- В.В. Бакулин, В.В. Боровик, В.И.Брун,
- В.Ф. Буралкин, В.Л. Сергеев, М.Ю. Кляшторный

КОМПЛЕКСНАЯ СИСТЕМА СБОРА, РЕГИСТРАЦИИ И ОБРАБОТКИ ПОЛЕТНОЙ ИНФОРМАЦИИ

(Москва, Ленинград)

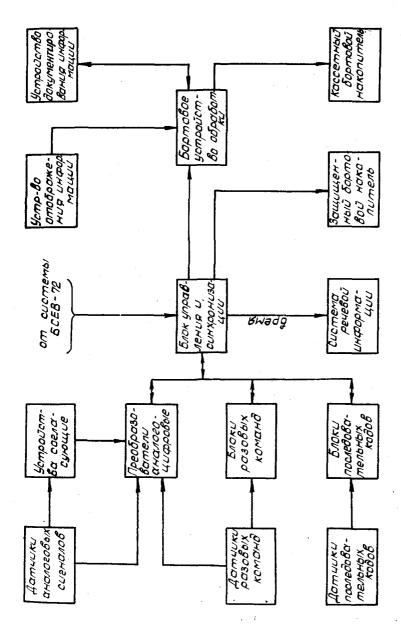
На протяжении последнего десятилетия впервые в нашей стране был разработан, освоен в серийном производстве и внедрен целый ряд штатных систем сбора и регистрации полетной информации (типа мСРП), наземных декодирующих устройств и наземных комплексов экспресс-анализа полетной информации. В настоящее время уже нельзя представить современный самолет, необорудованный системой сбора и регистрации полетной информации, а авиационно-технические базы аэропортов — без наземных комплексов экспресс-анализа полетной информации.

Но если на первых этапах внедрения к ним предъявлялись в основном требования по сохранности накопленной информации, используемой при расследовании летных происшествий, то в настоящее время требования к системам сбора и регистрации резко возросли.

Накопленная в полете информация должна оказывать значительную помощь в техническом обслуживании самолетов, совершенствовании техники пилотирования экипажей, обеспечить решение целого ряда комплексных задач, связанных с эксплуатацией авиационной техники и обеспечением безопасности полетов самолетов (вертолетов). а именно:

- объективное установление и анализ причин летных происшествий и предпосылок к ним, расширение и углубление научного уровня анализа летных происшествий;
- объективная оценка состояния авиационной техники при всех видах технического обслуживания, разработка методов объективной оценки и прогнозирования технического состояния авиационной техники;
- объективный контроль техники пилотирования, контроль выполнения специальных режимов и разработка методов контроля действий экипажа:
- получение отатистических характеристик параметров полета,
 работы систем и агрегатов для выявления тенденций к медленному

ухудшению характеристик авиационной техники (т.е. для перехода на метод технического обслуживания по состоянию);


- оценка Физиологического состояния пилотов:
- исследование метеорологических условий полета самолетов (вертолетов);
- изыскание оптимальных режимов полета самолетов (вертолетов) и определение рациональных режимов работы авиационных двигателей, систем и агрегатов.

Вместе с тем, существующие штатные системы сбора и регистрации полетной информации (МСРП-I2-96, МСРП-64, Тестер) не вполне отвечают современным требованиям по количеству и типам регистрируемых сигналов, точности регистрации параметров, не отличаются гибкостью структурного построения, что не позволяет принципом "наращивания" расширить круг задач, решаемых системами; в состав не входят бортовые устройства обработки полетной информации. Актуальной явилась задача разработки перспективной гибкой бортовой комплексной системы сбора, регистрации и обработки полетной информации, позволяющей решать весь круг поставленных задач. Структурная схема такой комплексной системы представлена на рис. 1.

В состав системы входят датчики, осуществляющие сбор и преобразование физических величин параметров в электрические сигналы, согласующие устройства, приводящие напряжения нормализующие электрических сигналов к стандартным уровням и многоканальные преобразователи.

