- І. Подольский А.А., Калакутский Л.И. Прибор для измеремия дисперсного состава порошкообразных материалов. "Коллоидный журнал" АН СССР, т. 37, вып. 6, 1975, с. 1198.
- 2. Подольский А.А., Калакутский Л.И., Малыгин Н.А. Лабораторный диспертатор пневматического типа. "Заводская лаборатория", т. 41, 1975, № 10, с. 1227.

УДК 621.319.7.006

н.А.Малыгин

АНАЛИЗ НЕСТАЦИОНАРНОСТИ ПРИ ДВИЖЕНИИ ЗАРЯЖЕННЫХ АЭРОЗОЛЬНЫХ ЧАСТИЦ В ИМПУЛЬСНОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Движение заряженных аэрозольных частиц в электрическом поле широко используется как в промышленных процессах (электрофильтрация, электроокраска и т.п.), так и в технике измерения параметров аэрозолей. Это обусловило проведение большого числа теоретических и экспериментальных исследований [1] - [3].

В теоретических работах, как правило, рассматривается установившийся процесс движения частиц в постоянном электрическом поле без учета их инерционных свойств. Такое рассмотрение справедливо только для сравнительно мелких частиц при длительном пребывании их в относительно! однородном электрическом поле.

В последнее время появились быстродействующие измерительные приборы, в которых используется принцип движения заряженных частиц в пространственно неоднородном [4], [5] или в импульсном электрическом [6] поле. В настоящей статье приведен знализ нестационарности при движении заряженных аэрозольных частиц в электрическом поле плоского конденсатора.

На рис. I схематически изображен вертикальный плоский измерительный конденсатор, между пластинами которого под действием приложенного напряжения U создано постоянное электрическое поле напряженностью E. Заряженная аэрозольная частица, движущаяся вместе с потоком с вертикальной скоростью V, входит в конденсатор в точ-

ке \mathcal{O}_{r} на расстоянии \mathcal{H} от коллекторной пластины и под действием силы электрического поля осаждается на ней в точке 0_2 .

Уравнение движения сферической аэрозольной частицы радиусом α в направлении коллекторной пластины под действием электрического поля можно записать в виде [7]:

$$E(t)q - m\frac{dW(t)}{dt} + F_{\alpha} = 0, \qquad (1)$$

где

$$E(t) = \begin{cases} 0 & \text{npu } t = 0; \\ E & \text{npu } t > 0 \end{cases}$$
 (2)

-напряженность электрического поля в месте нахождения частицы в момент времени t (полагаем, что в момент времени t=0 частица влетает в электрическое поле конденсатора);

$$q$$
 - электрический заряд частицы; $m = \frac{4}{3} \pi \rho a^3$

- масса частицы:

ho - плотность материала частицы; W(t)- горизонтальная скорость движения частицы к коллекторной пластине;

$$Fa = -6\pi \eta a W(t) \tag{4}$$

- сила аэродинамического сопротивления, действующая на частицу, согласно закону Стока;

7 - вязкость газа.

Пусть частица приобретает электрический заряд в поле коронного разряда, тогда, согласно формуле Потенье,

$$Q = 4\pi \mathcal{E}_{o} \left(1 + 2 \frac{\mathcal{E} - 1}{\mathcal{E} + 2} \right) E_{3} \alpha^{2} f(t_{3}), \qquad (5)$$

(3)

где

$$\mathcal{E}_0 = 8,85 \cdot 10^{-12} \, \varphi/_{M} \; ;$$

Е - диэлектрическая проницаемость частицы;

Ез - напряженность поля коронного разряда;

 $f(t_3)$ - функция, значение которой зависит от времени t_3 пребывания частицы в поле коронного разряда.

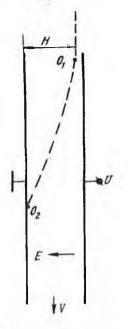


Рис.І. Схема измерительного конденса-

С учетом уравнений (2) - (5) решение равенства (1) можно запи-

$$W(t) = W_{ycm} \left[1 - \alpha \exp\left(-t/\tau\right) \right], \tag{6}$$

где

$$W_{ycm} = \frac{2\varepsilon_o \left(1 + 2\frac{\mathcal{E}-1}{\varepsilon + 2}\right) E_3 E_f(t_3) \alpha}{3\eta} \tag{7}$$

- установившаяся горизонтельная скорость движения частицы;

$$\alpha = 1 - \frac{W_0}{W_{ucm}} . \tag{8}$$

W₀ - начальная горизонтальная скорость движения частицы;

$$\tau = \frac{2\rho a^2}{g_{\gamma}} \tag{9}$$

- постоянная релаксации частицы [6].

