

Рис. 1. Структурная схема устройства регистрации ЭКГ

При оценке помехоустойчивости данного прибора основное ничаание было уделено блокам модуляция-демодуляция. В связи с этим, была поставлена задача – исследовать характеристики блоков, редлизующих АИМ и ШИМ модуляция. В качестве параметров оценки использовалось сравнение уровня шумов, соотвошений сигнал/шум, а также динамических диапазонов. В частности, при использования АИМ - модуляция уровень шумов составля 25 мВ, соотношение сигнал/шум —32 дБ, динамический лиапазон - 26 дБ. Аналогично, лия ШИМ - модуляция, уровень шумов - 20 мВ, соотношение сигнал/шум – 28 дБ, динамический диапазон - 24 дБ. Таким образом, при построения устройств регистрации ЭКП предпочтительным является использование ШИМ - модуляция.

ПЛАНАРНЫЙ ЭЛЕКТРООПТИЧЕСКИЙ ДЕФЛЕКТОР ГРАДИЕНТНОГО ТИПА ДЛЯ ВОЛОКОННОЙ ЛИНИИ СВЗЯИ

В.Д. Паранин, Е. Пантелей, О.Г. Бабаев

Самарский государственный аэрокосмический университет, г. Самара

Введение

Электроонтические дефлекторы (ЭД) – элементы, обеспечивающие непрерывное или дискретное отклонение састового пучка. Дополнительно ЭД выполняют функция оптических модуляторов и коммутаторов, применяются в устройствах лазерной локация, системях литографии. К настоящему времени разработаны ЭД различных типов: полеризационные, имфракционные, интерференционные [1], градментные и др. Основные усялия разработчиков направлены на снижение утваляющих электрических напряжений и мощностей, увеличение передельных углов отклопения светового пучка [2]. В настоящей работе предлагается конструкция и математическое описание электрооптического дефлектора градиентного типа.

Особенностью рассматриваемого дефлектора является использование токкой протяженной пластины электроонтического кристала в сочетании с планарными или прижимными электродами, нанесенными на верхнюю и инжикою стороны, формирующими элиейное распределение управляющего электрического подв. Использование тонкой протяженной пластины позволяет увеличить оптический путь в области наведенной оптической анизотропии и существенно снизить управляющее вание тонков протяженно.

Конструкция дефлектора

Устройство работает следующим образом. Параллельный световой пучок источника излучения 6 вводится в электрооптический кристала 2. торым которого полированы. Кристала закреплен на поллокке (а выполненной из проводящего материала. На поверхность кристалля вняесены управаное покрытие 4. Электроды и покрытие изолированы от окружающей среды защитным покрытием 5. При подаче различных потенциалов U, U, U, u, и и постоянный градмет 1. При подаче различных потенциалов U, U, U, u, и постоянный градмети наррженности полеречного электрического поля Е, влоль оси коордимят х. Данное поле обусловливает линейное изменение распространения светового пучка, что вызывает его отклонение. Конструкция предлагаемого дефлектора прохолящего и отражающего типов примедены врис 1.

Рис. 1. Конструкция лектроантаческого дофлектора. 1 - проводящая подложка, 2 электроонтический кристаля. 3 - электроды, 4 - высохоомное покрытие, 5 - защитное покрытие 6 - источник излучения 7 - примник в зучения. 8 - эрекланое покрытие Направление и величина отклонения луча, поданного на вход лефлектора, зависят от распределения управликоших потекциалов U₁, U₂ на соответствующих электродах. При отсутствии напряжений на электродах луч света распространяется прямолинейно.

Конструкция проходящего лефлектора отличается от отражающего тем, что все приемняки излучения 7 расположены на протввоположной относительно излучателя стороне дефлектора. В отражающем дефлекторе [3] используется зеркальное покрытие 8, поэтому на протввоположной стороне кристала расположен только один приемняк излучения. Конструкция такого типа позволяет увеличить в два раза координатное смещение луча при тех же значениях напряжений, т.е. обладает в два раза большей чувствительностью к управляющему вапряжению.

