ПРОБЛЕМА МОМЕНТОВ ДЛЯ ТОЧЕЧНЫХ МНОЖЕСТВ КОМПЛЕКСНОЙ ПЛОСКОСТИ

В.П. Цветов

Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет), Самара, Россия

Рассматривается вопрос о единственности определения точечных множеств на комплексной плоскости по известным степенным моментам. Обсуждаются примеры приложения полученных результатов к задаче определения подобия плоских ломаных при анализе изображений методами сравнения с эталоном.

Ключевые слова: проблема моментов, контурный анализ, обработка изображений.

Введение

Проблема моментов тесно связана со многими вопросами функционального анализа [1], интегральной геометрии [2, 3], задачами интерполяции и классификации функций [4]. Ряд задач, касающихся единственности решений операторных уравнений, так или иначе, может быть переформулирован в терминах определения непрерывного линейного функционала $f: X \mapsto \mathbb{C}$ по известным моментам на системе линейно независимых элементов $\{z_m\}_{m \in I \subseteq \mathbb{N}_0}$ подходящего линейного нормированного пространства X:

$$f(z_m) = s_m. (1)$$

В приложениях в качестве X обычно выбирают пространство непрерывных на некотором компакте K комплекснозначных функций C(K) с равномерной нормой. На основании теоремы Рисса-Радона, топологически сопряженное к C(K) пространство непрерывных линейных функционалов $C(K)^*$ изометрично пространству мер Радона с компактным носителем на K [1, 5], т.е. любой линейный функционал $f \in C(K)^*$ может быть единственным образом представлен в виде

$$f(z) = \int_{K} z(t) d\mu_f(t), \tag{2}$$

с мерой μ_f , однозначно определяемой функционалом f.

В дальнейшем нас будет интересовать случай $K \subset \mathbb{R}^2$, $z_m(t) = z_m(x,y) = z^m = \left(x+iy\right)^m$, $i^2 = -1$, $\mu_f(t)$ — функция ограниченной вариации с компактным носителем K, интеграл в (2) понимается как интеграл Лебега-Стилтьеса.

Если $K = \{t_j \mid t_j = (x_j, y_j), j \in 1..k\}$ представляет собой конечное точечное множество интеграл (2) сведётся к конечной сумме

$$f(z) = \sum_{j=1}^{k} z(t_j) \cdot \mu_f(t_j) = \sum_{j=1}^{k} z_j \cdot \mu_j^f,$$
(3)

где
$$z_j = x_j + iy_j$$
, а $\mu_j^f \in \mathbb{C}$.

С учётом сказанного (1) примет вид

$$f(z^m) = \int_{K \subset \mathbb{R}^2} z^m(t) d\mu_f(t) = s_m, \tag{4}$$

или

$$f(z^{m}) = \sum_{j=1}^{k} z_{j}^{m} \cdot \mu_{j}^{f} = s_{m}.$$
 (5)

Мы покажем единственность определения линейного функционала f из (5) по известному конечному числу моментов s_m , из чего будет следовать единственность определения его носителя f, т.е. точек $f_j = (x_j, y_j) \in \mathbb{R}^2$.

Затем мы распространим полученный результат на частный случай (4), когда компакт $K \subset \mathbb{R}^2$ представляет собой ломаную с конечным числом звеньев, а интеграл понимается как интеграл первого рода по кривой, заданный при помощи линейной меры Лебега.

Заметим, что к проблеме моментов вида (5) приводит метод анализа контурных изображений на основе интегральных представлений для спиральных Гауссовых пучков, предложенный в [6].

Нетрудно привести пример компактов $K \subset \mathbb{R}^2$, для которых задача определения линейного функционала f по известным моментам s_m даже в случае $m \in I = \mathbb{N}_0$, будет иметь бесконечно много решений.

