15. Гинзбург А.Н., Родионов Ю.И. Система графического редактирования печатных плат. В сб.:Систеим автоматизации научных исследований. ИАи СО АН СССР, Новосибирск. 1976.

С.М. Дубина

ПРИМЕНЕНИЕ ТЕОРИИ ГРАФОВ ДЛЯ АВТОМАТИЗАЦИИ СИНТЕЗА ВЫЧИСЛИТЕЛЬНЫХ АЛГОРИТМОВ (Куйбышев)

Формализованное онисание проблемы автоматизации проектировочных расчетов, данное в работе [I], позволило поставить задачу евтоматического поиска минимального набора зависимостей, необходимых для вычисления значений некоторого множества параметров по значениям другого множества параметров [2]. Решение этой так называемой задачи планировщика является одной из основных проблем при создании автоматизированных систем проектирования.

I. Пусть F множество зависимостей $^{\rm TC}$ одним выходом $^{\rm TC}$, описывающих технический объект (формулы, алгоритмы, таблицы), а A - множество входящих в эти зависимости параметров. Будем считать, что все зависимости из F независимы между собой и непротиворечивы в том смысле, что для определения значений любого множества X параметров из F необходимо и достаточно получение системы k зависимостей из F, содержащих k неизвестных параметров, среди которых содержатся параметры X. Назовем такую систему заикнутой (ЗС). Взаимосвязь F и A удобно представить в виде двудольного графа G (F, A), одно из множеств вершин которого соответствует F, а другое - A. Если $f \in F$ содержит $x \in A$, то ребро графа соединяет соответствующие вершины. Паросочетанием графа называется подмножество его ребер, не смежных друг с другом [3].

Алгоритм поиска минимальной ЭС, определяющей вначения параметров из X , с использованием графа G (F , A) состоит в спедующем:

I) из G (F , A) уделяются соответствующие заданным параметрам вершины вместе с инпидентными им ребрами;

- 2) для полученного графа G (F , A') строится максималь-
- 3) непокрытые паросочетанием R вершины из A' удаляются из графа вместе со смежными им в F вершинами и инцидентными ребрами до тех пор, пока в оставшенся графе G (F_B , A_B) не будут покрыты с помощью оставшейся части R все вершины.
- I_B соответствует 3С. Если $X \notin A_B$, то задача не может быть решена в полном объеме, так как вычисление значений параметров из $X \setminus A_B$ невозможно. Назовем описанный алгоритм потбраковывирими.

Если F_B содержит в себе 3С F_B' с меньшим числом зависимостой, то применив отбраковывающий алгоритм с $F_B\setminus \{f_e\}$, где $f_e\notin F_B'$, виделим F_B' . Если не существует f_C такой, что из. $F_B\setminus \{f_C\}$ выделяется 3С, то F_B минимальна. Последняя F_B' , содержащая все вкраметры из X, является минимальной 3С.

2. Основой отбраковывающего алгоритма является нахождение шиксимального паросочетания, которое связано с минимальным покрычием графа.

Пусть дан граф $\mathcal G$ без петель и изолированных вершин. Двудольный граф — частный случай такого графа. Пусть V — множество
воршин $\mathcal G$, а $\mathcal E$ — множество ребер, назовем $\mathcal P \in \mathcal E$ покрывающим
ножеством графа, если $(\forall \alpha \in V)(\exists e \in \mathcal P)$ [еинцидентно $\mathcal U$]. Назовем
рикрывающее множество $\mathcal P$ покрытием, если никакое его истинное
подмножество не является покрывающим множеством. Покрытие с мини—
пльным числом ребер — минимальное покрытие графа.

нимальное число ребер, которое нужно удалить из ρ для получения варосочетания, равно $2/\rho/n$, где $/\rho/$ — число ребер в ρ .

Доказательство. Сумма степеней вершин суграфа, эпределяемого покрытием ρ , равна $2/\rho/$. При паросочетании стении вершин соответствующего суграфа не превосходят I, следоватильно, число "избыточных" ребер не меньше $2/\rho/-n$. В силу опревония покрытия их не может быть больше.

Т е о р е м а І. Минимальное покрытие графа — надмножество

Доказательство. Пусть в графе G с n вершиним найдено минимальное покрытие P, $P/=p \ge n/2$. Пусть в P именти K групп смежных ребер. Каждая группа инпидентна некоторой

вершине. Удалив в накдой группе все ребра, кроме одного, получим из P паросочетание R. Согласно лемме удалено S=2p-n ребер. Паросочетание R— максимально и имеет p-S=n-p ребер. Лействительно, пусть существует паросочетание с (n-p+1) ребром. Эти ребра не смежны и покрывают 2(n-p+1) вершин, для остальных n-2(n-p+1)=2p-n-2 вершин можно выбрать такое же количество покрывающих ребер. Следовательно, получим новое покрытие P'c(P')=(n-p+1)+(2p-n-2)=p-1 ребрами, что противоречит минимальности P.

Обратно, если найдено максимальное паросочетание R с P ребрами, то оно покрывает 2P < n вершин. Добавив n-2P ребер, инцидентных непокрытым вершинам, получим покрытие P . Используя лемму, методом от противного легко доказать минимальность P.

