УДК 629.7.0I И.П. Вислов

АВТОМАТИЗИРОВАННЫЙ ВЫБОР ПАРАМЕТРОВ И ХАРАКТЕРИСТИК САМОЛЕТА МЕСТНЫХ ВОЗДУШНЫХ ЛИНИЙ С УПС

Задача повышения аэродинамического качества легких гражданских самолетов вызывает необходимость применения управления пограничным слоем (УПС). В свою очередь применение УПС ведет к усложнению задачи выбора параметров самолета. Получение оптимальных значений параметров невозможно без привлечения современной вычислительной техники.

Применительно к этой задаче исследовано применение УПС на гражданском самолете.

Рассматривается задача автоматизированного выбора рациональных параметров легкого реактивного гражданского самолета для
местных воздушных линий (МВЛ) с УПС (сдув пограничного слоя с
верхней задней поверхности крыла с ламинарным профилем во время
всего полета самолета) [I]. Применение системы УПС на гражданских самолетах весьма желательно, так как это снижает потребные
длины взлетно-посадочных полос (ВПП), повышает аэродинамическое
качество в крейсерском полете, что в целом снижает себестоимость
перевозок.

Исследования параметров и характеристик проведены для самолета низкоплана с двумя и тремя ДТРД, расположенными на хвостовой части фюзеляжа. На крыле имеются поворотный закрылок и зависающие на посадке элероны. Сдув пограничного слоя производится в зоне закрылков и элеронов. Самолет предназначен для эксплуатации на грунтовых аэродромах с длиной ВПП $\mathcal{L}_{snn}=500$ м. Коммерческая нагрузка при дальности $\mathcal{L}_{\rho}=200$ — 1000 км и высотах $\mathcal{H}_{\kappa\rho} \ll 6$ км составляет 600 кгс.

Значения независимых оптимизируемых параметров изменялись в следующих пределах:

скорость крейсерского полета $V_{\kappa\rho}=300-500$ км/ч; нагрузка на м² поверхности крыла $\rho_o=120-200$ кгс/м²; удлинение крыла $\lambda=6-10$;

относительная толщина крыла у корня $\bar{\mathcal{C}}_{\sigma}$ = 0,08 - 0,14; двухконтурность двигателя m = 0 - 6.

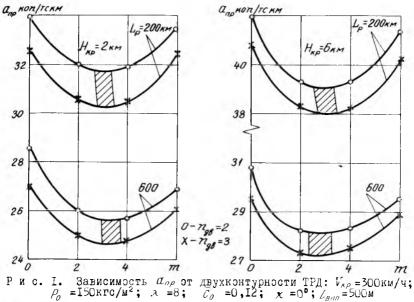
Зависимыми и также оптимизируемыми параметрами самолета являются: число двигателей ($n_{\partial S}$), аэродинамическое качество в крейсерском полете ($K_{\Delta S}$), взлетный вес ($G_{\alpha S}$) и др.

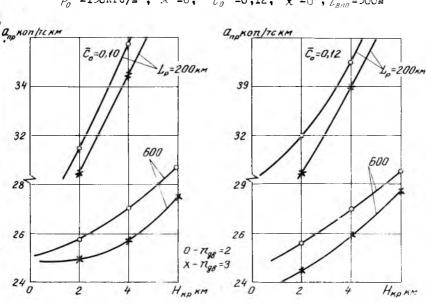
Для решения задачи при известных значениях дальности полета, целевой нагрузке и \mathbb{Z}_{800} разработан алгориты оптимизации $\lfloor 2 \rfloor$.

Особенностями алгоритма является следующее:

учитывается изменение сопротивления самолета за счет сдува пограничного слоя [3];

тяговооруженность самолета P_o вычисляется с учетом отбора воздуха от двигателей для системы УПС (коэффициент импульса выдуваемого воздуха $\mathcal{C}_{\mathcal{U}}=0$,I);


максимальный коэффициент подъемной силы крыла $\mathcal{C}_{q \ max}$ рассчитывается с учетом отклонения закрылка, элеронов и работы системы УПС на взлете и посадке [4].


Критериями оптимизации служат приведенные затраты, которые учитывают себестримость тс.км и капитальные вложения (\mathcal{Z}_{MR}).

В результате расчетов на ЭВМ БЭСМ-4 получены параметры и характеристики оамолета и двигателя. По дискретным значениям независимых параметров оптимизации можно построить графики (на рис. I-6 представлены часть графиков для $V_{\rm KP}=300\,{\rm km/4}$, $D_{\rm H}=150\,{\rm krc/m}^2$ = 8) изменения приведенных затрат для:двухконтурности турбореактивного двигателя (рис. I), высоты крейсерского полета(рис.2), относительной толщины крыла у корня (рис. 3), качества крейсерского полета (рис. 4-5), взлетного веса самолета G_U (рис. 6).

