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Abstract 

In this paper, we propose a modification of the method of the pyramids to build parallel algorithms for explicit difference equations. Its 
efficiency is shown on a practical example of the differential solution of the one-dimensional equations of the Maxwell in two tasks efficiency. 

In comparison with a usual parallel algorithm acceleration of calculations is increased by 1.6 times. We investigated the efficiency of the 
author's approach depending on the height of the pyramid, indicated the limits of applicability of the proposed changes. 
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1. Introduction 

Enhancing the role of mathematical modeling in research is a general scientific trend of the last few decades, a characteristic 

even for humanitarian branch [1]. In the natural sciences emerged independent directions using computational experiment as the 

main instrument of the subject area of study: computational Heat Transfer [2], hydrodynamics [3], computer optics [4]. Interests 

of the authors of this publication are the last of these areas, developing since the mid 80-ies of the last century. 

In planning computational experiment, the focus is traditionally given to the construction or the choice of a mathematical 

model of the phenomenon investigated. In particular, the development of computer optics accompanied by a shift of interest in 

the scientific community with a beam model (solution of the EIKONAL equation  and of the transfer equation) of the wave 

(Fourier integrals, Fresnel integrals and  Kirchhoff  integrals) to rigorous diffraction theory (Maxwell's equations). This 

phenomenon is generally attributed to the improvement of the technological base [5]. It is connected to the transition from 

micro- to Nano scale inhomogeneity’s characteristic optical elements, resulted in new possibilities of optics and new problems 

that arise in front of her. Indeed, by reducing irregularities specified geometric optics and physical theory of diffraction are no 

longer satisfactory to describe the process of diffraction and the focus of researchers focuses on the use of the mathematical 

theory.  
However, as a model of the theory [6] and numerical methods relating to them [7], and the possibility of working with Nano-

objects (electron microscopy), though less extensive, there is still in the middle of the last century. Making this explanation is 

not entirely exhaustive. According to the authors of this publication should be added to it the improvement of computer 

technology, without which the numerical solution of Maxwell's equations is extremely difficult. Unfortunately, this circumstance 

in the corresponding fundamental literature is either ignored altogether, or is mentioned in passing, as something catches your 

eye. For example, only in the third edition of the Alan Taflove’s monograph [8], who gave the name of the FDTD-method, 

referred to its implementation on the GPU. Among the plurality of books on the same method, only one [9] and it is not entirely 
devoted to the peculiarities of the organization of parallel computing. This is despite the explosive profusion of texts in 

periodicals related to the specific implementations of the difference solution of Maxwell's equations on different processor 

architectures. This discrepancy shows the urgent need to systematize the extensive experience of the FDTD-method, followed by 

an indication of the "missing" options for its development. 

Without attempting in this paper to solve the first problem, the authors dwell on the second, referring to the use of the 

pyramid method to the difference solution of Maxwell's equations. Characteristic of this problem as "missing" is connected to 

the output of fashion algorithms for multiprocessor cluster computing systems and massive circulation of developers to 

heterogeneous systems with GPUs. However, the known important constraint on implementation [10] of software FDTD-method 

on GPU wide practices. Specifically, a small amount of video memory compared to RAM of one node in the cluster. For 

example, the cluster K-100, Institute of applied mathematics, the difference reaches two orders of magnitude [11]. In addition, 

with the possible development of fog computing [12], while existing only as a theoretical concept, not involving work with 
video processors, researchers' attention again switches to the peculiarities of organization of arithmetic operations and 

communications between processors connected by a network. 

2. The Maxwell's equations in the one-dimensional case 

Choosing one-dimensional case, we mean that it recorded the Maxwell’s equations have analytical solution and the case is of 

interest only to illustrate the proposed hike further to the compilation of parallel algorithms. 

For TEM-waves [8] in the free space Maxwell's equations are: 
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Where 0  and 0  - electric and magnetic constants, axis OZ is the direction of propagation, xE and yH  the projection of the 

electric and magnetic fields on the respective axes. At the boundaries of the field of computational experiment 

 ( , ) : 0 ;0D t z t T z L     on function xE  impose Dirichlet conditions: ( ,0) 0, ( , ) 0x xE t E t L   appropriate electrical wall. 

As the initial conditions are field missing, take the electric and magnetic fields at 0t  . Radiation in the region D is administered 

by “hard” [8] source  2( , ) Re
i t

x sE t z e
 

 . Where  is cyclic frequency, sz  is the place location of the radiation source.  

Difference solution (1) is accompanied on the overlay D grid area hD , at the nodes 
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. The obvious difference scheme Yee [8] for (1) is 

traditionally written as: 
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Fig. 1. The differential template for the scheme (2). Circumference depicted components for the electric field, squares depicted components for the magnetic. 

 

Separate arrangement of different nodes grid functions (Fig. 1) provides higher-order approximation scheme of equations (1) 

with respect to time and space, allows you to not worry about setting the boundary conditions for the magnetic field. 

