Сравнение алгоритмов управления сигналами светофоров в крупномасштабном сценарии моделирования движения транспортных средств

А.А. Агафонов Самарский национальный исследовательский университет им. акад. С.П. Королева Самара, Россия ant.agafonov@gmail.com

Самара, Россия evgeniaefimenko27@gmail.com управления на основе методов машинного обучения, и, в

Е.Ю. Ефименко

Самарский национальный

исследовательский университет им. акад.

С.П. Королева

Аннотация—Задача управления сигналами светофоров остается важной задачей, решаемой в интеллектуальных транспортных системах. Развитие методов машинного обучения привело к активному развитию адаптивных методов управления сигналами светофоров, основанных на обучении с подкреплением. В то же время, сравнение классических подходов к управлению с методами на основе обучения с подкреплением в существующих работах проводится либо на синтетических сценариях, либо на сценариях, включающих малое количество перекрестков. В данной работе мы проводим сравнение алгоритмов управления сигналами светофоров в крупномасштабном сценарии моделирования движения транспортных средств системе моделирования SUMO. Для проведения исследований был разработан сценарий моделирования на основе сценария SUMO «TAPAS Cologne».

Ключевые слова обучение \boldsymbol{c} подкреплением, детерминированная модель, управление сигналами светофоров, SUMO.

1. Введение

Задача оптимального управления транспортными потоками является одной из ключевых задач в транспортных системах. современных Управление транспортными потоками позволит транспортные расходы на совершение поездок в сети, снизить потребление топлива и уменьшить уровень загрязнения окружающей среды.

Развитие информационно-коммуникационных технологий, интернета вещей (ІоТ), подключенных и автономных транспортных средств привело увеличению объема данных, которые могут использоваться для решения задачи адаптивного управления сигналами светофоров. В частности, активно методы управления, основанные алгоритмах обучения с подкреплением.

Адаптивное управление транспортными потоками путем управления сигналами светофоров основывается на информации, полученной от детекторов транспортных средств, видеокамер, подключенных транспортных средств и др. для выбора следующей фазы светофора. Обзор и сравнение классических методов управления (SOTL, MaxPressure) на основе детерминированных моделей было проведено в [1, 2]. В работе [3] авторы предложили адаптивный метод управления на основе детерминированной прогнозной модели. Предлагаемый метод основывается на выборе фазы светофорного цикла, прогнозируемый поток для которой оказывается максимален. В последние два десятилетия наибольший интерес представляет разработка методов адаптивного

частности, на основе обучения с подкреплением [4-6]. Однако эти методы могут работать нестабильно в сложных сценариях с зашумленными данными и слишком чувствительны к гиперпараметрам [7]. Более того, исследования разработанных алгоритмов часто проводятся на синтетических сценариях моделирования с перекрестками типовой структуры, либо рассматривают малое число перекрестков в реальных сценариях.

данной работе было проведено адаптивного управления алгоритмов светофоров на разработанном крупномасштабном сценарии моделирования движения транспортных средств. В следующем разделе приводится краткое описание сравниваемых алгоритмов. В разделе 3 представлено описание сценария, постановка результаты экспериментов. Заключение представлено в разделе 4.

2. АЛГОРИТМЫ АДАПТИВНОГО УПРАВЛЕНИЯ СИГНАЛАМИ СВЕТОФОРОВ

А. Детерминированные методы

Детерминированные методы используют заранее определенные правила для выбора следующей фазы светофорного цикла.

- SOTL [1] оценивает зеленые «запросы» от текущей фазы и других конкурирующих фаз, а затем решает, сохранить или изменить текущую фазу. В частности, сохранение текущей фазы светофора может определяться наличием непрерывного потока транспортных средств.
- MaxPressure [2] стремится сбалансировать длину очереди между соседними перекрестками за счет минимизации «давления» фаз на перекресток.
- MaxFlow [3] основывается на выборе фазы светофорного цикла, прогнозируемый поток для которой оказывается максимален.

Б. Методы на основе обучения с подкреплением

Обозначим через S множество состояний некоторого объекта. Пусть А обозначает множество возможных действий. Упрощенно задача состоит в построении отображения $S \rightarrow A$, которое для каждого конкретного состояния отображает действие, которое необходимо совершить в указанном состоянии в определенном смысле оптимальным образом. Для решения этой задачи обычно используют подход на основе марковского процесса принятия решений <S, A, P, R, $\gamma>$, где P определяет вероятности перехода между состояниями, величина R характеризует «награду», γ – коэффициент дисконтирования. Задача обучения с подкреплением заключается в нахождении оптимальной политики $\pi:S \to A$, которая максимизирует награду R.