В табл. I приведены значения au для некоторых a и ho

Таблица І

Плотность <i>p.10</i> ⁻³ , кг м³	T, MORK								
	a = 0,5	a = 1	<i>α</i> = 5	$\alpha = 10$	a = 20	a = 50			
1	3,06 · 10 -3	1,23.10	0,307	1,23	4,92	30,7			
2	6.12 - 10-3	2,46.10	0,614	2,46	9.84	61,4			
4	1,23 · 10-2	4,92.10-2	1,23	4,92	19,7	123			
8	2,46 10-2	9,84.102	2,46	9,84	39,4	246			

Определим время t_{∞} , в течение которого частица достига- ет коллекторной пластины конденсатора и осаждается на ней, из урав-

 $\int W(t)dt = H,$

которое после интегрирования с учетом выражения (6) можно записать:

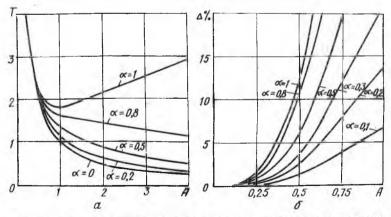
$$1 - \frac{W_{ycm}}{H} t_{oc} + \propto \frac{W_{ycm}}{H} \tau \left[1 - exp\left(-t_{oc}/\tau\right) \right] = 0.$$
 (I0)

Вводя нормированные переменные

$$T = \frac{t_{oc}}{t_H}$$
, (IIa)

$$A = \frac{a}{a_H} , \qquad (II6)$$

где


$$t_{H} = \sqrt[3]{\frac{\rho \gamma H^{2}}{2\varepsilon_{o}^{2} \left(1 + 2\frac{\varepsilon \cdot I}{\varepsilon + 2}\right)^{2} E_{3}^{2} E_{f}^{2}(t_{3})}}; \qquad (12)$$

$$a_{H} = \sqrt[3]{\frac{277^{2}H}{4\rho \mathcal{E}_{o}\left(1 + 2\frac{\mathcal{E} - 1}{\mathcal{E} + 2}\right) \mathcal{E}_{3} \mathcal{E}_{f}(t_{3})}},$$
(13)

можно получить обобщенное нормированное уравнение движения заряженной аэрозольной частицы в электрическом поле:

$$1 - AT + \propto A^2 \left[1 - exp \left(- T/A^2 \right) \right] = 0.$$
 (14)

На рис. 2,а графически показано решение уравнения (14) на ЭВМ М-222для различных значений параметра \propto . Анализ показывает, что при \propto =I (что соответствует W_o =0) зависимость Γ = F(A) имеет экстремум (минимум) в точке с координатами A_g =0,9245, T_g =1,8367 . Это означает, во-первых, что при \propto =I (какой бы размер не имела частица) нормированное время осаждения не может быть меньше T_g , во-вторых, в момент времени $\Gamma > T_g$ одновремен-

Р и с. 2. Расчетные зависимости: нормированного времени осаждения (а); погрешности Δ (б) от нормированного значения размера A аэрозольной частицы

но осаждаются частицы двух разных размеров. Применительно к конденсатору, который предназначен для исследования полидисперсного аэрозоля (см.рис.1), это означает, что на некотором начальном участке коллекторной пластины частицы будут отсутствовать, а на остальной ее части наблюдается неоднозначность в определении размера осевших частиц.

