мическом диапазоне. Предложенный в статье метод позволяет оценить влияние формы импульса на погрешность преобразова-Для уменьшения этой погрешности необходимо ния АВП. уменьшать $\frac{I_p}{C}$ или формировать крутой фронт в момент достижения максимума входного импульса.

ЛИТЕРАТУРА

1. Маграчев 3. В. Вольтметры одиночных импульсов. М., «Энергия», 1967.

2. Szavits O. Analog—digital converter non linearity due to the loss current, Nuclear Instruments and Methods, № 39, 1966.

3. Иоффе В. Г., Пшеничников Ю. В. Особенности применения амилитудных аналого-цифровых преобразователей в измерительных системах та основе тестовых переходных режимов. Настоящий сборник. 4. Иоффе В. Г. Пшеничников Ю. В. Устройство кратковременной

намяги для импульсных напряжений. Межвузовский тематический сборник

«Вычислительная техника», Куйбышев, 1973.

В. Г. Иоффе, Ю. В. Пшеничников

ОСОБЕННОСТИ ПРИМЕНЕНИЯ АМПЛИТУДНЫХ АНАЛОГО-ЦИФРОВЫХ ПРЕОБРАЗОВАТЕЛЕЙ В ИЗМЕРИТЕЛЬНЫХ СИСТЕМАХ НА ОСНОВЕ ТЕСТОВЫХ ПЕРЕХОДНЫХ РЕЖИМОВ

В системах, основанных на тестовых переходных процессах в измерительных цепях, возникает задача определения амплитуды одиночных или редкоповторяющихся импульсов [1]. Для этих методов необходимо применение амплитудного аналогоцифрового преобразователя (АЦП), выбор которого определяется характеристиками преобразуемого напряжения (форма и минимальная длительность импульса, минимальная амилитуда п динамический диапазон), требуемой точностью и быстродействием. Для прецизионных измерений наиболее подходящими являются следующие два способа:

способ, использующий форсированный заряд конденсатора до пикового значения входного импульса при помощи зарядного устройства с отрицательной обратной связью и последующий разряд постоянным (не зависящим от напряжения на конденсаторе) током до некоторого фиксированного потенциала [2]:

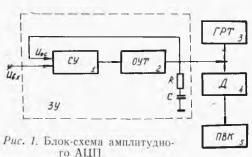
способ расширения измеряемого импульса на уровне пикового значения с последующим применением метода поразрядно-

го уравновешивания.

Второй способ обеспечивает малую погрешность (0,1%) в сочетании с высоким быстродействием (время преобразования до 1-2 мксек). Однако реализация его довольно сложная и там,

где это возможно, удобнее применять более простой и универсальный первый способ.

В этом случае амплитудный АЦП состоит из амплитудновременного преобразователя (АВП), преобразующего амплитудное значение измеряемого импульса в соответствующий временной интервал и цифрового измерителя временных интервалов, т. е. АЦП типа «время—код».


Если требуемое быстродействие невелико, то такой преобразо-

ватель имеет ряд несомненных достоинств:

простота схемы;

универсальность. Преобразователь, разработанный для измерения коротких одиночных импульсов, при добавлении входного линейного клапана с успехом может изменять мгновенные значения меняющихся напряжений (операция «выборка-запоминание») и постоянные напряжения.

при использовании АВП в многокапальных информационно-

измерительных системах (1) необходим один простейший АЦП типа «время—код», т. е. унифицированным сигналом является временной интервал.