Действительно, в качестве компакта рассмотрим $K = \{(x,y) | x^2 + y^2 \le r_0^2\}$ - круг радиуса r_0 , и определим семейство вложенных в него компактов

$$K_1^{r_1} = \left\{ (x, y) \mid x^2 + y^2 = r_1^2 < r_0^2 \right\},$$

$$K_2^{r_2, r_3} = \left\{ (x, y) \mid r_2^2 \le x^2 + y^2 \le r_3^2 < r_0^2 \right\},$$

$$K_3^{r_4} = \left\{ (x, y) \mid x^2 + y^2 \le r_4^2 < r_0^2 \right\}.$$

Определим непрерывные линейные функционалы

$$f_1^{r_1}(z) = \int_{K^n} z(x, y) dL \in C(K)^*,$$
 (6)

$$f_2^{r_2,r_3}(z) = \iint_{K_r^{r_2,r_3}} z(x,y) dx dy \in C(K)^*,$$
(7)

$$f_3^{r_4}(z) = \iint_{K_1^{r_4}} z(x, y) dx dy \in C(K)^*,$$
 (8)

где интеграл в (6) понимается как интеграл первого рода вдоль кривой L.

Функции $z_m(x,y) = z^m = (x+iy)^m$, при всех $m \in \mathbb{N}_0$, образуют ортогональную систему относительно скалярных произведений

$$\langle z_1, z_2 \rangle_1 = \int_{K_1^n} z_1(x, y) \overline{z_2(x, y)} dL,$$

$$\langle z_1, z_2 \rangle_2 = \iint_{K_2^{\gamma, \gamma_3}} z_1(x, y) \overline{z_2(x, y)} dxdy,$$

$$\langle z_1, z_2 \rangle_3 = \iint_{K^{74}} z_1(x, y) \overline{z_2(x, y)} dxdy,$$

Таким образом, при m > 0 все моменты

$$f_1^{r_1}(z^m) = s_m^1 = \int_{K_1^n} z^m dL = 0,$$

$$f_2^{r_2,r_3}(z^m) = s_m^2 = \iint_{K_2^{r_2,r_3}} z^m dxdy = 0,$$

$$f_3^{r_4}(z^m) = s_m^3 = \iint_{K_1^{r_4}} z^m dxdy = 0,$$

а $s_0^1=2\pi\,r_1$, $s_0^2=\pi\left(\,r_3^2-r_2^2\,\right)$, $s_0^3=\pi\,r_4^2$. Фиксируя $0< r_1<\frac{r_0^2}{2}$ и полагая $r_4=\sqrt{2\,r_1}$, $r_3^2=r_4^2+r_2^2$ при произвольном $0< r_2^2< r_0^2-2\,r_1$ получаем бесконечное число различных непрерывных линейных функционалов $f_1^{r_1}$, $f_2^{r_2,r_3}$, $f_3^{r_3}$, с компактными носителями $K_1^{r_1}$, $K_2^{r_2,r_3}$, $K_3^{r_4}$ и равными моментами $f_1^{r_1}(z^m)$, $f_2^{r_2,r_3}(z^m)$, $f_3^{r_1}(z^m)$.

Это обстоятельство является следствием того, что система функций $z_m(x,y) = z^m = (x+iy)^m$ не является полной в пространстве C(K). Согласно теореме Вейерштрасса о равномерном приближении непрерывных функций [1], полную систему образует система полиномов

 $p_{m,n}(x,y)=x^m\,y^n$, $m,n\in\mathbb{N}_0$. С учетом представлений $x=\mathrm{Re}(z)=\frac{z+z}{2}$, $y=\mathrm{Im}(z)=\frac{z-z}{2}$, можно утверждать, что тем же свойством обладает система функций $P_{m,n}(x,y)=z^m\,\overline{z}^n$. Таким образом, любые непрерывные линейные функционалы из $f\in C(K)^*$, в том числе и задаваемые формулами (6) - (8) будут однозначно определяться набором моментов

$$f(z^m \overline{z}^n) = s_{m,n}, m, n \in \mathbb{N}_0.$$
(9)

Если рассмотреть линейные функционалы, задаваемые интегралами по плоским областям или спрямляемым кривым, то в силу того, что равенство функционалов означает равенство определяющих их мер Радона, а из равенства мер следует равенство носителей мер, система моментов (9) будет однозначно определять ограниченную замкнутую область или ограниченную спрямляемую компактную кривую, интегрированием по которым задаются соответствующие функционалы.