3. The classic pyramids method  

Pyramids method proposed and developed in [13, 14] can be carried to the theory of automatic parallelization cyclic 

fragments of sequential programs. Compared to other approaches to solve this problem, for instance the methods of hyper 

planes, coordinates and parallelepipeds, it allows you to work with cycles, the parameters of which are included in the non-linear 

expressions. The disadvantage of the method is considered to be impossible to use for simple cycles. 

The cyclic structure of the general form, with any number of nested loops, put in bijective correspondence space iterations, 

each vector is associated with single design iteration. Entered binary dependency relationships and following in the space [15]. 

The first step of the method is accompanied by the release of the space of iterations resulting vectors, each of which does not 

depend on any other vector space. In the second step to a problem parallel algorithm include a resultant vector of all vectors of 

the space on which it depends. Building a parallel algorithm completes ordering vectors in each task in accordance with the 

following relationship. A distinctive feature of this algorithm is a complete lack of communication between its objectives. 

For the scheme (1) space iterations obviously coincide with the grid area hD except nodes, which define the initial and 

boundary conditions. Grid functions initial and boundary conditions are known and cannot be calculated. The ratio is determined 

depending on the immediate differential circuit pattern (Fig. 1) and associates the vector ( 1, )n k with ( , )n k , ( 0.5, 0.5)n k 

( 0.5, 0.5)n k   vectors and the vector ( 0.5, 0.5)n k   with ( 0.5, 0.5)n k  , ( , )n k , ( , 1)n k   vectors. A ratio of the 

dependency is constructed as a transitive closure of the immediate relationship of dependence on space of iterations. A ratio of 
the sequence is determined by the order of traversal of the grid region in the production of computing serial algorithm. Namely, 

the outer loop iterates over the layers of time in the direction of increasing values of the index n , and the internal nodes iterates 

over the layers of space in the direction of increasing k . At integer values of n  are grid values of the electric field at non-integer 

values of n  are the discrete values of the magnetic field. 

The resulting vectors will correspond to nodes with , 1,..., 1n N k K   . Let the task  of parallel algorithm classified the 

resulting vector ( , )N  . Then on the layer n (general) the selected task will be to calculate the grid function at the nodes k from 

N n   to N n    and the layer 0.5n  will be to calculate the grid function at the nodes k from 0.5N n    to
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0.5N n    . It is easy to see (Fig. 2), which is grid region the nodes within the jurisdiction of the  task will be inside the 

triangle (in two-dimensional case, inside the pyramid). 

 

 
Fig. 2. Vectors-space iterations within the jurisdiction of the  task parallel algorithm. 

 

We have gotten rid of communications due to duplication of arithmetic operations in a variety of tasks. Therefore, the task 

1   contains the n  layer are in common with the  task of vector ... 1k N n N n       . Therefore, that duplicated all 

their vectors other than two nodes. And if the communication costs in the conventional parallel algorithm [9] with increasing N
increases linearly (in each time layer several parcels / receptions for the problem), the volume of duplicate arithmetic operations 

using the pyramid method increases quadratic (in proportion to the area of a triangle) that it causes the failure of the method for 

real values of N . 

4. A modification of the method of the pyramids 

To overcome this drawback, the authors have developed the following modification of the method of the pyramids. Initially, 

we restrict consideration to h  (the height of the pyramid in integer layers) layers of time instead of N . Take to doing one task   

adjacent to each other of the resulting vector on layer 1h , thus obtaining K
  task parallel algorithm. Now we will build up over 

to the resulting   (1 K
  ) task, an isosceles trapezoid (instead of a pyramid) with the top base of  and the bottom base of 

2h  vectors are the same of the trapezoid until reaching the N  layers. 

 

Fig. 3. Vectors space iterations within the jurisdiction of  problem parallel algorithm in a modified method of the pyramids. Example h = 2 and N = 5. 

 

In Fig. 3, illustrating the proposed modification, half-shaded vector space of iterations does not belong to the   task in a 

traditional parallel algorithm [9]. The vectors listed in the left of figure treated exclusively to the problem of 1  vectors 

indicated on the right of the task concerned solely to 1  . Now calculate them will be duplicated. In his turn, the adjacent task 

will be to duplicate the calculation of the net functions not related to a filled grid points. Values of network functions in the 

nodes, the filled completely formed   task, but it is needed for further calculations on the layers 3.5k  and 4k  , and on this 

subject received from the 1  task (shaded nodes on the left) and 1   (shaded nodes on the right). In his turn, neighboring 

problems should be referred to the values of the functions in the circled nodes: left trace passes 1  task, right trace passes 

1  task. Now, communication between tasks of a parallel algorithm is not to make at each time layer as in the conventional 

parallel algorithm [9], but not existent, as in the classic method pyramids. They are implemented using integer h layers. When

1h  , we get the usual parallel algorithm, with h N , we get of algorithm built using the traditional method of pyramids. A 

distinctive feature of the new approach is the introduction of additional consideration on the space of iterations varied parameter. 

The parameter is the height of the pyramid, changing which can be expecting to achieve a minimum duration for the calculation 

(2). 
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5. Experimental study of the modified method  

The purpose of the pilot study was to demonstrate the feasibility of accelerating the computation by the parallel algorithm, 

compiled with the help of a modified method of the pyramids. 

