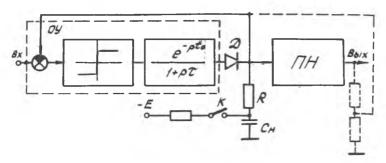
- 5. Компанец В.К. Измерительный преобразователь на магнитных элементах для сигналов термопар. "Обработка информации в автоматических системах". Межвузовский сборных статей, вып.3, Рязань, 1976.
- 6. Капитонова Л.М., Компанец В.К., Старобинский Н.М. Влияние геометрических размеров сердечников на чувствительность магнитно-транзисторных инверторов. "Автоматические измерительные и регулирующие устройства". Научные труды вузов Поволжья, вып.7, Куйбышев 1974.

УЛК 681.374.387


В.Г. Иоффе, А.В. Потвинов, Ю.В. Пленичников

OCOEEHHOCTU IIPUMEHEHUR OIIEPALINOHHUX YCUIUTEILEN B AMILIUTYIHUX HOPMAIIUSATOPAX WMILYILCHUX CUITHAIOB

В настоящее время наибольшее применение в технике АЦП получили амплитудные нормализаторы, преобразующие входной импульсный сигнал в квазипостоянное напряжение или временной интервал. Как правило, в подобных нормализаторах производится заряд накопительной емкости до амплитудного значения входного импульса и затем накопленный заряд хранится в течение необходимого времени /аналоговое запоминающее устройство/ или эта ёмкость разряжается стабильным током /амплитудно-временной преобразователь/.

При проектировании указанных устройств на интегральных операцеонных усилителях в связи с их относительно невысоким быстродействыем возникают трудности при преобразовании импульсов наносекундного и микросекундного двапазона. Поэтому представляется достаточно важной задача максимального использования частотных свойств усилителя, а также синтеза оптимального процесса заряда накопительной ёмкости.

Рассмотрим процесс заряда накопительной ёмкости на примере аналогового запоминающего устройства /АЗУ/. Структурная скема АЗУ приведена на рис. I, где интегральный операционный усилитель ОУ представлен в виде каскадного соединения безынерционного звена и линейных звеньев, характеризующих его инерционные свойства. Подобная замена не вносит существенной погрешности, т.к. область линейного усиления не превышает единиц милливольт. Значения С и Со

Puc. I.

определяются известными методами идентификации для режима динамической перегрузки ОУ. Нагрузка подключена к АЗУ через повторитель напряжения \mathbb{H} с большим входным сопротивлением. Напряжение обратной связи \mathcal{U}_{ec} можно снимать с выхода \mathbb{H} . \mathbb{H} ри этом резко снижаются требования к его метрологическим характеристикам, а также появляется возможность использования делителя \mathcal{U}_{ec} /показан на рис. \mathbb{I} пунктиром/, и преобразования сигнала с заданным масштабным коэффициентом. Ключ \mathbb{K} предназначен для разряда \mathbb{C}_{r} в конце времени запоминания.

Если в момент $\mathcal{L}=\mathcal{O}$ на вход АЗУ поступает им пульс напряжения амплитудой $\mathcal{L}_{\mathcal{E}_X}$, то на выходе появляется напряжение, имеющее форму экспоненты с постоянной времени \mathcal{C} и стремящейся к $\mathcal{L}_{\mathcal{H}\mathcal{A}\mathcal{C}_X}$, в момент $\mathcal{L}_{\mathcal{I}}$, когда $\mathcal{L}_{\mathcal{O}\mathcal{C}}=\mathcal{L}_{\mathcal{E}_X}$, релейное звено переходит из состояния $\mathcal{L}_{\mathcal{H}\mathcal{A}\mathcal{C}}$ в состояние $\mathcal{L}_{\mathcal{H}\mathcal{A}\mathcal{C}}$, но напряжение $\mathcal{L}_{\mathcal{O}\mathcal{C}}$ вследствие наличия задержки нарастает еще некоторое время, пока не начнет спадать до момента $\mathcal{L}_{\mathcal{I}}$, когда снова выполняется условие $\mathcal{L}_{\mathcal{O}\mathcal{C}}=\mathcal{L}_{\mathcal{E}_X}$ При отсутствии резистора \mathcal{R} $\mathcal{L}_{\mathcal{O}\mathcal{C}}=\mathcal{L}_{\mathcal{C}}$ и, следовательно, \mathcal{C} будет всегда заряжаться до напряжения большего, чем $\mathcal{L}_{\mathcal{E}_X}$. Подобная картина наблюдается и при относительно малых значениях \mathcal{R} /рис. 2, крив. $\mathcal{L}_{\mathcal{C}}$.