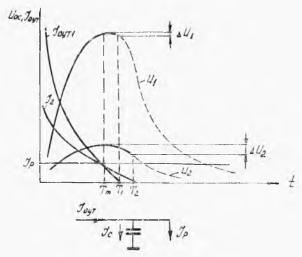

Блок-схема амплитудного АЦП, использующего зарядное устройство с отрицательной обратной связью, представлена на рис. 1. Преобразуемое на-

рис. 1. Преобразуемое напряжение $U_{\rm Bx}$ подается на

один вход сравнивающего усилителя СУ (1), на второй вход которого поступает напряжение обратной связи $U_{
m oc}$ с накопительного конденсатора С. Выходной ток СУ, пропорциональный разности $|U_{\rm Bx}-U_{\rm oc}|$, усиливается однонаправленным усилителем тока ОУТ(2) и заряд конденсатора осуществляется током I = $=K\cdot S|U_{\rm BX}-U_{\rm oc}|$, где K — коэффициент усиления ОУТ, S — крутизна СУ. При $U_{\rm BX}=U_{\rm oc}$ выходной ток СУ равен нулю и заряд конденсатора прекращается. Если $\frac{dU_{\text{BX}}}{dt} > 0$, то напряжение $U_{
m oc}$ следит за входным напряжением. Когда скорость спада входного напряжения $\frac{dU_{\rm BX}}{di}$ становится больше $\frac{I_{\rm P}}{C}$, $I_{
m P}$ — разрядный ток источника (3), происходит реверс тока СУ и запирание ОУТ. При этом конденсатор начинает разряжаться через источник разрядного тока 3. Дискриминатор 4 формирует импульс, длительность которого равна времени разряда конденсатора от $U_{\mathtt{Bx}}$, до нулевого потенциала. Временной интервал, пропорциональный амплитуде входного сигнала, поступает на преобразователь «время—код» 5.

Одной из важнейших характеристик АЦП является время заряда конденсатора С до пикового значения входного импульса. Увеличение скорости заряда позволяет преобразовывать более короткие импульсы и снижает чувствительность к форме входного сигнала. На основе линейного анализа был синтезирован АЦП с минимальной длительностью преобразуемого импульса — 0,1 мксек.

Рассмотрим особенности работы АЦП в измерительной системе, реализующей метод первой производной. При этом на вход преобразователя подаются колоколообразные импульсы, для которых время достижения максимума составляет 2-10 мксек. Принимая во внимание большую скорость заряда накопительного конденсатора ($6\cdot10^7$ в/сек), погрешностью, связанной с воспроизведением переднего фронта входного импульса, можно пренебречь. Большой интерес представляет влияние спада входного импульса на погрешность АВП (рис. 2). В момент $t=T_{\rm M}$, когда напряжение достигает своего максимума,

 $\it Puc.~2.~$ Влияние формы входного импульса на погрешность $\it ABII$

выходной ток ОУТ $I_{\rm оут}$ не уменьшается до нуля, а достигает значения тока $I_{\rm p}$, в то время как $I_{\rm c}\!=\!0$. $I_{\rm оут}$ становится равным нулю позднее, в момент $T_{\rm l}$, при этом формируется передний фронт выходного импульса дискрининатора. Интервал $T_{\rm l}-T_{\rm w}$ представляет время от момента достижения максимума $U_{\rm Bx}$ до прерывания тока $I_{\rm оут}$ и определяет задержку запирания ОУТ. Эта задержка зависит от формы входного импульса и приводит к погрешности за счет потери заряда накопительным конденсатором. Величина погрешности

 $\frac{1}{4}$ 5—5711

$$\delta = \frac{U_{\rm BX}/t = T_{\rm M} - U_{\rm BX}/t = T_{\rm I}}{U_{\rm BX}/t = T_{\rm M}} = \frac{\Delta U_{\rm BX}}{U_{\rm BX}/t = T_{\rm M}} ,$$

где $T_{\rm M}$ можно определить из уравнения $\frac{dU_{\rm BX}}{dt}=0$, а T_1 из $\frac{dU_{\rm BX}}{dt}=\frac{I_p}{C}$:

В работе [3] приведен анализ погрешности δ для импульсов, получаемых с ядерных детекторов. Если импульс имеет произвольную форму, то

$$\hat{a} = -B \cdot \left(\frac{I_p}{C}\right)^2 \cdot \frac{1}{U_{\text{BX}\,m}^2} \,,$$

где B — коэффициент формы импульса; $U_{\rm sxm}$ — амплитудное значение входного сигнала.

