
Обработка изображений и дистанционное зондирование Земли 

V Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2019) 

Numerical characteristics of image geometric deformation 

parameters estimates convergence at stochastic gradient 

estimation  

D.G. Kraus
1
, A.V. Zhukova

1
, R.I. Kalimullina

1 

1
Ulyanovsk State Technical University, Severnii Venetz 32, Ulyanovsk, Russia, 432027 

Abstract. Several approaches to the numerical description of image geometric deformations 

parameters estimates behavior at iterations of non-identification relay stochastic gradient 

estimation are considered. The probability density of the Euclidean mismatch distance of 

deformation parameters estimates vector is chosen as an argument of the characteristics 

forming the numerical values. It made it possible to ensure invariance to the set of parameters 

of the used inter-frame geometric deformations model. The mathematical expectation, the 

probability of exceeding a given threshold value of the convergence rate and the confidence 

interval of the Euclidean mismatch distance were investigated as characteristics. Probabilistic 

mathematical modeling is applied to calculate the probability density of the Euclidean 

mismatch distance. Examples of calculation are presented. 

1. Introduction 

Estimation of an image sequence geometric deformations parameters is one of the main problems of 

image processing [1-4]. In solving this problem, non-identification stochastic estimation proved to be 

good [5], wherein the formation of vector estimate α  of deformation parameters of reference  )1(

j
z  

and deformed  )2(

j
z  images,   T

yx
jjj , , can be described by the procedure [6, 7]: 

 
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,

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tttttt

Z αβΛαα , (1) 

where  β  – stochastic gradient of an objective function, which characterizes the quality of evaluation 

(the mean square of the difference between the brightness of the reference and deformed images was 

used as the objective function to calculate examples); 
t

Λ  – gain matrix, determining a value of the 

estimates change at the t -th iteration; 
t

Z  – two-dimensional local sample of the reference and 

deformed images used to determine the stochastic gradient at the t -th iteration [8, 9]. 

The local sample size (LSS) largely determines the nature of estimates deformation convergence and 

the computational cost. The research direction is due to the fact that the problems of LSS optimization 

are not investigated enough. The paper discusses the possibilities of numerical description of vector 

estimates of geometric deformations parameters estimates behavior at iterations of non-identification 

relay stochastic gradient estimation.  

As initial information for the numerical description of vector estimates behavior, the probability 

distributions of the estimates deformation parameters are chosen. The paper investigated the 

mathematical expectation, the probability of exceeding a given threshold value of convergence rate 
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and the confidence interval as characteristics that form numerical values. When estimating one 

deformation parameter, these characteristics are directly applicable to its evaluation. If the set of 

parameters is estimated, then at the same iteration for each parameter different values of the optimal 

LSS can be obtained. Since one local sample is formed at each iteration, its value will be chosen 

corresponding to the maximum of the optimal volumes, which will lead to unreasonable computational 

costs. Therefore, in the paper, the probability distribution of the Euclidean mismatch distance (EMD) 

for the vector of deformation parameter estimates is chosen as the argument of the studied 

characteristics. This made possible to ensure the invariance of the study to the set of parameters of the 

deformation model used.  

2. Choice of argument characteristics 

For definiteness, we assume that geometric deformations of the images are estimated and described by 

the model of similarity, which include parallel shift parameters  T
yx

hhh , , angle of rotation  , 

scale factor  . In this case, we note that limitation of the parameter vector does not limit the 

following consideration. 

Let, after the  1t -th iteration the vector of deformation parameters estimates has values 

    T
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ˆ
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1
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ˆ
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correspond to its own probability distribution:  ,ˆ
1 xt
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  
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,  ̂
1t

w  and  ̂
1t

w . Then, on the 

t -th iteration in the local sample the sample from resampled reference image with coordinates 

),(
ba

yx  will be taken for a couple with sample from deformed image with coordinates  ba, : 
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where ),(
00

yx  – the coordinates of the center of rotation.  

The method for calculating the probability distribution of estimates of the image geometric 

deformations parameters was proposed in [10, 11] and involves the sampling of the domain of 

parameter definition. Using the method it is possible to obtain discrete probability distributions (DPD) 

of the parameters for the selected deformation model: 
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where  zP  - the probability z ; 
x

L , 
y

L , L  и L  – the number of intervals for splitting the 

parameter space 
x

h , 
y

h ,   and  . Then the coordinates (2) with the probability 

 llllllll
ppppP

yxyx
  take the values: 

    
     .cossin

,sincos

000

000

ylyx

xyx

llllllll

llllllll

hxbyayy

hxbyaxx












 

Thus, it is possible to calculate a probability distribution of distances between a point with coordinates 

 ba,  on the deformed image and possible positions of the conjugate point on the reference image for 

current estimates of the deformation parameters, i.e. get DPD of the euclidean mismatch distance 

(EMD)  rw
t

 at the t -th iteration. 

