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The plastic anisotropy is one of various material representations that significantly affects springback simula-

tions. In the present paper, the effect of plastic anisotropy of springback in plane strain pure bending is studied 

by means of an exact semi-analytical solution. To take into account anisotropy it is used the yield criterion and 

the constitutive equations for the orthotropic material with consideration of the crystal lattice constants and pa-

rameters of the crystallographic texture. 
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Introduction 

A comprehensive overview on springback that occurs following a sheet forming process when 

the forming loads are removed from the workpiece has been provided in [1]. It is emphasized in 

this overview that plastic anisotropy is one of various material representations that significantly 

affects springback simulations. In the present paper, the effect of plastic anisotropy of spring-

back in plane strain pure bending is studied by means of an exact semi-analytical solution. 

1. Material model considering crystallographic texture 

The yield function of the orthotropic material considering the crystallographic texture has been 

proposed in [2]. Using this function and assuming the plane strain state ( ) the 

main equations of material model can be written as follows: 
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Here  and  are the equivalent stress and strain rate,  and  are the physical compo-

nents of the stress and strain rate in the Eulerian Cartesian system of coordinates. The general-

ized anisotropy factors  are defined as 

 , (5) 

where  is the anisotropy factor of a crystal lattice,  are the parameters of the crystallograph-

ic texture. The anisotropy factor is defined through the compliance constants of crystal lattice

,  and  

 . (6) 

For a certain crystallographic orientation  the parameters of the crystallographic tex-

ture are defined as 

 , (7) 

where , ,  are Miller’s indices, which determine the i-th direction in the crystal with re-

spect to the principal axes of anisotropy. 

Elastic/plastic solution for plane strain pure bending 

A general approach to analysis of plane strain pure bending has been proposed in [3]. The ap-

proach starts with the kinematics of the process, which is independent of constitutive laws. In 

particular, the following mapping between an Eulerian Cartesian coordinate system xy and a 

Lagrangian coordinate system  has been introduced in [3] 

  (8) 

where H is the initial thickness of the sheet, s is an arbitrary function of a, a is a function of the 

time, t, and a = 0 at t = 0. It follows from (8) that  and  at a = 0 if 

  at . (9) 

It can be verified by inspection by applying l’Hospital’s rule to (8), with the use of (9), as . 

Equations (8) and (9) describe a transformation of the rectangle defined at the initial instant, 

, by the equations ,  and  (or, in the Lagrangian coordinates, by the equa-

tions ,  and ) into the shape determined by two circular arcs, AD and CB, 

and two straight lines, AD and CB (Fig. 1). 
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Equation (8) allows the principal strain rates to be calculated. These strain rates and constitutive 

equations are then substituted into the only non-trivial equilibrium equations in the Lagrangian 

coordinates. As a result, an equation for determining the function  is obtained. This equa-

tion should be solved numerically. Using this solution the state of stress and strain at the end of 

loading is calculated. It is then straightforward to find the shape of the sheet after unloading as-

suming that this process is purely elastic. 

 

Fig. 1. Geometry of the process - notation 
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