As the hardware base is selected a dual-processor computer (AMD Opteron 246), that has allowed excluding the mutual 

influence of computational threads running on a single core or on different cores located in a single chip. A computer running a 

modern operating system Debian 8.5, was used GFortran 4.9.2, and a library OpenMPI 1.6.5. The authors recognize that the 

organization of parallel computing on shared memory, it is customary to refer to the Open Multi-Processing standard, but in the 

future we plan to compare with the package MEEP, which is written using MPI. The choice of the programming language 

Fortran is caused to the convenience of the vector notation, the use of which will reduce the amount of cyclic structures in the 

program. So, we calculate for one temporal layer is shaped in the form of vector operations without iterating through the nodes 

in space in a loop. It can be done from common programming languages, only Matlab, but with a significant increase in the 

duration calculation. 

Parameters of numerical experiments (the number of nodes in the grid region on the space 500K  , the number of nodes in 

the grid region at the time 756000N  , the number of tasks of parallel algorithm 2, and the height h of the pyramids vary from 2 

to 200) were selected from following considerations: 

 the steps of grid region satisfy the Courant condition of stability of difference scheme (2); 

 the duration of numerical experiments is sufficient to eliminate the influence of short-term system events(tab. 1, the 

second and third columns); 

 the number of layers at a time evenly divides the height of all selected to study the pyramids (tab. 1, first column) 

and sufficient to obtain consistent estimates of the mathematical expectation of acceleration (tab. 1, last column); 

 the number of nodes in space allows you to work with pyramid maximum height (tab. 1, last line: 500200
2

 ). 

The duration calculation for a sequential program made up 3.2890 sec., according to the traditional parallel (author's 

implementation of the algorithm from [9]) 3.3085 sec., i.e. acceleration is not achieved. The use of the classical method of the 

pyramids is impossible N K ). 
Table 1. A The results of computational experiments 

the height of 

the pyramid h  

the duration of calculation without 

unfolding the cycles (sec.) 

the duration of this computation 

with unfolding the cycles (sec.) 
acceleration 

2 3.8593 2.5742 1.2776 

3 3.6640 2.4296 1.3536 

4 3.5546 2.2773 1.4442 

5 3.4804 2.2031 1.4929 

6 3.4375 2.1992 1.4955 

7 3.4257 2.1484 1.5309 

8 3.4140 2.0898 1.5738 

9 3.3867 2.0898 1.5738 

10 3.3632 2.0820 1.5797 

    

20 3.3515 2.0312 1.6192 

30 3.4023 2.0390 1.6130 

40 3.4296 2.0625 1.5946 

50 3.5039 2.0898 1.5738 

60 3.5468 2.1484 1.5309 

70 3.5976 2.1835 1.5062 

80 3.6601 2.1875 1.5035 

90 3.7226 2.1914 1.5008 

100 3.7773 2.2304 1.4746 

    

200 4.3906 2.6054 1.2623 

 

The software implementation of the modified method of the pyramids with the introduction of nested loop for the production 

of calculations within one pyramid (the step of the outer loop iterates over the layers at the same time were set equal to h ) were 

not successful (tab. 1, second column), the duration of calculations has increased significantly. The authors suggested that this 

was due to the additional looping constructs and resorted to “expand” nested loop, which wrote the new program in the Matlab 

that generates code for the main parallel program. 

The authors guess and the performance of the said acceptance was confirmed in the course of numerical experiments (tab. 1, 

the third and fourth columns). For the pyramid with a height of 20 knots grid region achieved an acceleration of 1.6 times 
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compared to the sequential implementation. The dependence of the duration of the calculation of the height of the pyramid has a 

U shaped appearance, due to the nature of the changes in the share of communication and arithmetic operations in the overall 

computation time with the growth of h . So, for a small elevation gain from the reduction of communication (in h times compared 

with a conventional parallel algorithm) obviously exceeds the loss of time to doubling of computing the grid functions in 

General for the task nodes in the grid region (Fig. 3, half shaded nodes), the number of which is small. With the linear growth of 

h , the number of total nodes grows quadratically for 20h   the amount of additional compared with a conventional parallel 

algorithm of arithmetic operations is beginning to have a decisive influence on the total duration of the calculation, which is due 

to this fact increased despite further reductions in communication costs. 

6. Conclusion 

The use of the author modifications of the classical method of differential pyramids for the solution of Maxwell's equations 

in one-dimensional case allowed for the selected example to demonstrate the effectiveness of the proposed approach. This 
suggests the success of further development of the method for the case of a larger number of processors and for 

multidimensional problems of mathematical physics. 

As the field of application of the developed technique of compiling parallel algorithms, the authors identify cases for which a 

high proportion of communication costs in the total duration of the calculations by the usual parallel algorithm. Otherwise, the 

use of the modified method of the pyramids, not only will not lead to growth acceleration by reducing these costs, but also will 

lead to his downfall because of the increase of the duration of the arithmetic operations associated with the method. 
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