Для исключения указанной неоднозначности необходимо выбрать такие параметры конденсатора, при которых для наибольшего размера содержащихся в исследуемом аэрозоле частиц выполнялось условие $A_{max} \leqslant A_{s}$, которое с учетом выражения (13) можно записать в виде

$$a_{max} \leq 0.9245 \sqrt[3]{\frac{270^2 H}{4\rho \mathcal{E}_o \left(1+2\frac{\mathcal{E}-1}{\mathcal{E}+2}\right) \mathcal{E}_3 \mathcal{E}_f(t_3)}}$$
 (I5)

Из рис. 2,а следует также, что нестационарность при движении заряженных аэрозольных частиц тем больше, чем больше нормированный размер А частицы. Погрешность в определении времени осаждения (и связанной с ним координатой осаждения \mathcal{O}_2), обусловленную нестационарностью движения частицы, можно вычислить по формуле

$$\Delta = \frac{T - T_{\infty = 0}}{T_{\infty = 0}} 100 \%. \tag{I6}$$

На рис. 2,6 представлены графики зависимости $\Delta = \mathcal{G}(\mathcal{A})$, рассчитанные на ЭВМ с учетом уравнения (14) для различных значений (α) .

При расчете параметров конденсатора, исходя из требуемой потрешности Δ в определении времени осаждения (координаты осаждения), необходимо по графикам, приведенным на рис. 2,6, определить соответствующее значение \mathcal{A}_{Δ} . Затем выбирают такие значения \mathcal{H} и \mathcal{E} , которые удовлетворяют неравенству

$$a_{max} \leqslant A_{\Delta} \sqrt[3]{\frac{27\eta^{2}H}{4\pi\rho\epsilon_{o}\left(1+2\frac{\mathcal{E}-1}{\mathcal{E}+2}\right)E_{3}E_{f}(t_{3})}} \tag{17}$$

В табл. 2 даны значения $\frac{\mathcal{E}}{\mathcal{H}}$ и \mathcal{E}_{oc} , рассчитанные с учетом формул (I5), (I7), (I2) и (II,a) для некоторых размеров a_{mox} (\propto = I).

Полученные результаты позволяют исходя из заданной погрешносности, обусловленной нестационарностью движения крупных частиц, определить геометрические размеры, временной и электрический режимы измерительного конденсатора для тех случаев, когда действурщее на частицу отклоняющее электрическое поле можно описать выражением (2).

a max MKM		5	10	20	40	/ 80	Примечание !
$a_{max} = a_{j}$	$\frac{E}{H}$, $\frac{B}{M^2}$	3,00 · 108	3,75·10 ⁷	4,68.10	5,87-10 ⁵	7,33-10 4	$\alpha = 1$, $\gamma = 1.81 \cdot 10^{-5}$
	toc, M.C	1	:	36,0		577	$p = 4.10^3 - \frac{\kappa}{10^3}$
Δ = 10%	$\frac{E}{H}$, $\frac{B}{M^2}$	2,09.10	2,61·10 ⁶	3,26·10 ⁵	4,08-104	5,1·10 ³	8=6
	toc, M.C	<i>3,56</i>	14,5	57,0	228	912	$E_3 = 5.10^5 \frac{B}{M}$ $f(t_3) = 0.9$

Литература

- I. Грин Х. Лейн В. Аэрозоли -пыли, дымы, туманы. "Хи-мия", Л.О., 1969.
- 2. Lipscomb W.W., Rubin T.R., Sturdivant J.H., An. investigation of a method for the analysis of smokes according to partile size, J. of Appl. Phus., 18, 1974, 5.72.
- 3. Yoshikawa H.H., Electrostatic partickle size analyzer, the zer. of sci. instr., 27,1956, Nº 6, C.359.
- 4. Калакутский Л.И., Малыгин Н.Е., Подольский А.А., Сорокин В.В. Полуавтоматическая установка для анализа дисперсного состава поромков. Сб. трудов внийнеруд, Тольятти, 1974.
- 5. Подольский А.А., Калакутский Л.И. При~бор для измерения порошкообразных материалов. "Коллоидный журнал" АН СССР, т. 37, вып. 6, 1975, с. 1198.
- 6. Малыгин н.А., Подольский А.А. Прибор для измерения объемной концентрации взвешенных частиц. Тезисы докладов семинара "Методы и средства контроля загрязняющих атмосферу промышленных выбросов". Киев, Общество знаний Украинской СССР, 1976.
 - 7. Ф у к с Н.А. Механика аэрозолей. М., изд. АН СССР, 1961.