Для прямоугольных импульсов δ = 0. Если форма импульса отличается от прямоугольной, то эта погрешность может быть значительной, особенно для малых амплитуд преобразуемых напряжений и при проектировании амплитудных АЦП необходимо применять меры для ее уменьшения.

Существенным является вопрос помехоустойчивости АЦП, так как входное сопротивление сравнивающего усилителя составляет несколько мегом. Кроме того, сигнал, поступающий с измерительной цепи систем [1], имеет некоторую пульсацию фронта, вызываемую коммутацией и влиянием паразитных реактивных элементов в момент времени, предшествующий началу измеряемого импульса, и на его переднем. Это приводит к появлению на выходе АЦП импульсов, имеющих по длительности тот же порядок, что и измерительный сигнал.

Для получения информации только об амплитуде импульса необходимо предусмотреть блокировку входа и выхода АЦП в период между измерениями. Это осуществляется схемой, которая включает АЦП (в момент когда коммутационные процессы в измерительной цепи прекращаются) и отключает его передним фронтом импульса дискриминатора. Последнее устраняет погрешность в формировании заднего фронта дискриминатора, которая может возникнуть из-за влияния спада входного сигнала.

Разработанный АЦП имеет основную погрешность менее 0,5% в динамическом диапазоне 20 мв — 6 в и нашел применение в многоканальных системах с частотой опроса до 15—20 кгц, При большей скорости опроса наиболее рационально применение АЦП, в котором реализуется второй способ преобразования.

ЛИТЕРАТУРА

1 Болтянский А. А. и др. Построение многоканальных измерительных преобразователей, использующих тестовые переходные режимы. (Настоящий сборник).

2. Маграчев 3. В. «Вольтметры одиночных импульсов». М., изд-во

«Энергия», 1967.

3. O. Szavits. Analog—digital converter nonlinearity due to the current» Nuclear Instruments and Methods, № 39, 1966.

Ф. Ф. Буканов, О. Г. Корганова, К. Г. Меркулов

ТЕЛЕМЕТРИЧЕСКИЙ ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ ПРОСТРАНСТВЕННОГО УГЛА

При исследовании турбулентности атмосферы, водных масс морей и океанов, турбулентности газовых и жидкостных потоков вокруг гидротехнических сооружений и наземных строительных конструкций, в инклинометрии и ряде других областей возникает необходимость в измерении величины, однозначно определяемой пространственным углом.

В Куйбышевском политехническом институте разработано несколько преобразователей пространственного угла в электрический сигнал: контактного типа, бесконтактный и телеметрический [1]—[4].

Бесконтактный измерительный преобразователь пространственного угла в электрический сигнал конструктивно представляет собой три круглые взаимоперпендикулярные катушки, имеющие общий центр. Внутри этих катушек с помощью карданова подвеса размещена короткозамкнутая рамка, с которой жестко связан воспринимающий элемент.

Воспринимающим элементом при определении направлений потоков газа и жидкости является флюгарка, а в инклинометрии и при определении углов отклонений от вертикали — подвешенный груз.

В исходном положении подвижная рамка и одна из неподвижных катушек располагаются в одной илоскости. Эта подвижная катушка предназначена для съема сигнала и называется измерительной. Две другие неподвижные катушки запитываются квадратурпыми токами так, что образуется вращающестя магнитное поле, ось вращения которого совпадает с осью третьей пеподвижной катушки, вследствие чего от вращающегося поля э. д. с. в ней не наводится. Э. д. с. отсутствует также и в подвижной рамке в ее исходном положении.

При отклонении подвижной рамки от исходного положения под воздействием воспринимающего элемента в ней наведется э. д. с.

$$e_p = k \cdot \Theta \cdot \sin(\omega t + \varphi),$$
 (1)