Информационная часть сигнала поступает в блок 18 на АЦП. Оцифрованные сигналы записываются в оперативную память микроконтроллера 19 для дальнейшей обработки.

Предложенное устройство позволит увеличить точность измерения параметров крутильных колебаний лопаток ГТД за счет исключения в качестве опорного информационного параметра для текущей лопатки колеса временного интервала между максимумами сигналов, поочерёдно отраженных от первой и третьей зон поверхности данной лопатки и использовать устройство вне зависимости от наличия выходного сигнала штатной системы определения частоты вращения ротора турбоагрегата.

Список использованных источников

1 Бояркина, У.В. Оптоэлектронный способ определения параметров крутильных колебаний лопаток ГТД [Текст] / У.В. Бояркина, Е.А. Щелоков // Актуальные проблемы радиоэлектроники и телекоммуникаций: материалы Всероссийской научно-технической конференции — СГАУ.—Самара, 2015. с. 11.

УДК 531.781

УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ КРУТИЛЬНЫХ КОЛЕБАНИЙ РОТОРА ГТД

М.С. Попов, У.В. Бояркина

г. Самара, «Самарский национальный исследовательский университет имени академика С.П. Королёва»

Развитие во всем мире мощных энергетических установок, увеличение их эффективности и надежности приводят к внедрению не только новых материалов и технологий, но и средств контроля за их основными функциональными узлами, в частности, за эксплуатационным контролем валов роторов энергоагрегатов. Эта проблема актуальна по причине того, что вал ротора является основным функциональным элементом, на котором устанавливаются силовые механические узлы. В результате вал ротора воспринимает все статические и динамические нагрузки, возникающие в механической системе. Поэтому целесообразно конкретной возможность диагностирования его технического состояния эксплуатационном режиме, а также при экспериментальных исследованиях валов с новыми конструктивными изменениями и элементами.

Существует способ определения крутильных колебаний ротора при помощи доплеровского эффекта в СВЧ диапазоне. Принцип работы устройства можно пояснить при помощи структурной схемы на рисунке 1.

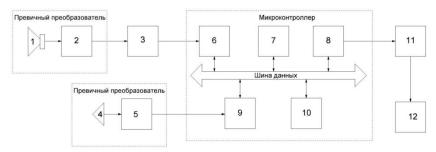


Рисунок 1 – Структурная схема устройства

В корпусе турбины устанавливаются волноводный преобразователь 1, ось которого направлена перпендикулярно оси вращения ротора по касательной к его поверхности. Сигнал с автодинного генератора 2 подается на волноводный преобразователь, в котором возникает зондирующее СВЧ излучение облучающее поверхность ротора.

При отсутствии крутильных колебаний ротора на выходе атодина формируется сигнал доплеровской частоты, обусловленный вращением ротора, частота которого постоянна.

$$\omega_{DR} = \frac{2\omega_0}{c} \cdot V_R$$

где V_R ; ω_{DR} — соответственно, составляющая мгновенной линейной скорости по отношению к неподвижному датчику и доплеровская частота, обусловленная круговым движением ротора турбины;

 ω_0 – рабочая частота генератора;

с - скорость света.

При возникновении крутильных колебаний ротора, частота Доплера меняется пропорционально скорости этих колебаний.

$$\omega_D t = \frac{2\omega_0}{c} \cdot V_R + V_L = \omega_{DR} + \omega_{DL}$$

 V_L ; ω_{DL} — соответственно составляющая мгновенной линейной скорости по отношению к неподвижному датчику и доплеровская частота, обусловленная крутильным колебанием ротора турбины [1].

Далее сигнал поступает на пороговое устройство 3 принцип работы, которого заключается в отслеживание нулевых переходов и формировании единичного или нулевого импульса при каждом последующем переходе.

Затем определяется временной интервал между соседними импульсами при помощи счетчика импульсов 6 реализованного в микроконтроллере. Далее измеренное значение записывается в оперативно запоминающее устройство 7 и в дальнейшем передается по UART 8 через микросхему MAX486 11 на персональный компьютер 12.

Для привязки к частоте вращения ротора используется оборотный датчик 4. Сигнал с оборотного датчика поступает на блок обработки сигнала оборотного датчика 5 и подается на второй счетчик импульсов 9 реализованный в микроконтроллере. Все операции в микроконтроллере осуществляются при помощи арифметико-логического устройства 10.

Предложенное устройство позволяет более точное и надежное измерения крутильных колебаний роторов турбоагрегатов.

Список использованных источников

1. Попов М.С. Доплеровский преобразователь крутильных колебаний ротора турбины [Текст] / М.С. Попов, У.В. Бояркина, // Актуальные проблемы радиоэлектроники и телекоммуникаций: материалы Всероссийской научно-технической конференции — СГАУ.— Самара, 2015. с. 41.

УДК 621.373.826 + 621.384.3

ЛАЗЕРНЫЕ СИСТЕМЫ РЕГИСТРАЦИИ ПАРАМЕТРОВ ДВИЖЕНИЯ, ЗАДАЧА МНОГОКРАТНОГО ПЕРЕОТРАЖЕНИЯ

Е.А. Щелоков, Д.А. Щелоков

г. Самара, «Самарский национальный исследовательский университет имени академика С.П. Королёва»

Оптические системы нашли широкое применение в космической технике [1]. Однако в связи с появлением новых технических решений [1,2] необходимы дополнительные исследования в части возможностей и ограничений многократного переотражения при распространении лазерного излучения.

Рассмотрим систему, построенную на принципе многократного переотражения лазерного излучения от зеркал (в частности металлических). В такой системе необходимо учитывать коэффициент отражения материала, на основе которого изготовлено зеркало.

 $R(\omega)$ – коэффициент отражения материала [3]:

$$R(\omega) = 2\sqrt{2} \frac{w}{w_o} \left[\left(1 + \frac{\gamma^2}{w^2} \right)^{\frac{1}{2}} - 1 \right]^{\frac{1}{2}},$$
 (1)

где w — частота излучения, w_{p} — плазменная частота свободных электронов, γ — частота электронных столкновений (w_{p} и γ — имеют различные значения в зависимости от материала металла).

Отражательные свойства некоторых материалов для видимого и инфракрасного диапазона излучения приведены в таблице1.