Проблема моментов для конечного множества точек

Рассмотрим проблему моментов в следующей постановке. По заданной системе равенств

$$\sum_{j=1}^{k} z_{j}^{m} \cdot \mu_{j} = s_{m}, m \in 0..M, M \in \mathbb{N},$$
(10)

требуется определить набор пар комплексных чисел $S = \left\{ \left(z_j, \mu_j \right) \right\}_{j=1}^k$ в предположении, что все числа z_i являются попарно различными, и $\mu_i \neq 0$.

В равенстве (10) полагаем $z^0=1$ для любого $z\in C$. Наборы $S=\left\{\left(z_j,\mu_j\right)\right\}_{j=1}^k$ и $\tilde{S}=\left\{\left(\tilde{z}_j,\tilde{\mu}_j\right)\right\}_{j=1}^k$ будем считать эквивалентными, если найдется такая тотальная биекция $h:1..k\mapsto 1..k$, что $z_j=\tilde{z}_{h(j)}$, $\mu_j=\tilde{\mu}_{h(j)}$, т.е. если они совпадают с точностью до перестановки. Нас будет интересовать вопрос о единственности ее решения, которая понимается как эквивалентность в указанном выше смысле.

Допустим, что существуют два решения s и \tilde{s} поставленной выше задачи. В этом случае из (10) будет следовать система равенств

$$\sum_{j=1}^{k} \left(z_j^m \cdot \mu_j - \tilde{z}_j^m \cdot \tilde{\mu}_j \right) = 0, m \in 0..M, \tag{11}$$

Обозначим $\left\{z_j\right\} \cap \left\{\tilde{z}_j\right\}$ - пересечение множеств $\left\{z_j \mid j \in 1..k\right\}$ и $\left\{\tilde{z}_j \mid j \in 1..k\right\}$. Рассмотрим множества $J_{z\tilde{z}} = \left\{j \mid z_j \in \left\{z_j\right\} \cap \left\{\tilde{z}_j\right\}\right\}$, $J_{\bar{z}z} = \left\{j \mid \tilde{z}_j \in \left\{z_j\right\} \cap \left\{\tilde{z}_j\right\}\right\}$ $J_z = 1..k \setminus J_{z\tilde{z}}$, $J_{\tilde{z}} = 1..k \setminus J_{\tilde{z}z}$.

Обозначим $s = \left|J_{z\bar{z}}\right| = \left|J_{\bar{z}z}\right| \le k$. Без ограничения общности будем считать, что $J_{z\bar{z}} = J_{\bar{z}z} = 1...s$, если s > 0 и $J_{z\bar{z}} = J_{\bar{z}z} = \varnothing$, если s = 0. Понятно, что в этом случае $J_z = J_{\bar{z}} = s + 1..k$, если s < k и $J_z = J_{\bar{z}} = \varnothing$, если s = k.

Определим тотальную биекцию $h: J_{z\tilde{z}} \mapsto J_{\tilde{z}z}$, полагая $h(j_1) = j_2$, где $z_{j_1} = \tilde{z}_{j_2}$, при этом система равенств (11) примет вид

$$\sum_{j \in J_{z}} z_{j}^{m} \cdot \mu_{j} - \sum_{j \in J_{\bar{z}}} \tilde{z}_{j}^{m} \cdot \tilde{\mu}_{j} - \sum_{j \in J_{z}} \left(\mu_{j} - \tilde{\mu}_{h(j)} \right) \cdot z_{j}^{m} = 0, m \in 0..M.$$