значению $U_{oc} > U_{ex}$. Если ёмкость не успевает зарядиться до напряжения U_{ex} к моменту U_{ex} , то дальнейший процесс заряда значительно затягивается, т.к. приближение U_{ex} к U_{oc} носит асимптотический характер /рис.І, крив.2/. Очевидно, оптимальным является такой заряд U_{ex} , когда /рис.І, крив.2/:

$$U_c(t_g) = U_{ac}(t_g) = U_{6x}$$
 (I)

Условие (I) может быть использовано для определения оптимальной величины $\mathcal R$.

Частотная карактеристика ОУ без ООС аппроксимируется обично 2-3 полюсной функцией [I]. В ОУ с ООС постоянная времени цепи коррекции, определяемая известными методами теории устойчивости, превышает, как правило, на порядок и более постоянные времени, соответствующие высокочастотным полюсам и нулям. При этом $\mathbb{Z} = \mathbb{R}_{12} \mathbb{C}_{x}$ где \mathbb{R}_{22} — сопротивление относительно общего провода в точке подключения корректирующей ёмкости \mathbb{C}_{x} . Задержка $\mathbb{Z}_{0} = \mathbb{Z}_{1} \mathbb{Z}_{1} - \mathbb{Z}_{2} \mathbb{Z}_{2}$ где \mathbb{Z}_{1} и \mathbb{Z}_{N} — постоянные времени, соответствующие полюсам и нулям характеристики ОУ в режиме динамической перегрузки.

С учетом сказанного

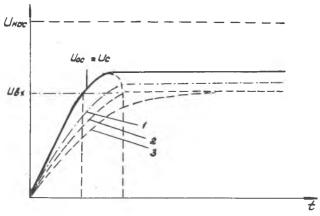
THE CT = RCH.

для $t_1 < t < t_0 sign(U_{ex}-U_{oc})=1$ напряжения U_{oc} и U_{c} могут быть представлены в виде суммы реакций на скачок U_{Hoc} при t=0 и скачок U_{Hoc} при $t=t_1$

$$U_{oc}(t)_{t,< t \leq t_0} = -U_{Hoc}[1 + \exp(-\frac{t-t_0}{C}) - 2\exp(-\frac{t-t_0-t_0}{C})]_{j(4)}$$

$$U_{c}(t)_{t,< t \leq t_0} = -U_{Hoc}\{1 + \frac{C}{t-T_0}, [\exp(-\frac{t-t_0}{C}) - 2\exp(-\frac{t-t_0-t_0}{C})]\}_{j(5)}$$

$$-2\exp(-\frac{t-t_0-t_0}{T}) + \frac{C_0}{C_0-T_0}[\exp(-\frac{t-t_0-t_0}{C})]_{j(5)}$$


THE
$$t_1 = -Ten\left(1 - \frac{Uox}{Unac}\right) + t_0$$
 (6)

Решая (4) для $\mathcal{E}=\mathcal{E}_2$ и используя (6), найдем

$$t_2 = Cln \left[\frac{2 \exp(\frac{t_o}{C_r}) - 1 + \frac{U_{ex}}{U_{roc}}}{1 - \left(\frac{U_{ex}}{U_{roc}}\right)^2} \right] + t_o$$
 (7)

Используя условие (I), получим

Решение численным методом уравнения (8) с учетом (6) и (7) при постоянных \mathcal{Z} , \mathcal{Z}_{ℓ} и \mathcal{U}_{RQC} показало, что оно выполняется, если при изменении \mathcal{U}_{ℓ} соответствующим образом /рис.3/ будет изменяться \mathcal{E}_{0} . Экспериментально доказано, что если условие (8) выполняется для данной амплитуды \mathcal{U}_{ℓ} , то для амплитуд, больших \mathcal{U}_{ℓ} , процесс заряда идет по кривой I /рис.2/, а для меньших — по кривой S. Следовательно, при работе усилителя в

Puc. 2.

