В.И. Денисов, А.Г. Коровкин, Е.Б. Цой

математическое и программное обеспечение задач
планирования эксперимента и идентификации моделей
(Новосибирск)

Существует ряд задач, не зависящих от конкретного вида проподимых прикладных исследований, входящих в состав математического обеспечения систем автоматизации научного эксперимента и опредоляющих функциональную направленность подобных систем в целом. Их можно сформулировать как задачи математического описания объектов, планирования экспериментов, обработки экспериментальных данных.

Пусть функция отклика, описывающая исследуемый процесс, имеет вид $E(y/x) = \gamma(x,\theta)$, где $x^T = ||x_1||$, ..., $x_K ||$ — вектор контролируемых переменных, $\theta^T = ||\theta_1||$, ..., $\theta_M ||$ — вектор оцениваемых параметров. Требуется найти оптимальные условия проведения эксперимента, построить план эксперимента \mathcal{E} , обеспечивающий определение оценок параметров θ с максимальной точностью.

В испытаниях на надежность результаты наблюдений группируютов так, что после эксперимента езвестны лишь числа наблюдений, понавших в каждый из интервалов группирования $\mathcal{R}_{\mathcal{C}}$, $\mathcal{C} = \overline{\mathbf{1}}, \overline{\mathcal{R}}$, но не сами значения наблюдений. Информационная матрица Фишера, дарактеразующая качество планирования в ситуации группированиях наблюдений отклика (ГНО) подобае информационной матрице для невынейных моделей, а это означает тождественность вычислительных процедур планирования [1], [2].

Рассматриваемый комплекс програмы имеет модульную структуру,

реализован на ЭВМ ЕС-1020, состоит из трех программ PRG 2, PRG 3, PRG 4, позволяющих строить как точные, так и непрерывные локальные, минимаксные, байесовские D -оптимальные планы эксперимента невависимо от типа модели — линейная или нелинейная, а также находить оценки параметров модели.

Программа PRC 2 осуществляет синтез минимаксных планов путем решения следующей дискретной минимаксной задачи:

тде $\{\psi[M(\theta^{(t)}, \mathcal{E})]\} \rightarrow \min$, где $\{\psi[M(\theta^{(t)}, \mathcal{E})]\} \rightarrow \min$, е установания от информационной матрицы $M(\theta, \mathcal{E})$; горон оптимизации положено необходимое условия минемакса в форме $f^+(x^*)\cap L(x^*)=\emptyset$, где $f^+(x)$ - конус, сопряжений к конусу возможных направлений мнокества x в точке x . L(x)=coH(x), $H(x)=\left\{\partial\psi_{i}(x)/\partial x, i=R(x)\right\}$. Методом оптимизации является наискореймий спуск [3]. Поиск оптимального плана промеходит в два этана. Первый этап — оптимизация по координатам точек плана, второй — по координатам мер плана. Изправления вектора наискореймего опуска і обомх случаях определяются решением квадратичной задачи минимизации расстояния между выпуклои оболочкой L(x)или L(p)конусом $f^+(x)$ и $f^+(p)$. Условия Куна-Таккера для квадратичной задачи получены в явном виде.

Применяя метод гладкой анпроксимации для решения минимаксны вадач, суть которого заключается в переходе от задачи $\mathcal{M}^{OH} \stackrel{MOKC}{\mathcal{E}} \left\{ \Psi_{\mathcal{E}} \left[\mathcal{M}(\theta^{(i)}, \mathcal{E}) \right] \right\}$ к задаче $\mathcal{M}^{OH} \mathcal{P}_{\mathcal{E}} \left(\mathcal{E} \right)$ путем построения некоторой обобщенной функции $\mathcal{P}_{\mathcal{F}} \left(\mathcal{E} \right)$, можно получить необходимые и достаточные условия оптимальности минимаксных планов эксперимента [4] Программа \mathcal{P}^{RG} 2 состоит из 57 подпрограмм, две из них являются сменными и составляются пользователем для какдой решаемой задачи; занимаемый объем намяти—99584 байта без учета памяти под массивы и сменные подпрограммы. Управление программой происходит с помощью 5 мидикаторов и 20 констант.

