Таким образом, для получения корректных результатов измерений и для повышения точности исследования необходимо сначала оценить высоту микронеровностей поверхности в соответствие полученной высотой подобрать длину волны для источника зондирующего излучения.

Список использованных источников

- 1. Патент РФ на изобретение № 2548939, МПК G01B21/22. Способ определения угловых положений поверхности объекта и устройство для его осуществления. [Текст] / Данилин А. И., Данилин С.А., Грецков А.А. // Опубликовано 20.04.2015. Бюл. № 11.
- 2. Данилин, А. И. Бесконтактные измерения деформационных параметров лопаток в системах контроля и управления турбоагрегатами [Текст]/ А. И. Данилин. Самара: Изд-во Самарского научного центра РАН, 2008. 218 с.

УДК 681.586. 621.642.6

УСТРОЙСТВО ИЗМЕРЕНИЯ УРОВНЯ СЖИЖЕННЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ НА ОСНОВЕ КОМПОЗИТНЫХ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРПРОВОДНИКОВ

А.В. Раев, Б.В. Скворцов Самарский университет, г. Самара

Сжиженный углеводородный или природный газ (сокращенно СУГ или $C\Pi\Gamma$, как принято называть в отрасли энергетики (англ. Liquefied Natural Gas, сокращённо LNG) является обыкновенным природным газом, охлажденным до температуры сжижения -162°C для хранения и жидком виде. Хранение СУГ осуществляется транспортировки в изотермических резервуарах при температуре кипения, которая может благодаря испарению $C\Pi\Gamma$. Для обеспечения поддерживаться учёта СУГ В резервуаре необходимо обеспечить коммерческого достоверное и точное измерение количественных параметров сжиженных углеводородных газов – уровня и плотности жидкой фазы СУГ. На основании анализа существующих методов и устройств измерения уровня можно сделать вывод, что точность известных приборов в широком диапазоне рабочих условий не удовлетворяет требованиям заказчика.

В докладе предложено использование терморезистивных датчиков $CY\Gamma$. чувствительным элементом которых является уровня высокотемпературный сверхпроводник (BTCII). Преимуществами использования данного типа датчиков являются компактность и отсутствие каких-либо подвижных механических устройств, простота, хорошая чувствительность надёжность при эксплуатации, эксплуатационная эффективность, стабильностью и малая инерционность, а также работа на постоянном токе, что позволяет исключить реактивные составляющие сопротивления. Упрощённая схема измерения уровня жидкой фазы $CV\Gamma$ с использованием $BTC\Pi$ датчика показана на рисунке 1a.

В ёмкости, где присутствует жидкая и паровая фаза $CV\Gamma$ размещается терморезистивный датчик высотой Н. Питание датчика осуществляется постоянным напряжением U_{Π} . Участок $BTC\Pi$ датчика высотой h, который находится в жидкой фазе $CV\Gamma$, имеет температуру ниже критической для сверхпроводников, следовательно, будет иметь нулевое сопротивление. Таким образом, суммарное сопротивление датчика зависит от участка проводника высотой H-h, который находится в паровой фазе $CV\Gamma$.

Для показанной на рисунке 1 схемы включения датчика выходной сигнал определится по формуле:

$$U_{BbIX} = \frac{U_{\Pi}R_{0}(H-h)}{R_{1}+R_{0}(H-h)} \approx \frac{U_{\Pi}R_{0}}{R_{1}}(H-h)$$
 (1)

 U_{Π} – напряжение питания [В];

 R_0 — сопротивление единицы длины сверхпроводника (погонное сопротивление) $\left[\frac{OM}{M}\right]$;

H – максимальное значение уровня жидкой фазы СУГ [м];

h – текущее значение уровня жидкой фазы СУГ [м].

Приближённое равенство справедливо при $R_1\gg R_0H$.

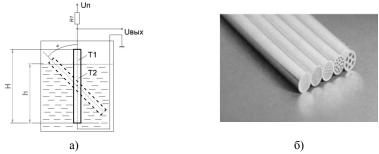


Рисунок 1 – Упрощённая схема измерений уровня при помощи длинномерного ВТСП датчика (а); фотография сечений композитных высокотемпературных сверхпроводников (б)

Значительно повысить чувствительность измерительной схемы можно, если расположить ВТСП датчик под углом α к зеркалу жидкости. В этом случае соотношение (1) примет вид:

$$U_{BbIX} = \frac{U_{\Pi}R_0}{R_1\cos\alpha}(H - h)$$
 (2)

Изменение угла α в рамках конструктивных возможностей резервуара позволяет увеличивать коэффициент преобразования на физическом уровне взаимодействия датчика с измеряемой средой. Основой тела проводника (матрицы) служит, в основном, электротехническое серебро, в которое внедрены тонкие нити сверхпроводника (ВТСП-фазы): керамики типа Bi1Sr2CaCu2O8+ δ , с критической температурой Tc = 82K (тип Bi2212), или типа Bi2Sr2Ca2Cu3O10+ δ с Tc = 108K (тип Bi2223). Выбор конкретного

типа материала ВТСП выполняется в зависимости от температуры кипения контролируемой жидкости при рабочем давлении (рисунок 16) [1].

Существует ряд проблем при применении ВТСП терморезистивных датчиков. Функция преобразования (1) является упрощённой, так как в ней не учитывается распределение температурного поля в датчике на границе раздела сред. На основании классических уравнений теплопередачи можно произвести расчёт теплового поля и теплового потока, в результате чего определяется суммарное сопротивление $BTC\Pi$, по которому можно точно судить о границе перехода участка проводника в сверхпроводящее состояние. Исследование физических процессов на границе раздела двух данной является важнейшей теоретической задачей Дополнительные погрешности, связанные с температурой окружающей которая отлична от температуры T1 верхнего сверхпроводника, требуют специальных методов компенсации. Возможно изготовление тонкоплёночных сверхпроводников, нанесённых на печатную плату, что позволит уменьшить габаритные размеры датчика и повысить точность и чувствительность устройства измерения уровня за счёт изменения конфигурации проводника. На сегодняшний день практически отсутствует методика проектирования, конструирования, градуировки, поверки таких датчиков. Все эти проблемы предлагается решить в ходе научного исследования по созданию комплексной системы качественных и количественных показателей сжиженных газов в ёмкостях резервуарного парка.

Список использованных источников

- 1. Терморезистивный датчик уровня для криогенных жидкостей на основе высокотемпературного сверхпроводника [Текст] / М. А.Колосов, В. Ю. Емельянов, Е. С. Навасардян // Вестник Московского государственного технического университета им. Н. Э. Баумана. Сер.: Машиностроение. 2014. № 6. С. 116-128.
- 2. Крупномасштабные применения сверхпроводимости спустя столетие после её открытия [Текст] / В.С. Высоцкий // Электричество. 2014. № 11. С. 4-16.

УДК 004; 621.396.96

ПРОГРАММНЫЙ КОМПЛЕКС МОДЕЛИРОВАНИЯ РАДИОЛОКАТОРА ВЫСОКОГО РАЗРЕШЕНИЯ

А.И. Данилин, Д.А. Ворох, В.В. Прокудин Самарский университет, г. Самара

Программный комплекс моделирования радиолокатора высокого разрешения предназначен для моделирования, анализа и обработки данных дистанционного зондирования РЛС с синтезированной апертурой антенны (РСА), получения радиолокационных изображений (РЛИ) подстилающей