Математическая модель дефлектора

Формула, описывающая распределение электрического напряжения между проводящей подложкой и верхней стороной кристалла, имеет вид:

$$U(\mathbf{x}) = (U_1 - U_3) + (U_1 - U_2)\frac{\mathbf{x}}{a},$$
(1)

где U₁ – напряжение на вевом верхнем электроде; U₂ – напряжение на правом верхнем электроде; U₃ – напряжение на проводящей подложке.

Полагая U₁=U₃=0 и совмещая правый край левого верхнего электрода с началом координат ося х, получим выражения для распределения потенциала (UX) и напряженности элекстрического поля E₄(X):

$$U(x) = \frac{U_2 x}{a},$$

$$(2)$$

$$E_s(x) = \frac{U_2 x}{a}.$$

$$(3)$$

где *а* – ширина межэлектродного пространства, м; *h* – толщина электрооптического кристаила, м.

Проведенный аналя: свойств электрооптических кристацов показал, что эффективное отклонение с использованием поля E_s(x) реализуется в оргоромбическом классе кристациов 2mm, триговальном 3, 3m, тетрагональном классе 4, 4mm, гексаговальном 6, 6mm. При этом предпочтительнее использовать z-поляризацию световой волны, поскольку ее электрооптический коэффициент г₁₃ превосходит коэффициенты г₁₀, г₂₀ для воли x- и уполяризаций [4]. Показатель предомления z-поляризованной волны ляя xсрезов указанных кристациов равен:

$$n_z(x) = \frac{n_e}{\sqrt{1 + r_{33}E_z(x)}} \approx n_e - \frac{1}{2}n_e^3 r_{33}E_z(x)$$

к. выполняется условие:
 r., E (x) << 1.

где n_e – необыкновенный показатель предомления. r₃₃ – электрооптический коэффициент.

Тогда угол отклонения в конструкции дефлектора, работающего в проходящем свете, равен:

$$\Theta_{\eta p} = -\frac{L}{n_e} \frac{dn_-(x)}{dx} = \frac{n_e^2 r_{33} U_2 L}{2ah}.$$
(5)

где L - длина электрооптического кристалла, м.

Величина текущего линейного смещения луча на выходе дефлектора,

$$\Delta x_{em} = \int_{0}^{b} \Theta_{e_{p}} dy = \frac{r_{33} n_{e}^{2} l_{-2} l_{-2}}{4 a \hbar}$$
(6)

Максимальное линейное смещение луча Δx_{CM} не должно превосходить половины расстояния между верхними электродами:

$$\Delta x_{CM} \leq \frac{a}{2},$$
(7)

или

M:

$$a \ge L \sqrt{\frac{r_{11} a^2 U_{\ge}}{2h}}$$
(8)

Если значение а сделать меньше указанной в (8) величины, то дуч выйдет за пределы межэлектродного промежутка и часть длины электродев окажется нерабочей.

Величина данного градиента в межэдектродном промежутке а является постоянной. Наличие градиента электрического поля обусловляват возникновение постоянного градиента показатся предолмения в нем. Такия образом, осуществляется отклонение светового пучка и его направления в лии из приемников излучения. Следует отметить, что конструкция дефлектора может работать в отраженном свете, что повышает координатис слещение светового пучка. Это достигается нанесением зеркавьют покрытия на одии из полированных ториов электрооптического користалия

Результаты моделирования параметров дефлектора

Для проедения моделирования были выбраны следующие конструктивные параметры: электрооптические кристаллы LRNO; Ва₆, Si₆, Nb₅O₆, BaTiO₁ I; 5 (j длиной I см, толщиной h = 50 мкж, величны управляющих потенциалов - до 100 В. зазор *а* между верхними электродами - 0.3 мм.

Рис. 2. Зависимость угла отклонения луча от длины кристалла при U1=U3=0B, U2=100B

На рис. 2 приведена зависимость угла отклонения оптического дуча от длявы кристалла. Зависимость носит линейный характер. Как видно из прафика наибольшим угловым отклонением обладает Ва. 55с. № 50-с. При вспользования Ва. 55с. № 50-а в качестве электроонтического материала лостижим угол в 0.013 град при длине кристала L-1 см. Для Ват(5)- с. 0.06 град, для L.1№ 0, - 0.0015 град при той же дляве кристалата. В таблине 1 приведены расчетиме значения чувствительности для данных материалов. Таким образом проходявая конструкция представленного дефлектора позволяет обеспечить чувствительность в 0.000015 град/В в случае колользования L1№ 0, в качестве материала электроотитического кристала.

