УДК 517.987

О ТЕОРЕМЕ ФУБИНИ ДЛЯ НЕАДДИТИВНЫХ ФУНКЦИЙ **МНОЖЕСТВА**

© Хорохорина Я.А., Свистула М.Г.

Самарский наииональный исследовательский университет имени академика С.П. Королева, г. Самара, Российская Федерация

e-mail: horohorina-yana@mail.ru

В работе получены аналоги теоремы Фубини, где в качестве интегралов берутся интегралы Шоке по монотонным функциям множества.

Пусть Σ – некоторая σ – алгебра подмножеств множества X. Функция множества μ : $\Sigma \to [0;+\infty)$ называется монотонной, если $\mu(\emptyset) = 0$ и $\mu(A) < \mu(B)$, лишь только A, B \in Σ и A \subset B.

Пусть функция $f: X \to [a,b]$ является Σ – измеримой. Под $\int_X f \, d\mu$ здесь понимаем интеграл Шоке, который будет равен $\int_X f d\mu = a \mu(X) + \int_a^b \mu(\{f \ge t\}) dt$.

Пусть f_1 и $f_2: X \to \mathbb{R}$. Будем говорить, что функции f_1 и f_2 сравнимы, если выполняется хотя бы одно из соотношений $f_1 \le f_2$ или $f_2 \le f_1$. Множества E и F, содержащиеся в X, называем сравнимыми, если их характеристические функции сравнимы.

Говорим, что μ_1 , μ_2 : $\Sigma \to [0;+\infty)$ сравнимы, если выполняется хотя бы одно из соотношений $\mu_1 \le \mu_2$ или $\mu_2 \le \mu_1$.

Доказана следующая теорема:

 Π усть X, Y – некоторые непустые множества;

 $\mu_y: 2^X \to [0; +\infty)$, где $y \in Y$, -семейство монотонных функций множества, которые попарно сравнимы, и supremum $\mu_{\nu}(X) \neq \infty$

 (2^X) означает множество всех подмножеств X). Функция множества $v: 2^Y \to [0; +\infty)$ монотонная.

Пусть функция f(x,y): $X \times Y \rightarrow [a,b]$ имеет попарно сравнимые у-сечения.

Полагаем выполненным условие согласования: для $\forall y_1 y_2 \in Y$ имеет место хотя бы одно из условий: 1) $\mu_{y1} \le \mu_{y2} \ u \ f(., y_1) \le f(., y_2) \ u \ nu \ 2) \ \mu_{y2} \le \mu_{y1} \ u \ f(., y_2) \le f(., y_1).$

Обозначим $\mathscr{E}=\{E=\{f\geq\alpha\},\ \alpha\in\mathbb{R}.\}$.

Пусть $\varphi: 2^Z \to [0; +\infty)$ – любая монотонная функция множества, для которой $\varphi(E) = \int_{Y} \mu_{y}(E_{y}) dv, E \in \mathscr{E}.$ $To \varepsilon \partial a \int_{X \times Y} f(x, y) d\varphi = \int_{Y} (\int_{X} f(x, y) d\mu_{y}) dv.$

Заметим, что если в теореме дополнительно потребовать $\mu_{\nu}(X) = C \ge 0$ для всех $y \in Y$, то она остается верной и для ограниченных f со значениями в \mathbb{R} , не обязательно неотрицательных.

Библиографический список

- 1. Ghirardato P. On Independence for Non-Additive Measures, with a Fubini Theorem, Journal of economic theory. 1997.
- 2. Chateauneuf A., Lefort J.-Ph. Some Fubini Theorems on product σ -algebras for nonadditive measures // International Journal of Approximate Reasoning. 2008.
 - 3. Wang Z., Klir G. Generalized Measure Theory. Springer, 2009.