Let consider a few examples of the results for the calculation DPD EMD. Let the images have a 

Gaussian autocorrelation function and a signal-to-noise ratio (ratio of the variances of image and 

noise) equal to 14. For parameters estimation the stochastic procedure (1) of relay type with constant 

elements of diagonal gain matrix: 05,0
hyhx
 , 4,0  and 005,0  is used. The same 

experimental conditions are used for the examples given below. 
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Figure 1 shows an example of the calculated DPD estimates ̂  and ̂  with  =1 and the parameter 

mismatch 4
yx

hh , o15 and 2,1 , after 60 iterations. Note that the probability distribution 

of estimates of all parameters are close to the Gaussian. Figure 2a shows DPD  rw
60

 of absolute 

value EMD: 22 )()(
 llllllllllll

lyxlyxlyx
ybxar  . In this case, the expectation value of the 

EMD is 1.9, and the variance is 4.0. 

  
Figure 1. Examples of DPD deformation parameter estimates. 

 

Figure 2b shows an example calculation for 3 . At the same time, each point of the local sample 

plan corresponds to its own distribution of EMD, and the totality of all points corresponds to the total 

distribution. The plan was formed as follows. The coordinates  
11

,
yx

jj  of the first count on the 

deformed image were chosen randomly within a certain domain, and the other two according to the 

rule:       
iiiiyixi

RRjj  sinint,sinint,  , where 2,1i ;  zint  - integer part of z ; 

     o
xy

xjyjarctg 120
01012,1

 ; iR  - random numbers. 

  
       a)                                              b) 

Figure 2. Examples DPD of EMD. 

 

The result shows that with increasing LSS the distribution of EMD is not normalized. This is due to 

that EDM has non-linear dependence on deformation parameters, with the result that different points 

of the local sample plan give statistically significantly different mathematical expectations and 

variances of EDM. 

3. Characteristics of changes in the vector estimations  

Using the probability distribution of EMD we find the expression for the numerical description of 

image geometric deformations parameters estimates behavior at iterations of non-identification relay 

stochastic gradient estimation. As the characteristics that form the numerical values, we consider 

mathematical expectation, the probability of exceeding a given threshold value of the convergence rate 

and the confidence interval EMD. 

3.1 Mathematical expectation of change EMD 

The mathematical expectation determines its convergence rate to zero at a particular iteration. At LSS 

m , this characteristic can be found through a change in the distribution of EMD on adjacent 

iterations: 
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0
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M


. (3) 

A positive value (3) corresponds to the improvement of the parameter estimates vector ̂ , a negative 

value corresponds to the deterioration.  

When using DPD value  rM  is determined by the ratio: 

   
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,1,
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
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where 
r

L  - the number of intervals splitting the domain of definition EMD. Clearly, that the 

expectation value   kr M  of improving the vector of parameter estimates with increasing LSS by 

k  can be found as:     
 


rL

i kmtimtii
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1
,,

M

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For example, Figure 3a shows the dependence    rwrw
6160

  on EMD, which calculated at 1  for 

61 iterations. Obviously, that with small EMD the probability differences are negative, for large ones 

they are positive. At the same time, the average value describes the improvement of the vector of 

estimates and equal to 0.017. Figure 3b shows an example of dependence    
260160 




rwrw  on 

EMD. As in Figure 3a, for small EMD, the probability differences are negative, for large ones, they 

are positive. The average value is 0.02. 

    
a)                                                    b) 

Figure 3. Examples of differences in the DPD of EMD on adjacent iterations (a) and different LSS 

(b). 

 

3.2. Probability of exceeding a given threshold value of EMD convergence rate  

It is necessary to determine the distribution  
t

w  of the convergence rate   at the iterations of 

estimation and then determine the probability. The probability that   at the t –th iteration will exceed 

a given threshold 
tv

  is: 

   dwP
tt 




tvv 

1 . (4) 

The distribution  
t

w  can be found as the difference DPD of EDM on adjacent iterations, also for a 

unit of time we take a dimensionless value between iterations:       rwrwrw
ttt


1

 . In this case, 

the convergence rate can be estimated either at each iteration, or after a certain number of iterations. 

Figure 4a shows an example of the DPD convergence rate of the EDM at 60 iterations at 1 . At the 

same time, threshold value 
tv

  is equal to 0.21 and the probability (4) of exceeding (shaded domain) is 

equal to 0.68. Figure 4b shows the dependence of probability exceeding the convergence rate of the 

EDM of the selected threshold value on the volume of the local sample. Clearly, if you increase  , 

then the probability increases, and reaches at 5  value 0.99. 
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        a)                                       b) 

Figure 4. DPD convergence rate and probability of exceeding the threshold value. 

 

3.2. Confidence interval of the EMD 

The change in the boundaries of the confidence interval at adjacent iterations is used as the numerical 

value of the deformation estimates of the confidence interval EMD for a given confidence probability: 


ci
r

)1(rr)1(ll 


tttt
rrrr , (5) 

where the indices “l” and “r” mean left and right limits of the confidence intervals, respectively. 