На рис. 3 приведена зависимость координатного смещения оптического луча от длины кристалла для тех же материалов.

Рис. 3. Зависимость коорлинатного смещения луча от длины кристалла при U1−U3-0В. U2=100В

Таблица I. Чу	вствительность	электрооптических	материалов п	ри L=	Jα
---------------	----------------	-------------------	--------------	-------	----

Электроолтический материал	Чувствительность, град/В	
Ban_ST0_SNb+On	0.00012	
BaTiOs	0.00006	
LiNbOn	0,000015	

Данная зависимость носкт линейный характер. Наибольше координатное смещение луча характерно для ниобата бария стронция ва.,Sra,Shy,Go., поскольку его зактроотический коэффициент г₂₁ максикален среди выбранных кристаллов. При использовании Ва₀,Sr₀,Nb₀, достижию координатное смещение в 0.065 мм при длине кристалла 1 см. для ВаТго₁ – 0,03 мм; для LiNbO₃ – 0,01 мм при той же диние кристалла Вместе с тем. применение ниобата бария стронция ограничено его высокой стомостью и низкой температурой Кори (50-60 °С.) [6]. Для титаката бария характерно довольно большое оптическое поглощение, равное 0,11см⁻¹ на диние волны 633ым [7], что приводит к значительным потерям оптическия.

Заключение

Из результатов моделирования следует, что при управляющия напряжениях до 100 В и дляне электроонтического крыстала 1 см координатное смещение в инобате лития составляет десатки микрометров. Данное смещение в инобате лития составляет десатки микрометров. Данное смещение весьма невелико для волоконно-оптических систем с лиаметром сердцевины волокна 125 мкм. Для его увеличения следует 108 уменьшать толщину электрооптического материала или применять более эффективные электрооптические среды. Однако это связано C технологическими сложностями, например. явлением выгиба тонких электроонтических пластин, увеличением их хрупкости, необходимостью прецизионного сошлифовывания электрооптических пластин, значительной стоимостью материалов. В этой связи привлекательны, например. электрооптические полимеры, наносящиеся жидкостным распылением или центрифугированием в виде сдоев толшиной в единицы десятки микрометров, обладающие большими электрооптическими коэффициентами (в лесятки - сотни пм/В), хорошей пробивной прочностью (в единицы десятки В/мкм). Важным этапом создания макетного образца дефлектора также является формирование тонких слаборасходящихся световых пучков на входе конструкции.

Список использованных источанков

I. Патент 4,930.853 США МПК[®] G028 6/10. Electrooptic deflector / Grego G., заявитель и патентообладатель. Селно Studi E Laboratori Telecomunicazioni S.P.A.: заявл. 05.661.990 г. поуба. 24.07.1989 г.

2.Патент 6,449,084 ВІ США МПК² G02F 3/29. Optical deflector /Yanping G.: заявитель и патентообладатель - Yanping G.; заявл. 09.05.2000 г. опубл. 10.09.2002 г.

 Конойко А.И. Федоринчик М.П. Физические основы постросния устройств оптической обработки сигналов. Мн :: БГУИР, 2007. - С. 72.

4. Ярив А., Юх П. Оптические волны в кристаллах. - М.: Мир, 1987. - С. 616

 Сонин А.С., Василевская А.С. Электрооптические кристалы. М.: Атомиздат, 1971. - 327 с.

6.Кузьминов Ю.С. Сегнетоэлектрические кристаллы для управления лазерным излучением, 1982. - 400 с

7.Гурзадян Г.Г. Нелинейно-оптические кристаллы. Свойства и применение в квантовой электронике. М.: Радио и связь. 1991. - 160 с.

АЛГОРИТМ ПРАВИЛЬНОЙ НУМЕРАЦИИ ДВУХПОЛЮСНОГО ОРИЕНТИРОВАННОГО ГРАФА

Д.А. Попова-Коварцева

Самарский государственный аэрокосмический университет, г. Самара

Введение

Разработка параллельных программ представляется более сложной процедурой по сравнению с созданием аналогичных последовательных кодов