В качестве алгоритмов на основе обучения с подкреплением в работе рассматриваются:

- IDQN [8] алгоритм на основе Q-обучения; каждый агент контролирует отдельный светофор и обучается независимо.
- IPPO [8] алгоритм на основе оптимизации политики.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Экспериментальные исследования разработанных алгоритмов были проведены в системе моделирования движения транспортных средств SUMO [9]. Для проведения исследований был разработан сценарий моделирования, основанный на сценарии движения SUMO «TAPAS Cologne» [10].

Сценарий содержит 2928 перекрестков различной конфигурации, в т.ч. 316 сигнализированных перекрестков, 5808 сегментов. Движение транспортных средств рассматривалось в утренний час пик в период с 6 до 8 утра. Дорожная сеть рассматриваемого сценария представлена на Рис. 1.

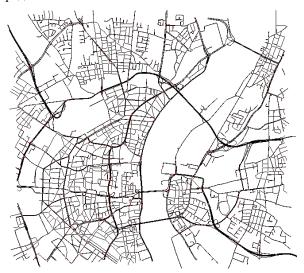


Рис. 1. Дорожная сеть сценария моделирования движения

Сравнение алгоритмов проводилось по двум метрикам: среднее время ожидания и среднее время движения. Среднее времени ожидания (в секундах) показывает среднее время, которое транспортные средства провели без движения на перекрестке, среднее время движения (в секундах) — это среднее время, затрачиваемое транспортными средствами на совершение поездки в сети. Результаты сравнения алгоритмов представлены в Таблице I.

4. ЗАКЛЮЧЕНИЕ

В работе проведено сравнение адаптивных детерминированных алгоритмов и алгоритмов на основе

обучения с подкреплением для решения задачи управления сигналами светофоров. Для проведения экспериментальных исследований был разработан крупномасштабный сценарий моделирования движения транспортных средств. Результаты показывают, что алгоритм IDQN на основе обучения с подкреплением, обученный независимо для каждого агента, превосходит остальные алгоритмы. Однако данный подход не является масштабируемым, что требует разработки новый подходов к управлению.

Таблица II. СРАВНЕНИЕ ЭФФЕКТИВНОСТИ УПРАВЛЕНИЯ ТРАНСПОРТНЫМИ ПОТОКАМИ

	Среднее время движения	Среднее время ожидания
IDQN	319,21	19,54
IPPO	371,32	67,28
SOTL	361,14	44,04
MaxPressure	334,8	28,59
MaxFlow	327,69	23,68

Благодарности

Работа выполнена при поддержке Российского научного фонда (проект № 21-11-00321, https://rscf.ru/en/project/21-11-00321/).

ЛИТЕРАТУРА

- Papageorgiou, M. Review of road traffic control strategies / M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, Y. Wang // Proceedings of the IEEE. – 2003. – Vol. 91(12). – P. 2043-2065.
- [2] Varaiya, P. The Max-Pressure Controller for Arbitrary Networks of Signalized Intersections / P. Varaiya // Advances in Dynamic Network Modeling in Complex Transportation Systems: Complex Networks and Dynamic Systems. – 2013. – P. 27-66.
- [3] Мясников, В.В. Детерминированная прогнозная модель управления сигналами светофоров в интеллектуальных транспортных и геоинформационных системах / В.В. Мясников, А.А. Агафонов, А.С. Юмаганов // Компьютерная оптика. 2021. Т. 45, № 6. Р. 917-925. DOI: 10.18287/2412-6179-CO-1031.
- [4] Yau, K.-L.A. A survey on Reinforcement learning models and algorithms for traffic signal control / K.-L.A. Yau, J. Qadir, H.L. Khoo, M.H. Ling, P. Komisarczuk // ACM Computing Surveys. – 2017. – Vol. 50(3).
- [5] Greguric, M. Application of Deep Reinforcement Learning in Traffic Signal Control: An Overview and Impact of Open Traffic Data / M. Greguric, M. Vujic, C. Alexopoulos, M. Miletic // Applied Sciences. – 2020. – Vol. 10(11). – P. 4011.
- [6] Qadri, S.S.S.M. State-of-art review of traffic signal control methods: challenges and opportunities / S.S.S.M. Qadri, M.A. Gökçe, E. Öner // European Transport Research Review. – 2020. – Vol. 12(1). – P. 55.
- [7] Genders, W. An Open-Source Framework for Adaptive Traffic Signal Control / W. Genders, S. Razavi // ArXiv preprint: 1909.00395, 2019.
- [8] Ault, J. Learning an Interpretable Traffic Signal Control Policy / J.
 Ault, J.P. Hanna, G. Sharon // ArXiv preprint: 1912.11023, 2020.
- [9] Lopez, P.A. Microscopic Traffic Simulation using SUMO / P.A. Lopez // 21st International Conference on Intelligent Transportation Systems (ITSC). – 2018. – P. 2575-2582.
- [10] TAPASCologne SUMO Documentation [Electronic resource]. Access mode: https://sumo.dlr.de/docs/Data/Scenarios/ TAPASCologne.html (21.11.2021).