$$(12)$$

Полагая

$$\xi_j = \begin{cases} \mu_j - \tilde{\mu}_{h(j)}, 1 \leq j \leq s \\ \mu_j, & s+1 \leq j \leq k \\ -\tilde{\mu}_{h(j-k+s)}, k+1 \leq j \leq 2k-s \end{cases}$$

$$\alpha_{ij} = \begin{cases} z_j^{i-1}, 1 \le j \le k, 1 \le i \le M+1 \\ \tilde{z}_{h(j-k+s)}^{i-1}, k+1 \le j \le 2k-s, 1 \le i \le M+1 \end{cases}$$

запишем (12) в виде

$$\sum_{j=1}^{2k-s} \alpha_{ij} \cdot \xi_j = 0, i \in 1..M + 1, \tag{13}$$

Ранг матрицы (α_{ij}) равен $\min(M+1,2k-s)$, так как, по построению, главный угловой минор этой матрицы порядка $\min(M+1,2k-s)$ совпадает с определителем Вандермонда, составленного из степеней попарно различных чисел.

Если $_{M+1\geq 2k-s}$, то соотношения (13) могут выполняться только при условии равенства нулю всех чисел ξ_j , так как (13), рассматриваемая как система уравнений относительно ξ_j может иметь лишь нулевое решение.

В этом случае, $J_z = J_{\tilde{z}} = \emptyset$, $J_{z\tilde{z}} = J_{\tilde{z}z} = 1..k$, и для всех $j \in 1..k$ имеют место равенства

$$z_j = \tilde{z}_{h(j)}, \mu_j = \tilde{\mu}_{h(j)},$$

которые доказывают единственность решения поставленной задачи.

Неравенство $M+1\geq 2k-s$ будет выполняться для всех $s\geq 0$ при условии $M+1\geq 2k$. Таким образом, выполнение неравенства $M\geq 2k-1$ является достаточным условием единственности решения проблемы моментов для конечного числа точек. Необходимость этого условия может быть показана по аналогии с тем, как это сделано в [7] для вещественного случая.

Проблема моментов для плоских ломаных с конечным числом звеньев

Рассмотрим незамкнутую ломаную $L^k \subset \mathbb{R}^2$, определяемую упорядоченным набором из k попарно различных узловых точек $\left\{t_j = \left(x_j, y_j\right)\right\}_{j=1}^k$. Вдобавок считаем, что каждая точка t_j принадлежит не более чем двум звеньям ломаной, и тройки точек t_{j-1} , t_j , t_{j+1} не лежат на одной прямой, то есть ломаная состоит из k-1 звеньев.

Как и ранее, определим функцию $z: \mathbb{R}^2 \mapsto \mathbb{C}$ соотношением z = z(t) = z(x, y) = x + iy.

Для каждого из $_{k-1}$ звеньев ломаной $_{L_{j}^{k}}$ зададим стандартные параметризации $_{j}^{k}$: $[0,1] \mapsto \mathbb{R}^{2}$ полагая $_{j}^{k}$ $(\tau) = t_{j} + (t_{j+1} - t_{j}) \cdot \tau$.

Обозначим

$$z_{j} = z(t_{j}) = z(x_{j}, y_{j}) = x_{j} + iy_{j},$$

$$z_{j}(\tau_{j}) = z(L_{j}^{k}(\tau)) = z_{j} + (z_{j+1} - z_{j}) \cdot \tau,$$

$$\varphi_{j} = \arg(z_{j+1} - z_{j}),$$

и вычислим систему комплексных моментов S_m при $m \in 0..M \subset \mathbb{N}_0$, определяемых криволинейными интегралами первого рода вдоль ломаной L^k .

$$S_{m} = \int_{L^{k}} z^{m} dL^{k} = \sum_{j=1}^{k-1} \int_{0}^{1} z_{j}^{m}(\tau) |dz_{j}(\tau)|,$$
 (14)