Согласно теореме I, из минимального покрытия легко получить максимальное паросочетание. Для числа ребер минимального покрытия ρ очевидна нижняя оценка: $\rho = n/2$ [, где] x [— минимальное целое не меньшее x .

Теорема 2. Если граф G имеет гамильтонову цень, то число ребер его минимального покрытия P разно]n/2[.

Доказатель ство. Пусть граф $\mathcal C$ имеет гамильтонову цепь. Суграф, состоящий из ребер этой цепи, имеет степени вершин, не превосходящие 2. Выбрав вершину суграфа графа $\mathcal C$ состепенью I и пачав с нее, построим чередующуюся цепь [3], определяющую максимельное паросочетание $\mathcal R$. Если $\mathcal R$ покрывает все вершины графа, то это минимальное покрытие $\mathcal P$ (теорема I) очислом ребер n/2. В противном случае может быть непокрыта только I вершина, следовательно, число ребер $|\mathcal P| = \frac{n+1}{2}$. Теорема докавана.

Теорема 2 позволяет построить следующий алгориты вычисления верхней оценки числа ребер минимального покрытия и нахождения покрытия, соответствующего ей:

- а) из множества вершин со степенями, большими 2, выбирается вершина с минимальной степенью:
- б)_устранением ребер степень вершины приводится к 2 (переход к п.а.);
- в) после приведения степеней вершин к 2 для каждой из компонент полученного суграфа (включая и изолированные вершины) вычисляются оценки:

$$\rho_i = \frac{n_i}{2} \left[\quad , \tag{I}$$

где h_i — число вершин в i —той компоненте суграфа. Верхняя оценка для числа ребер минимального покрытия исходного графа равна \sum_{D_i} .

Действительно, так как компоненты суграфа представляют собой гамидьтоновы цепи, то по теореме 2 для них легко построить минимальные покрытия, соответствующие (1). Изодированные вервины суграфа могут быть покрыты дюбым инцидентным им в графе ребром. Так, получии покрытие / исходного графа. ветствующее верхней оценке. Если никняя и верхняя оценки совпадают, то ho минимально. В противном случае можно моделировать алгорити Лемке-Шпильберга [4] для поиска минимального тия. Модификация-алгориты состояний в построении дерева решений (ДР), начиная с первого уровия, в котором располагается его корень. вающего множества. Для ограничения числа рассматриваемых вариантов используются верхняя и никняя оценки. Первоначальным значением критерия планомерного исключения вариантов (КПИ) [4] слувит верхняя оценка числа ребер минимального покрытия, а в последствии - меньшее число ребер покрывающего множества. Критерий предпочтения [4] реадизуется путем задания порядка на множестве ребер. Критерий недопустимости не используется.

Рассмотрям формальную схему алгоритма.

- <u>Паг О.</u> $P = \phi$. Выбираются вершины с менимальной степенью. Из них выбирается такая, у которой меньше сумма степеней смекним вершин. Выбранная вершина определяет корень ДР. Все инцидентные ей ребра упорядочиваются в порядке возраставия суммы докальных степеней инцидентных им вершин. Это ряд, соответствующий корню ДР. Остальные шаги алгоритма одинаковы. Опишем K -й маг.
- <u>Шат k</u>. Если уровень узла ДР, в котором мы находимся, на 1 меньше значения КПИ, или ряд ребер этого узла пуст, то выполняется пунк ^{нан}, в противном случае — пунк ^нб^н.
- а) производится движение "назад" в предыдущий увел ДР (если походились в корне ДР, то задача решена). После возвращения в предыдущий увел первое ребро ряда, соответствующего ему, исключиется из P и из ряда. Переход к K+1 магу;
- б) выбирается первое ребро ряда, соответствующего узлу ДР, пло включается в ρ . Если ρ покрывающее множество, то вы-

полняются следующие операции: номер уровня принимается за новое значение КПИ (совпадение его с] n/2 [означает решение задачи, ρ — минимальное покрытие), ρ заменяет предндущее покрывающее множество, переходят к пункту "а". В противном случае производится движение "вперед" к следующему уровню ДР. Там образовывается новый узел ДР, выбираются из непокрытых множеством ρ вершин вершины с минимальной степенью. Из них выбирается та, у которой больше покрытых смежных вершин. Эта вершина ставится в соответстые вновь образованному узлу ДР. Инцидентные ей ребра упорядочиваются: сначала располагаются ребра, соединяющие 2 непокрытие вершины, в порядке возрастания суммы степеней инцидентных им вершин, затем в таком же порядке — остальные ребра. Полученный ряд ребер ставится в соответствие данному узлу ДР. Переход к следующему шагу.

Найденное по алгориты у покрывающее множество, соответствующее значению КПИ, - минимальное покрытие графа.

Литература

- I. Тыугу Э.Х. Решение задач на вычислительных моделях. ВВМ и МФ, т. IO, № 3, М., I970, с. 716-733.
- 2. Дубина С.М., Пиявский С.А. Алгоритмические вопросы создания системы автоматизации проектирования сложных технических объектов. Депонированная рукопись № 173 ЦНИИТЭИприборостроения (реф. 12Г6О5, РК "Кибернетика", № 12, 1974).
- 3. Басакер Р., Саати Т. Конечные графы и сети. М., "Наука", 1974, с. 226-229.
- 4. Кофман А., Анри Лабордер А. Методы и модели исследования операций. М., "МИР", 1977, с.60-74.