Программа РЯСЗ осуществияет синтез байесовских планов путем решения следующей задачи:

$$\varphi = \sum_{i=1}^r W_i \, \psi_i \left[\mathcal{M} \left(\boldsymbol{\theta}^{(i)}, \, \mathcal{E} \right) \right] \rightarrow \min \; ,$$
 где
$$W^r = \| W_i \; , \; \ldots, \; W_r \; \| \; - \; \text{вектор байесовских весов}, \; \sum_{i=1}^r W_i \; = \; \mathbf{I}, \; W_i \; \in \; \left[\; \mathbf{0}, \mathbf{I} \right]. \; \mathbf{B} \; \text{основу алгоритма построения байесовских планов с выпуклой функцией потерь положены условия оптимальности, которые устанавлевает следующая теорема.$$

Теорема. Необходимым и достаточным условием байесовской ψ -оптимальности плана является выполнение равенства макс $\sum\limits_{i=1}^{r}W_{i}\,\mathscr{T}_{i}\left(x,\varepsilon^{*}\right)=\sum\limits_{i=1}^{r}W_{i}\,\mathcal{S}_{p}\,M\left(\theta^{(i)},\varepsilon\right)\partial\mathscr{Y}_{i}\left[M\left(\theta^{(i)},\varepsilon\right)\right]/\partial M\left(\theta^{(i)},\varepsilon\right),$ где $\mathscr{T}_{i}\left(x,\varepsilon\right)=f^{T}\left(x,\theta^{(i)}\right)\partial\mathscr{Y}_{i}\left[M\left(\theta^{(i)},\varepsilon\right)\right]/\partial M\left(\theta^{(i)},\varepsilon\right)f\left(x,\theta^{(i)}\right).$

Если P = I, то имеем условие оптимальности локальных планов. Как и в минимаксе здесь такке выделяются две вычислительные схемы: по координатам точек и по мерам плана. Обобщенные векторы—градиенты d_{α} φ и $d_{\rho}\varphi$ записываются в явном виде: это вначительно умень—шает вычислительные затраты. При поиске оптимального значения шата в направлении соответствующего обобщенного градиента исследовались ряд алгоритмов. Наиболее эффективным показал себя симплексный алгоритм Келдера-Мида [5]. Программа PRG 3 состоит из 56 подпрограмм, две подпрограммы сменные, как и в PRG2, занимает объем памяти 98491 байт. Управление программой происходит с помощью 5 индикаторов и 13 констант.

Программа PRG4 осуществляет построение оценок неизвестных параметров θ нелинейной модели $\gamma(x,\theta)$ нетодом Маркуардта [5]. Итерационный процесс строится по формуле

$$\theta^{(\ell+1)} = \theta^{(\ell)} + \left[M(\theta^{(\ell)}, \mathcal{E}) + \lambda^{(\ell)} I \right]^{-1} Y(\theta^{(\ell)}),$$

$$\text{ITAG} \quad Y(\theta^{(\ell)}) = (F^{T} \omega E)^{(\ell)}; \quad F^{(\ell)} = \|\partial \eta(x_{i}, \theta^{(\ell)})/\partial \theta_{i}\|,$$

$$(x^{(i)} \parallel y_i - \gamma(x_j, \theta^{(i)}) \parallel$$
; $\omega = \parallel \omega_{ij} \parallel$, $\omega_{ij} = 0$ при $i \neq j$ и $i \neq j$ и при $i \neq j$; $\alpha^{(i)}$ — параметр, влияющий на формирование направления оптимизации. Характеристика программы: подпрограмы 25,

объем памяти 43370 байт, 4 индикатора и 4 константь.

В каждой программе предусмотрено использование под массиви программы всего остатка оперативной памяти, оставшегося после затружки программы. Такой режим использования оперативной памяти. дает возможность работать в ДОС ЕС ЭВМ, в фоновом разделе памяти.

При этом не требуется изменений в головных подпрограммах, связанных с резервированием памяти под массивы. Апробация программного обеспечения производилась на ряде тестовых и практических задач.

II ример I. Расход свекего пара в паровой турбине опи-

сывается моделью $D_o = \theta_o + \theta_1 N_3 + \theta_2 Q_n + \theta_3 Q_r$, где N_g — мощность на клемах генератора; Q_n — давление производственного отбора; Q_r — давление отопительного отбора. Область планирования $\mathscr X$ имеет вид:

$$G_{n} + 2 Q_{r} \leqslant 550 \qquad -33 N_{g} + 75 G_{n} \leqslant 555$$

$$-11 N_{g} + 8 Q_{r} \leqslant 130 \qquad 105 N_{g} + 24 G_{n} \leqslant 23595$$

$$4 N_{g} + Q_{T} \leqslant 688 \qquad 155 N_{g} - 24 G_{n} \leqslant 20105.$$

 $40 \leqslant N_{9} \leqslant 160 \;, \;\; 40 \leqslant Q_{r} \leqslant 90 \;, \;\; <200 \leqslant G_{n} \leqslant 400 \;. \label{eq:constraints}$

С помощью программы PRG3 в условиях негруппированных наблюдений был построен точный D -оптимальный план из IO опытов, табл. I с $\ell n | M(\mathcal{E}^*) | = -24$,84.