После несложных преобразований (14) может быть приведено к виду

$$S_{m} = \frac{1}{m+1} \cdot \left(-e^{-i\varphi_{1}} \cdot z_{1}^{m+1} + \sum_{j=1}^{k-1} \left(e^{-i\varphi_{j-1}} - e^{-i\varphi_{j}} \right) \cdot z_{j}^{m+1} + e^{-i\varphi_{k-1}} \cdot z_{k}^{m+1} \right),$$

$$(15)$$

Полагая $s_m = m \cdot S_{m-1}$, $\mu_1 = -e^{-i\phi_1}$, $\mu_k = e^{-i\phi_{k-1}}$, $\mu_j = e^{-i\phi_{j-1}} - e^{-i\phi_j}$ при $j \in 2..k-1$, и учитывая равенство

$$\sum_{j=1}^k \mu_j = -e^{-i\phi_1} + \sum_{j=2}^{k-1} \left(e^{-i\phi_{j-1}} - e^{-i\phi_j} \right) + e^{-i\phi_{k-1}} = 0,$$

приводим (15) к виду (10).

Нетрудно понять, что

$$\mu_1 = -e^{-i\varphi_1} = -\frac{|z_2 - z_1|}{z_2 - z_1} \neq 0, \tag{16}$$

$$\mu_k = e^{-i\phi_{k-1}} = \frac{|z_k - z_{k-1}|}{z_k - z_{k-1}} \neq 0.$$
(17)

Условие

$$\mu_{j} = e^{-i\varphi_{j-1}} - e^{-i\varphi_{j}} = \frac{\left|z_{j} - z_{j-1}\right|}{z_{j} - z_{j-1}} - \frac{\left|z_{j+1} - z_{j}\right|}{z_{j+1} - z_{j}} \neq 0, \tag{18}$$

при $j \in 2..k-1$, выполняется в силу того, что по предположению точки t_{j-1}, t_j, t_{j+1} , определяющие звенья ломаной, не лежат на одной прямой.

Из результатов предыдущего раздела следует однозначность определения набора точек $\left\{z_j\right\}_{j=1}^k$ и весов $\left\{\mu_j\right\}_{j=1}^k$, определяющих узловые точки и звенья ломаной L^k по системе из 2k моментов S_m .

Аналогичный результат справедлив и для замкнутой ломаной L^k , определенной набором узловых точек $\left\{t_j=\left(x_j,y_j\right)\right\}_{j=1}^k$, при условии $t_1=t_k$. В этом случае аналог(15) примет вид (10) с заменой k на k-1, и $\mu_1=e^{-i\phi_{k-1}}-e^{-i\phi_1}$.

Приложения проблемы моментов к задаче распознавания подобия плоских контуров

Проблема моментов имеет непосредственное отношение к задачам анализа изображений [8], в том числе анализа подобия плоских дискретных контуров [6, 9].

Напомним, что два множества $M_1 \subseteq \mathbb{C}$ и $M_2 \subseteq \mathbb{C}$ называются подобными если существуют $\lambda_0, \kappa_0 \in \mathbb{C}$ такие, что $M_2 = \left\{z' \mid z' = \lambda_0 + \kappa_0 \cdot z, z \in M_1 \right\}$, где λ_0 описывает параллельный перенос

точек множества M_1 , $|\kappa_0| \neq 0$ равен коэффициенту подобия, $\arg(\kappa_0)$ соответствует углу совмещающего поворота.

Множества M_1 , M_2 будем считать конечными, в этом случае $\left|M_1\right|=\left|M_2\right|=k\in\mathbb{N}_0$.

С учетом равенства

$$z_j' - \frac{1}{k} \sum_{s=1}^k z_s' = \lambda_0 + \kappa_0 \cdot z_j - \frac{1}{k} \sum_{s=1}^k (\lambda_0 + \kappa_0 \cdot z_s) = \kappa_0 \cdot \left(z_j - \frac{1}{k} \sum_{s=1}^k z_s \right),$$

в дальнейшем без ограничения общности будем считать, что в случае подобия множеств M_1 , M_2 выполнены равенства $\sum_{i=1}^k z_j = \sum_{i=1}^k z_j' = 0$, или, что то же самое, $\lambda_0 = 0$.

