноперпендикулярных плоскостей, каждая из которых параллельна соответствующей координатной плоскости. При этом шаг сетки конечных элементов в направлении любой из координатных осей может быть неравномерным.

Непосредственное применение рассмотренного способа дискретизации затрудненно по ряду причин:

- 1. Тепловая модель электронных модулей содержит большое количество произвольно расположенных источников тепла.
- 2. В окрестности каждого источника есть повышенный градиент температуры, для учета которого необходимо «сгущать» сетку конечных элементов.

Решить указанные затруднения можно, используя следующий подход: применять методику конечных элементов только для расчета компонентов, определяющих тепловой режим конструкции и упростить правила расчета для менее влияющих компонентов.

Исходя из этого, предлагается подход, суть которого заключается в совершенствовании конечноэлементного разбиения, так как сетка конечных элементов при описанном выше способе обладает определенной избыточностью. С другой стороны, в тонких прослойках электронных модулей (стенки и крышка корпуса, слой припоя и т.п.) градиент температуры настолько мал, что им можно пренебречь. Учитывая это, целесообразно в расчетах одновременно использовать конечные элементов двух типов: трехмерные конечные элементы в виде параллелепипедов и двухмерные конечные элементы в виде прямоугольников. Плоскими конечными элементами в трехмерной области удобно задавать слои с заведомо малым перепадом температуры по толщине. На рис. 1 показан фрагмент разбиения, иллюстрирующий указанное положение.

Координатные функции конечных элементов в виде параллелепипеда и прямоугольника в линейной аппроксимацией температуры в пределах каждого элемента позволяет одновременно использовать такие конечные элементы и существенно снизить требуемые вычислительные ресурсы (на 20 – 40 %) по сравнению с использованием только трехмерных конечных элементов и практически полностью автоматизировать процедуры подготовки исходных далных и выдачи результатов.

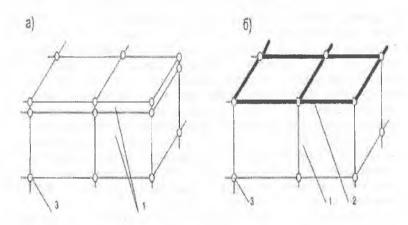


Рис. 1. Замена объемных конечных элементов плоскими: а – объемные элементы; б – объемные и плоские элементы. 1 – объемный конечный элемент; 2 – плоский конечный элемент; 3 – узел