Многоканальные преобразователи информации (МПИ) делятся на аналого-цифровые преобразователи (ПМАЦ), преобразующие стандартные уровни напряжения в двоичный код, и преобразователи дискретных сигналов, преобразующие сигналы, поступающие от бортовых навигационных комплексов в виде последовательных кодов (БППК), и сигналы разовых команд типа "да", "нет" (БРК) в параллельный имприссый двоичный код. Блок управления и синхронизации (БУС) обеспечивает программное управление работой МПИ, определяемое информативностью и требуемой частотой опроса изчеряемых парамётров, формирует в зависимости от заданной программы требуемый формат для записи информации на носитель защищенного и кассетного накопителей.

С пульта управления в выходной формат информации вводятся опознавательные данные (дата вылета, номер рейса, центровка, взлетный вес), текущее время, а также осуществляется управление

Структурная схема комплексной системы сбора, регистрации и обработки полетнож Р и с. I. информации

Характе- ристики	Варианты сис."Прогноз"			Тип сигнала	Диапазон	На- ли-	Nor- pew-	Входное сопро-
	I	2	3			чие СУ	ность СУ%	тивление
Количество позиций в кадре ·	I 28	256	5 1 2	Термо- сопро- тивление	70(65)- 160 Om	+	<u>+</u> 0,5	
Количество аналоговых входов	II8	236	200 410 [TUNNNUTU] .	ние пос-	0-6 3 B	/ + - +	+0,5 +0,3 +0,5	C=2,2мкФ 0,5 мОм 100 кОм
Количество разовых ко- манд	80	I 60	600		I6-30B 0-37,5B	+	±0,5	30 k0m 50 ,100 k0m
Количество последова- тельных кодов	-	I 0	10		±75 MB ±150 MB ±300 MB ±5,6 B	+ + + +	±0,5 ±0,5 ±0,5 +0,5	С=4,7мкФ С=4,7мкФ С=4,7мкФ С=4.7мкФ
Пер иод кад- ра	I	сек			±15 B	+	±0,5	C=4,7мкФ
Частота ко- дов для ава- рийного МЛП (код I с)	128			Напря- жение перемен- ного тока	0/05/-5B 0-45B 90-I40 B	+ +	±I ±I ±I	IO кОм 90 кОм 270 кОм
Количество разрядов записываемо- го кода		IO		Частота	5-100Гц 370-430Пц	+ +	<u>+</u> 0,2 +0,5	5 кОм 330кОм
Частота кодов для кассетно- гомып (код Іс)	I2 8	2 56	512		2-5 кГц	+	<u>+</u> 0,2	5 кОм
Время записи аварийного МЛП (час)		25		Угол	0-360	+	<u>+</u> U,7	150k0 m
Время записи кассетного МЛП (час)	25	I2, 5	6	поворо- та СКТ	<u>+</u> 90	+	<u>+</u> 0,7	150к0м
Стартстипный режим кассет- ного МЛП		есть		Седь- син	0-360 <u>+</u> 90	+ +	±0,7 ±0,7	150k0m 150k0m
Наличие обра- ботки на бор- ту	-	есть	есть					·

характе- ристики		Варианты сис."Прогноз"			Тип сигнала	Диапазон	На- ли- чие	pem-	Входное сопро-
		I	2	3			ÇÀ	ность СУ%	тивление
Macc	а (кг)	44,8	84,7	III					
	о (кг) н пара-	0,28		-				-	

накопителя и контроль работоспособности системы. В состав системы может входить бортовое устройство обработки (БУО) со средствами отображения, которое осуществляет по заданным алгоритмам анализ поступающей на вход информации в реальном масштабе времени и по результатам этого анализа определяет события, характеризующие на различных этапах полета:

выход параметров полета и характеристик самолета за эксплуатационные ограничения;

отказы систем и оборудования, ошибки в технике пилотирования. Результаты обработки выдаются экипажу на индикационное табло и печатаются на бланке бортовым печатающим устройством. В состав БУО входит блок памяти, поэволяющий вести запись на кассетный на-копитель "предыстории" появления событий.

Гибкость структурного построения системы обеспечивает возможность ее использования на различных типах самолетов и вертолетов. Расширение возможностей системы осуществляется путем наращивания от минимальной до полной комплектации. В табл. приведены технические характеристики основных вариантов комплектации системы.