Similarly, through the boundaries of the confidence intervals, one can describe the change in the 

vector of estimates with increasing LSS from m  to km  : 

   kr
ci kmtmtkmtmt

rrrr



 rrll

. (6) 

Note that expressions (5) and (6) cannot be non-negative. It is also necessary to take into account the 

mismatch signs of the current estimate 
t

̂  and the parameter values  , when analyzing the 

measurement of boundaries of the confidence intervals of individual deformation parameters (such as 

the angle of rotation, parallel shift, etc.), which can be positive and negative: 


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r     

 ttttt
signrrrr ˆ
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4. Conclusion 

The paper presented numerical description of image geometric deformations parameters estimates 

behavior at iterations of non-identification relay stochastic gradient estimation. As initial information 

for solving the problem, we consider the probability distribution of parameter estimates. 

We chose the probability distribution EDM estimates of deformation parameters as an argument of 

characteristics. They form numerical values, which made it possible to ensure invariance to the set of 

parameters of the used inter-frame geometric deformations model. 

The mathematical expectation, the probability of exceeding a given threshold value of the convergence 

rate and the confidence interval of the EMD were investigated as characteristics. The investigated 

characteristics can be used to optimize the volume and plan of the local sample according to various 

criteria. In particular, when using the probability of exceeding a given threshold value of the 

convergence rate to optimize the LSS, and after calculating the DPD of EMD, the task is reduced to 

finding the LSS. 

Results showed that the confidence interval is a less informative parameter in comparison with 

mathematical expectation of change and with probability of exceeding a given threshold value of the 

convergence rate EMD. This is due to the fact that the probability distribution of EMD significantly 

changes from iteration to iteration. Therefore, on adjacent iterations, the change in the limits of the 

confidence interval does not always characterize the improvement of the estimates vector. 

5. References 

[1] Su, H.R. Non-rigid registration of images with geometric and photometric deformation by using 

local affine Fourier-moment matching / H.R. Su, S.H. Lai // Proc. of the IEEE Conf. on 

Computer Vision and Pattern Recognition. – 2015. – P. 2874-2882. 



Обработка изображений и дистанционное зондирование Земли         D.G. Kraus, A.V. Zhukova, R.I. Kalimullina 

V Международная конференция и молодёжная школа «Информационные технологии и нанотехнологии» (ИТНТ-2019) 366 

[2] Moritz, P. A linearly-convergent stochastic L-BFGS algorithm / P. Moritz, R. Nishihara, M. 

Jordan // Proc. of the 19th Int. Conf. on Artificial Intelligence and Statistics. – 2016. – P. 249-

258. 

[3] Borisova, I.V. Application of the gradient orientation for systems of automatic target detection / 

I.V. Borizova, V.N. Legkiy, S.A. Kravets // Computer Optics. – 2017. – Vol. 41(6). – P. 

931-937. DOI: 10.18287/2412-6179-2017-41-6-931-937. 
[4] Shalev-Shwartz, S. Accelerated proximal stochastic dual coordinate ascent for regularized loss 

minimization / S. Shalev-Shwartz, T. Zhang // Mathematical Programming. – 2016. – Vol. 

155(1). – P. 105-145. 

[5] Tsypkin, Ya.Z. Information theory of identification / Ya.Z. Tsypkin. – Moscow: Fizmatlit, 

1995. – 336 p. (in Russian). 

[6] Tashlinskii, A.G. Pseudogradient Estimation of Digital Images Interframe Geometrical 

Deformations / A.G. Tashlinskii // Vision Systems: Segmentation & Pattern Recognition. – 

Austria, Vienna: I-Tech, 2007. – P. 465-494. 

[7] Tashlinskii, A.G. Pixel-by-pixel estimation of scene motion in video. International Archives of 

the Photogrammetry / A.G Tashlinskii, P.V. Smirnov, M.G. Tsaryov // Remote Sensing and 

Spatial Information. – 2017. – Vol. XLII-2/W4. – P. 64-65. 

[8] Tashlinskii, A.G. Optimization of Goal Function Pseudogradient in the Problem of Interframe 

Geometrical Deformations Estimation / A.G. Tashlinskii // Pattern Recognition Techniques, 

Technology and Applications. – Austria, Vienna: I-Tech, 2008. – P. 249-280. 

[9] Tashlinskii, A.G. The Efficiency of using correlation and information measures for the synthesis 

of recurrent algorithms for estimating spatial deformations of a video sequence / A.G. 

Tashlinskii, A.V. Zhukova // ITNT-2017. – Samara: Novaya technika, 2017. – P. 581-586. (in 

Russian). 

[10] Tashlinskii, A.G. The Efficiency of Pseudogradient Procedures for the Estimation of Image 

Parameters with a Finite Number of Iterations / A.G. Tashlinskii // Pattern Recognition and 

Image Analysis. – 1998. – Vol. 8. – P. 260-261. 

[11] Tashlinskii, A.G. Method of errors analysis of stochastic gradient measurement for parameters 

multidimensional processes / A.G. Tashlinskii, V.O. Tikhonov // Izvestiya vuzov: 

Radioelektronika. – 2001. – Vol. 44(9). – P. 75-80. (in Russian). 

Acknowledgments 

The reported study was funded by RFBR and Government of Ulyanovsk Region according to the 

research project № 18-01-730006 and № 18-41-730009.  

 


