- 5. Дал У.-И. Языки пля моцелирования систем с пискретными событиями. В кн. :Языки программирования. М., "Мир", 1972, 344-403 с.
- 6. Бусленко Н.П. Моделирование сложных систем. М., "Наука", 1968, 356 с.

УШК 68I.3

В. В. Пшеничников

РАЗРАБОТКА ВХОДНОГО ЯЗЫКА ПРИ МОДЕЛИРОВАНИИ СИСТЕМЫ СБОРА И ОБРАБОТКИ ИНФОРМАЦИИ

Математическое обеспечение системы сбора и обработки информации включает в себя достаточно большое количество процецур. Пользователь полжен в зависимости от алгоритма функционирования системы организовать выполнение этих процецур в заданной послецовательности. Кроме того, на него возлагается обязанность обеспечить увязку параметров различных процецур пля их правильной работы. Это значительно усложняет работу экспериментатора. Та же проблема возникает и при моделировании сложных автоматизированных систем управления.

Обычно при разработке систем узкого назначения считалось нецелесообразным создание специализированного языка, так как временные затраты на разработку компилятора с него значительны. В большей стецени это объясняется тем, что разработку компилятора приходилось вести на уровне машинных команд или, в дучшем сдучае, на каком—дибо автокоде (язык Ассембдера).

В последнее время получает широкое распространение язык ПЛ/1. Обладая значительной универсальностью, ПЛ/1 позволяет пи—сать программы как для обработки данных (в нашем случае это на—бор процедур математического обеспечения системы), так и собственно интерпретатор входного языка, преобразующий программу на входном языке в заданную последовательность обращений к процедурам.

Для опытного программиста создание такого интерпретатора не составит особого трупа, так как в ПД/I есть хорошие средства цля работы с символьной информацией.

В данной работе рассматривается входной язык для работы с моделью автоматизированной системы пинамических испытаний дат-

чиков давления. Сама система создана на базе ЭВМ М-6000 АСВТ-М и установки импульсных давлений УИД-К. Её модель построена на ЕС-1020. Модель состоит из нескольких десятков различных процецур, воспроизволящих возможности как технических средств системы, так и средств математического обеспечения. Модель позволяет отпаживать алгоритмы и выбирать оптимальные параметры для процедур, работающих на реальной системе. Разработка входного языка для такой модели облетчит работу с моделью, и, кроме того, после выполнения работ по сопряжению ЭВМ М-6000 с ЕС-1020 позволят использовать язык как язык эксперимента с реальной системой.

Рассмотрим только основные операторы входного языка и карактерные приемы программирования, положенные в основу интерпретатора.

Основными операторами языка являются операторы ПРИНЯТЬ, ОПРЕДЕЛИТЬ, ВЫДАТЬ. В описании операторов фитурные скобки { } , сопержащие несколько расположенных столбиком синтаксических единиц, указывают, что используется одна из них, а квадратные скобки [] , что данной конструкции может не быть. Оператор ПРИНЯТЬ.

ВХОДНОЙ СИГНАЛ
ВЫХОДНОЙ СИГНАЛ
ИМПУЛЬСНУЮ ПЕРЕХОДНУЮ ХАРАКТЕРИСТИКУ
ЧАСТОТНУЮ ХАРАКТЕРИСТИКУ

OTCYETOB, METOI

Указывается оцин из метоцов обработки и некоторые параметры метоца

Оператор ОПРЕДЕЛИТЬ.

BXOДНОЙ СИГНАЛ

BЫХОДНОЙ СИГНАЛ

ИМПУЛЬСНУЮ ПЕРЕХОДНУЮ ХАРАКТЕРИСТИКУ

ЧАСТОТНУЮ ХАРАКТЕРИСТИКУ

Уотсчетов

(BROTSM. AECH) ALOTEM RILL HYTEMAYAH EIGHALAMUTHO

Оператор ВЫДАТЬ.

ВЫДАТЬ РЕЗУЛЬТАТЫ В ВИДЕ {ТАБЛИЦЫ ГРАФИКА }

Вид выходного документа определяется набором выходных устройств системы. Простейшая программа на входном языке может, например, иметь вид

ПРОГРАММА ОБРАБОТКИ

ПРИНЯТЬ ВХОДНОЙ СИГНАЛ 128 ОТСЧЕТОВ, ВЫХОДНОЙ СИГНАЛ 128 ОТСЧЕТОВ, МЕТОЛ ТИХОНОВА (A = 0.015. P = 2)

ОПРЕДЕЛИТЬ ЧАСТОТНУЮ ХАРАКТЕРИСТИКУ. ВЫДАТЬ РЕЗУЛЬТАТЫ В ВИДЕ ТАБЛИЦЫ. ЗАКОНЧИТЬ ПРОГРАММУ.

Язык также позволяет зацать форму сигнала и характер помехи.

Интерпретирующая система состоит из блока синтаксического контроля и блока интерпретатора. Блок синтаксического контроля осуществляет формальную синтаксическую проверку входной программи. Семантический контроль частично возложен на интерпретатор. Интерпретатор строит цепочку операторов обращений к процедурам модели. Исходным цля построения является набор операторов вызова процедур вида

K1: GOTO M(1);

K2: CALL PROL-2 (); GOTO M(2);

K22: CALL PROC-22 (); GOTO M(22);

KN: STOP.

Элементам массива меток \mathcal{M} операторами интерпретатора будут присваиваться значения меток $\mathcal{K} f = \mathcal{K} \mathcal{N}$. В итоге мы полины получить замкнутую цепь операторов от метки $\mathcal{K} f$ до

Пусть на первом этапе интерпретации выясняется, что цепь обрашений начинается оператором с меткой $\mathcal{K}2$, тогца переменной $\mathcal{M}(1)$ присвоится значение $\mathcal{K}2$ и запомнится инцекс метки опера-TODA GOTO M(2)c HOMOWED OHEDATODA INDEX-LABEL=1. Если теперь на очередном этапе интерпретации определиться следующее звено цепи (например, $\kappa 22$), то выполнения оператора $M(INDEX_LABEL)$ -K22 повволит соединить ввено K2 с меткой К22 . В исхопном состоянии всем элементам массива № присвоенн оператором M=57 значения метки 57 . В процессе обработки элементы массива 🦯 заменяются на зацанные метки. В случае неверной программы цепь может остаться незамкнутой, в итоге управление передается метке \mathcal{ST} , которой помечен оператор печати сообщения об ошибке в исходной программе. Такая система допускает простое расширение возможностей как за счет добавления новых операторов, так и за счет введения новых процедур. В первом случае в интерпретатор вводятся новые блоки, во втором - добавдяются новые группы операторов с метками K/-KN.

ЛИТЕРАТУРА

 Универсальный язык программирования ПЛ/І. М., "Мир", 1971.

УДК 62-503

В.Р. Панин

АВТОМАТИЗАЦИЯ МОДЕЛИРОВАНИЯ И ИССЛЕДОВАНИЯ

ХАРАКТЕРИСТИК АЛАПТИВНЫХ ВРЕМЕННЫХ ЛИСКРЕТИЗАТОРОВ СИГНАЛОВ

Адаптивные временные пискретизаторы сигналов (АВД) произвоцят первичную обработку аналогового сигнала с целью устранения избиточных и вицеления существенных отсчетов. Поп существенными отсчетами понимают то минимальное количество отсчетов, которое необходимо для последующего восстановления сигнала с заданной точностью. Известны аналоговые АВД, реализующие различные адгоритмы адаптивной дискретизации сигналов: АВД аппроксимационного типа, АВД оценочного типа и АВД моделирующего типа. В основу ра-