Включение в состав системы сбора и регистра и полетной информации устройства обработки с устройствами индивимии и печати превращает ее из пассивной системы накопления информации в систему, способную оперативно выявлять отклонения от установленных норм, выдавать экипаку сообщения об этих отклонениях и документировать их на бланке для привлечения внимания наземного персонава с целью определения причин, имевших место в полете отклонений от "нормы". Кроме того, управление потоками информации позволяет

резко уменьшить объем регистрируемой информации, следовательно сократить, либо исключить процесс наземной обработки.

БУО обеспечивает решение следующих задач: анализ поступающей информации в виде 256, 512 десятираэрядных слов в секунду в реальном масштабе времени, вычисление физических значений аналоговых параметров по заданным тарировочным характеристикам, сравнение измеренных значений параметров с установленными допусками, логическую обработку результатов указанных сравнений и проверок, выявление событий, характеризующихся выходом параметров полетов за эксплуатационные ограничения, отказами систем и оборудования. Результаты обработки выдаются на устройства документирования и отображения.

В зависимости от режима работы на бланке пропечатываются опознавательные данные и время, при наличии событий - номер, те-кущее время, признак начала или окончания событий, физические значения параметров.

По желанию оператора (члена экипажа) на бланке могут быть пропечатаны определенные массивы информации в физических значениях измеряемых параметров или все параметры в кодовых десятичных значениях.

В качестве индикационного устройства может быть использована электронно-лучевая трубка (ЭЛТ). Объем информации вводимый на ЭЛТ, очевидно, в перспективе позволит сократить число указывающих приборов в кабине, что значительно разгрузит приборные доски в кабине самолета и облегчит работу экипажа в полете. Возможность смены программ методом перезаписи позволяет создать одну модификацию БУО для всех типов самолетов (вертолетов).

Комплексная система обеспечивает на борту решение многих сложных задач, начиная со сбора и регистрации информации до ее обработки на борту с выдачей результатов экипажу и наземному обслуживающему персоналу. Все это резко сокращает, а то и полностью устраняет необходимость наземной обработки полетной информации, сводит к минимуму время подготовки самолета к вылету, повышает безопасность полетов. При наличии на борту таких комплексных систем сбора и обработки полетной информации новые функции приобретают наземные комплексы автоматизированной обработки полетной информации. Их первоочередной задачей становятся задачи диагностики

я прогнозирования, определения тенденций и развития отказов лефектов авиационной техники.

ı

О.П. Скобелев

АНАЛИЗ СТРУКТУРНЫХ ВАРИАНТОВ ПОДСИСТЕМ СБОРА, ИСПОЛЬЗУЮЩИХ ТЕСТОВЫЕ ПЕРЕХОДНЫЕ ПРОЦЕССЫ (КУЙбымев)

В рассматриваемых подсистемах тестовое воздействие, реализуемое обычно с помощью бесконтактных транзисторных ключей, вызывает переходный процесс в измерительной цепи с датчиков. Реакция цепи может сравниваться с заданным опорным уровнем, дифференцироваться или интегрироваться, причем вид операции определяет тот или иной метод преобразования [1].

Характерной особенностью подсистем сбора, использующих тестовые переходные процессы, является идентичность структуры вне зависимости от применяемого метода преобразования, что отмечалось в работах $\{2\}$, $\{3\}$, где рассматривались структуры подсистем, предназначенных для обора информации с генераторных и параметрических датчиков.

Между тем, в последнее время получили развитие новые варианты, а также изменился подход к анализу структуры подсистемы.

Известно, что подсистемы сбора являются гибридными аналогоцифровыми устройствами, теоретическое исследование которых связано с определенными трудностями. Некоторые из них успешно преодолеваются применением методов имитационного моделирования на ЭВМ.

Эти обстоятельства определили содержание статьи, в которой в обобщенном виде представлены известные и новые структурные варианты, даны операторные выражения, описывающие функционирование подсистем и полезные для решения задач акализа и синтеза методами "машинного" моделирования. Структура подсистемы зависит от того, какие датчики обслуживает подсистема — параметрические или генераторные. В статье рассматриваются только те, которые предназначены для преобразования сигналов параметрических датчиков и не рассматриваются структурные варианты, ориентированные на генераторные датчики.

9-3385