Таблица І

Таблина 2

N n/n	Na	G_n	Q_T	p
I	50	60	40	2
2	90	255	I40	3
3	162	274	40	2
4	83	470	40	2
5	139	60	86	I

План Экспе- римента	$\hat{\mathcal{C}}_{\mathcal{F}}^{F}$	Em	$\mathcal{E}_{\mathcal{B}}$
x_1 x_2 x_3	0.00 I.00 I0.00	0.00 0.26 0.54	0.00 0.25 IO.00
Ф л,м,5	5.30	9.73	6.I2
tc	-	90	I20

Пример 2. $\gamma(x,\theta) = \theta_1 + \theta_2 e^{\theta_3 x}$, 0 < x < 10, $\theta_{ucm}^T = ||I,-I,-I|||$. Область Ω , r=3 определяется тремя точками $\theta_1^T = ||0,5,-2,-3||$, $\theta_2^T = ||-0,2,-4,-1||$ $\theta_3^T = ||0,8,-1,-5||$. $W_i = 1/3$, $i=\overline{1,3}$. Результаты счета представлены в табл.2.

$$\mathcal{P}_{M} = \min \left\{ -\ln |M(\theta_{UCM}, \varepsilon)| \right\}, \quad \mathcal{P}_{M} = \min \max_{\epsilon \in \Gamma} \left\{ -\ln |M(\theta^{\epsilon}, \varepsilon)| \right\},$$

$$\mathcal{P}_{S} = \min \left\{ -\sum_{i=1}^{r} W_{i} \ln |M(\theta^{(i)}, \varepsilon)| \right\}.$$

литература

- 1. Денисов В.И. Математическое обеспечение системы ЭВМ-экспериментатор. М., "Наука", 1977, с. 122-128.
- 2. Денисов В.И., Цой Е.Б. К вопросу построения

планов эксперимента при группированных наблюдениях отклика. — В сб.: Применение ЭВМ в оптимальном планировании и управлении. Новосибирск, НГУ, 1976, с. 105-110.

- 3. Демьянов В.Ф., Малоземов В.Н. Введение в минимакс. М., "Наука", 1972, с. 77-86.
- 4. Денисов В.И., Цой Е.Б. Условия оптимальности для минимаксных планов эксперимента. В сб.: Применение ЭВМ в оптимальном планировании и управлении. Новосибирск НГУ. 1977. с. 95-101.
- 5. Химмельблау Д. Анализ процессов статистическими методами. М., "Мир". 1973. с. 415-421.

А.А. Наумов

О МАТЕМАТИЧЕСКОМ ОБЕСПЕЧЕНИИ СИСТЕМЫ ОПТИМАЛЬНОГО М-ИНВАРИАНТНОГО ПЛАНИРОВАНИЯ РЕГРЕССИОННЫХ ЭКСПЕРИМЕНТОВ

(новесибирск)

Рассматриваются вопросы построения математического обеспечения, предназначенного для решения задач оптимального планирования регрессионных экспериментов в случае неадекватных математических моделей в рамках системы автоматизации экспериментальных исследований. Для полилинейных относительно базисных функций и многооткликовых моделей строятся оптимальные планы, инвариантные этносительно несцениваемых параметров. Оптимальное м-планирование экспериментов проводится с учетом априорной информации качественного и количественного характера.

Пусть истинное уравнение регрессии и ее оценка имеют вид:

$$f(x,A) = L(A; \mathcal{G}_0(x), \mathcal{G}_1(x), \dots, \mathcal{G}_{\rho}(x))$$
 (I)

 $\hat{q}(x,\hat{A}_1) = L_1(\hat{A}_1; T_0(x), T_1(x), ..., T_2(x)),$ (2)

где $\angle(\cdot)$ и $\angle(\cdot)$ — полилинейные формы относительно множеств векторов $\{\mathcal{L}_i(x)\}_{i=0,\rho}$ и $\{\tau_i(x)\}_{i=0,\overline{Z}}$ с матрицами неизвестных козффициентов \mathcal{A} и оценок $\widehat{\mathcal{A}}_i$ размерности $(n_0 \times n_1 \times \dots \times n_\rho)$ и $(t_0 \times t_1 \times \dots \times t_Z)$