Список использованных источников

- 1. UM1924. User manual. STM32 crypto library. ST, 2015. [Электронный pecypc] URL: https://www.st.com/resource/en/user_manual/dm00215061-stm32-crypto-library-stmicroelectronics.pdf (дата обращения: 26.10.2022).
- 2. Мартин Моц. Кибербезопасность на уровне микроконтроллеров. [Электронный ресурс] URL: https://controleng.ru/wp-content/uploads/8370.pdf pdf (дата обращения: 26.10.2022).

Чарикова Полина Вячеславовна, студент гр. 6271-110401D, charikova99@gmail.com. Лофицкий Игорь Вадимович, к.т.н., доцент каф. радиотехники, ivl60@mail.ru.

УДК 004.056.52; 004.891.3

ПОСТРОЕНИЕ DLP-СИСТЕМ НА ОСНОВЕ НЕЙРОСЕТЕВЫХ ТЕХНОЛОГИЙ

Е.А. Марченко, С.В. Жуков «Самарский национальный исследовательский университет имени академика С.П. Королёва», г. Самара

Ключевые слова: DLP-системы, системы контроля, нейронные сети, нейросетевые технологии.

Предотвращение потери данных (Data Loss Prevention) - мера предназначенная ДЛЯ зашиты бизнес-информации предотвращения потери, кражи И искажения важных или конфиденциальных данных путем предотвращения перемещения ключевой информации конечными пользователями за пределы сети. Технология использует программные или аппаратные инструменты, позволяющие сетевому администратору отслеживать данные, которые используются и передаются конечными пользователями.

DLP-система – программное решение либо набор инструментов, защищающая сетевые информационные структуры организации. Такая система позволяет анализировать данные защищаемого цифрового периметра безопасности на внешних носителях и т.п.

Искусственные нейронные сети (ИНС) обладают способностью к обучению, которое заключается в изменении весов и порогов сети. Самой распространённой из огромного множества различных вариаций ИНС является многослойная нейронная сеть прямого распространения (рисунок 1).

Сеть состоит из нескольких слоев и каждый из них состоит из искусственных нейронов, при этом выходы нейронов предыдущего слоя являются входами для нейронов последующего слоя. Она может моделировать функцию практически любой степени сложности, причем число слоев и число элементов в каждом слое определяют сложность функции.

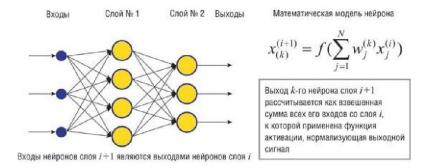


Рисунок 1 – Многослойная нейронная сеть прямого распространения

Цель использования искусственного интеллекта в решении DLP состоит в успешном симбиозе новых технологий с людьми, чтобы активно сильные соответствующие стороны других. используют навыки экспертов по нейронным сетям и машинному применения обучению для выбора, создания И инновационных методологий и решений, основанных на данных, в сочетании с уже существующими традиционными решениями DLP.

Идентификация поврежденных данных и подозрительной активности стала проще благодаря ИИ, поскольку записи о предыдущих атаках на данные автоматически регистрируются и учитываются при принятии решений в будущем. Решения DLP на основе нейронных сетей могут автоматически блокировать или отключать определенного пользователя с высоким уровнем риска на основе использования или моделей поведения, предотвращая нарушение или утечку данных. Шаблоны данных также можно сканировать по регионам, отделам или процессам в режиме реального времени, что позволяет компаниям выявлять слабые места и сосредоточивать усилия на укреплении безопасности в этих областях.

При работе с большими данными искусственный интеллект может одновременно просеивать и анализировать огромные объемы данных, чтобы обнаруживать события угроз быстрее и точнее, чем любое традиционное решение DLP. На самом деле, чем больше данных доступно, тем больше шаблонов нейронная сеть может обнаружить и изучить, чтобы обнаружить аномальную активность или угрозы в обычном потоке шаблонов. Искусственный интеллект отслеживает действия пользователей, считающиеся нормальными, такие как время входа в систему и местоположение устройства человека, активность этого устройства и многое другое. Любые отклонения от обычной деятельности пользователя, такие как вход в систему из другого места, немедленно помечаются и могут быть заблокированы или приостановлены до тех пор, пока не будет

предоставлена проверка. Затем эта новая информация может быть учтена в будущем поведении пользователя.

Список использованных источников

- 1. Айдинян А.Р., Цветкова О.Л., Черняков П.В., Сокол Д.С., Методики интеллектуального выбора и оценки DLP-системы для решения проблем информационной безопасности/ Молодой исследователь Дона. Донской государственный технический университет 2018. № 1 (10). С. 1-4.
- 2. Алексеев И.В., Митрохин М.А., Кольчугина Е.А., Программная реализация модуля DLP-системы для мониторинга и анализа трафика корпоративной сети с использованием машинного обучения/ Безопасность информационных технологий 2020. Том № 27 (№ 1). С. 28-39.
- 3. Писаренко Игорь, Нейросетевые технологии в безопасности, Информационная безопасность 2009 № 4 С. 34
- 4. Валерий Естехин, ИИ как предсказатель утечек данных, Информационная безопасность 2020. № 6

Марченко Екатерина Александровна, студент гр. 6203-010302D, katyushenkamarchenko@mail.ru.

Жуков Семен Викторович, ассистент каф. геоинформатики и информационной безопасности, zhukovsv91@inbox.ru.

ЭКСПЛУАТАЦИЯ РАДИОЭЛЕКТРОННОГО ОБОРУДОВАНИЯ И СРЕДСТВ ДИАГНОСТИКИ АВИАЦИОННОЙ ТЕХНИКИ

УДК 629.7.064.3

ИСПОЛЬЗОВАНИЕ МОДУЛЬНЫХ СЕТЕЙ ДЛЯ РЕШЕНИЯ ЗАДАЧ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ УЗЛОВ АВИАПИОННОЙ ТЕХНИКИ

А.Б. Деста

«Самарский национальный исследовательский университет имени академика С.П. Королёва», г. Самара

Ключевые слова: системы встроенного контроля, диагностика, упреждающее техническое обслуживание.

Цель работы – предложить подход к оценке технического состояния узлов авиационной техники, основанный на дедуктивном анализе данных,