Выводы

- I. Оптимум степени двухконтурности двигателя является умеренным по остроте. Если допустить отступление от минимума приведенных затрат на I%, то рациональное значение m можно брать в пределах 2,3-3,8.
- 2. Минимум приведенных затрат для $\rho_{\partial \delta}=3$ на 4-5% меньше, чем для $\rho_{\partial \delta}=2$.
- 3. Оптимум λ является сильным. В диапазоне $\alpha_{np,min}$ + 1% можно принять рациональное значение λ = 7,5 8.

P и с. 2. Зависимості u_{np} от высоты полота: $V_{np} = 300 \, \text{км/ч};$ $z = 8; \quad m = 4; \quad \lambda = V; \quad \mathcal{L}_{B,\alpha} = 500 \, \text{м}; \quad \mathcal{P}_{n} = 15 \, \text{V}_{n}$

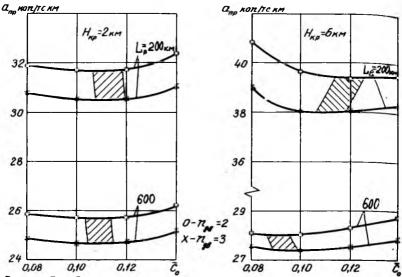
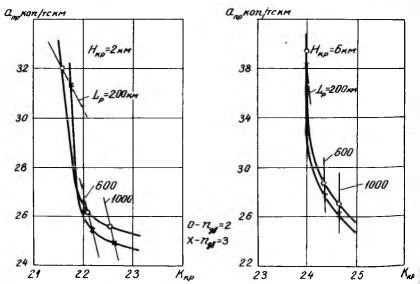
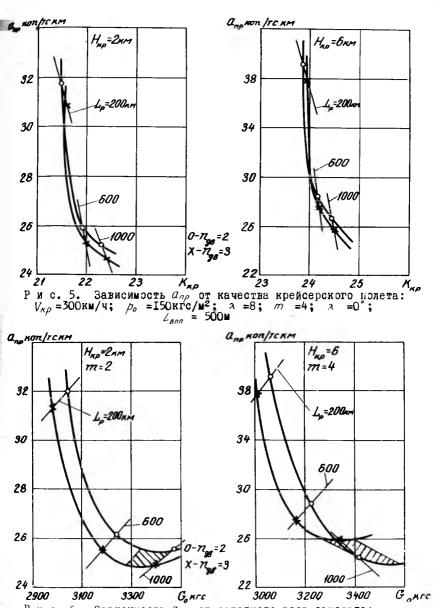




Рис. 3. Зависимость $a_{n\rho}$ от относительной толщины крыла у корня: $V_{\kappa\rho}$ =300км/ч; ρ_o =150кгс/м²; λ =8; m =4; χ =0°; L_{snn} =500м

P и с. 4. Зависимость $\alpha_{\sigma\rho}$ от качества крейсерского полета: $V_{\kappa\rho}$ =300ки/ч; ρ_0 =150кгс/м²; λ =8; m =2; χ =0°; $L_{\theta\sigma\theta}$ =500м

P и с. 6. Зависимость $a_{n\rho}$ от вэлетного веса самолета: $V_{n\rho}$ = 300км/ч; ρ_o = 150кгс/м²; λ =8; α =0°; $L_{B,n\rho}$ =500м

- 4. Оптимум \overline{C}_{o} является слабым. В диапазоне $a_{np,min}$ + 1% можно отступать от $(\overline{C}_{o})_{opt}$ в пределах 0,095 0,12.
- 5. Применение системы УПС на посадке повъодило получить $\ell_{qmax} = 3,5-4$, а рациональное значение нагрузки на \mathbf{m}^2 поверхности крыла при взлете лежит в диапазоне 175 180 кгс/ \mathbf{m}^2 .
- 6. При полете на дальность /p=1000 км целесообразно лететь на высоте $//_{AP}=6$ км, при этом валетный вес самолета и приведенные затраты при $//_{BE}=3$ будут меньше на 6-8%, чем вес самолета и приведенные затраты с $//_{BE}=2$.

Применение системы УПС дает выигрыш во взлетном весе самолета 10-14%, чем у самолета без УПС.

7. Действие системы УПС в полете на ламинарном крыле позволяет получить аэродинамическое качество $\Lambda = 2I - 24$.

Литература

- Г. "Техническая информация", 1969, № 9.
- 2. Труды МАИ, выпуск 394, 1977.
- 3. Tournal of the Royal Accommutical Society.
 April 1963, p 201-203.
- 4. Whittley IIC The Hugmentor Wing Research Program: Past Present and Future, condition Normauties and Space Tournal, II 1968.

УДК 629.7.05.002(075.8)

вэтпе и.н. к

АЛГОРИТМИЗАЦИЯ ПРОЦЕССОЬ ПОЛУЧЕНИЯ ИСХОДНЫХ ДАННЫХ ДЛЯ КОНТРОЛЯ КАЧЕСТВА БОРТОВЫХ УСТРОПСТВ

Применение для анализа и синтеза технологических процессов теории информации, теории надежности, логики и алгоритмов не привело до сих пор к созданию общей модели технологического процесса с учетом деятельности исполнителя как основного звена при выполнении электромонтажных работ. Причиной, на наш взгляд, является