Рассмотрим две незамкнутых ломаных $L^k, L'^k \subset \mathbb{R}^2$ с одинаковым числом звеньев. Как было показано в предыдущем разделе, каждая из них однозначно задается системой моментов

$$\sum_{j=1}^{k} z_{j}^{m} \cdot \mu_{j} = \sum_{j=1}^{k} z_{j}^{m} \cdot \mu(z_{j-1}, z_{j}, z_{j+1}) = s_{m},$$
(19)

$$\sum_{j=1}^{k} z_{j}^{\prime m} \cdot \mu_{j}^{\prime} = \sum_{j=1}^{k} z_{j}^{\prime m} \cdot \mu(z_{j-1}^{\prime}, z_{j}^{\prime}, z_{j+1}^{\prime}) = s_{m}^{\prime},$$
 (20)

при $m \in 0..2k-1$, и $\mu(z_{j-1}, z_j, z_{j+1})$, определяемыми равенствами (16)-(18).

Учитывая то, что

$$\mu\left(\kappa_0 \cdot z_{j-1}, \kappa_0 \cdot z_j, \kappa_0 \cdot z_{j+1}\right) = \frac{\left|\kappa_0\right|}{\kappa_0} \mu\left(z_{j-1}, z_j, z_{j+1}\right),\,$$

из (19) и (20) получаем следующее необходимое и достаточное условие подобия ломаных L^k , $L^{\prime k}$

$$s'_{m} = \left| \kappa_{0} \right| \cdot \kappa_{0}^{m-1} \cdot s_{m}, m \in 0..2 \, k - 1. \tag{21}$$

Условие (21) остается справедливым и для замкнутых ломаных.

Литература

- 1. Функциональный анализ / Л.В. Канторович, Г.П. Акилов. Изд. 3-е, перераб. М.: Наука, 1984. 752 с.
- 2. Теория операторов и некорректные задачи / М.М. Лаврентьев, Л. Я. Савельев. Изд. 2-е, перераб. и дополн. Новосибирск: Изд-во Ин-та математики, 2010. 912 с.
- 3. Хахлютин, В.П. Об одной задаче интегральной геометрии на плоскости / В.П. Хахлютин // Доклады академии наук СССР. −1991. Т. 320, № 4. С. 832-834.
- 4. Классическая проблема моментов и некоторые вопросы анализа, связанные с нею / Н.И. Ахиезер. Изд. 2-е, дополн. М.: Физматлит, 1961. 310 с.

- 5. Эдвардс, Р. Функциональный анализ / Р. Эдвардс; пер. с англ. М.: Мир, 1969. (R.E. Edwards. Functional analysis. N.Y.: Holt,-Rinehart & Winston, 1965.)
- 6. Волостников, В.Г. Контурный анализ и современная оптика гауссовых пучков / В.Г. Волостников, С.А. Кишкин, С.П. Котова // Компьютерная оптика. –2014. Т. 38, № 3. С. 476-481.
- 7. Теория матриц / Ф.Р. Гантмахер. Изд. 2-е, доп. М.: Наука, 1966. 576 с.
- 8. Прэтт, У. Цифровая обработка изображений: в 2 т. / У. Прэтт; пер. с англ. М.: Мир, 1982. (W.K. Pratt. Digital image processing. N.Y.: John Wiley & Sons, Inc, 1978.)
- 9. Введение в контурный анализ / Я.А. Фурман, А.В. Кревецкий, А.К. Передреев, А.А. Роженцов, Р.Г. Хафизов, И.Л. Егошина, А.Н. Леухин; под ред. Я.А. Фурмана. Изд. 2-е, испр. М.: Физматлит, 2003. 592 с.