режиме динамической перегрузки в его тракте присутствует задержка, изменяющаяся от амплитуды сигнала, и причем более резко, чем это 17-8254

задается графиком на рис. 3 для соответствующих параметров. На практике это приводит к тому, что мы должны выбирать $\mathcal R$ /при заданном $C_{\mathcal H}$ /, удовлетворяющее условию (8) для максимальной амплитуды, а с уменьшением $\mathcal L_{\mathcal E_{\mathcal K}}$ указанное условие нарушится, и заряд

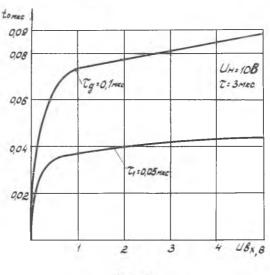


Рис. 3.

С $_{\it H}$ будет происходить согласно кривой 3 /рис.2/. На быстродействии это существенно не отразится, т.к. увеличение времени заряда за счет затягивания его конечного этапа / $\xi > \xi_{\it Z}$ / компенсируется уменьшением величини $\xi_{\it Z}$.

Величине \mathcal{C} , как было сказано выше, вноирается из условия устойчивости ОУ в линейном режиме, когда \mathcal{U}_{6x} - \mathcal{U}_{0c} \approx \mathcal{C} . Запас по фазе вноирается таким образом, чтобы на переходной характеристике ОУ наблюдался только один выброс, иначе ёмкость С $_{\mathcal{H}}$ зарядится от последующих вноросов до напряжения, большего, чем \mathcal{U}_{6x} . Затем подбирается оптимальная величина \mathcal{R} . Так как этот резистор совместно с С $_{\mathcal{H}}$ образует дополнительный высокочастотный нуль передаточной функции, т.е. влияет на величину \mathcal{L}_{0} , то может потребоваться дополнительная подстройка цепи коррекции и затем снова резистора \mathcal{R}

Повышения быстродействия ОУ, работающих в режиме динамической перегрузки, можно добиться применением дополнительного высокочастотного канала [2], что приводит к существенному усложнению схемы. В амплитудных АЦП при больших С , целесообразно применять двужканальные ЗУ с ООС, построенные по принципу комбинированного регулирования, в которых относительно просто реализуется квазиинвариантность U_c к форме входного сигнала [3,4]. В случае, если быстродействие определяется скоростью перезаряда корректирующей ёмкости, то указанный метод применяется в отношении ёмкости. На основании приведенных рекомендаций были рассчитаны и проверены схемы расширителей, имеющих следующие характеристики: в схеме на ОУ типа ІУТ40ІБ $t_{mun} = 3,2$ мкс., $U_{ex} = 10$ мв - 5 В, основная погрешность - 0, I - 0, I5%. Расширение динамического диапазона до 8В. обеспечивает ОУ ІУТ53І, но при этом Емим = 4,2 мкс. Использование двухканального ЗУ уменьшает Емин до 0,8-0,9 мкс. при сохранении остальных параметров. Дополнительная погрешность расширителей не более 0,3% в диапазоне +60°С.

ЛИТЕРАТУРА

- Проектирование и применение операционных усилителей. Пер. с англ. Под ред. Д.Грэма, М., "Мир", 1974, 510 стр.с илл.
- 2. Анисимов Б.И., Капитонов М.В., Соколов Ю.М. Быс тродействие транзисторных операционных усилителей в режиме динамической перегрузки. "Автоматика и телемеханика", 1974, № 2, с. 170-178.
- З. Иоффе В.Г., Лиходедов А.П., Пшеничников Ю.В. Зарядное устройство с отринательной обратной связью. Авт.св. № 441629, Волл. изобр. № 32, 1974, с. 133.
- 4. Иоффе В.Г., Пшеничиков Ю.В. Амплитудно-временной преобразователь одиночных импульсов. "Приборы и техника эксперимента", 1973, № 5, с. 136-138.