как упрочняющий метод.

УПРОЧНЕНИЕ МЕТАЛЛОВ ДРОБЕУДАРНОЙ ОБРАБОТКОЙ А.П.Мороз

Научный руководитель — доцент Н.П.Колесников Московский государственный авиационный технологический университет

Применялась дробеструйная установка, модернизированная для упрочнения деталей разнообразной номенклатури. Установка снабжена устройством, позволяющим обеспечить равномерную обработку шариками как плоских, так и осесимметричных деталей. Обработке подвергались детали из алкминиевых, титановых сплавов, стали ЗОХІбл и др. Определены оптимальные режимы обработки деталей различной конфигурации. Модернизированная установка использована для проведения лабораторных работ по курсу "Технология производства авиационных двигателей".

СЕКЦИЯ РАЛИОТЕХНИКИ

ОПЛИМЗАЦИЯ РЕЖИМА РАБОТЫ ПРОГРАММИРУЕМОГО ПРЕОБРАЗОВАТЕЛЯ ФОРМЫ СИГНАЛОВ

В.В.Посадов

Научный руководитель - доцент В.В.Юдин Рыбинская государственная авиационная технологическая академия

Предложено решение задачи определением формы входного напряжения, обеспечивающего формирование наибольшего числа различных сигналов с минимальными искажениями. В качестве меры точности использовался минимум среднеквадратического отклонения (СКО), а в качестве входной функции, отвечающей требованиям универсальности и точности, принято постоянное напряжение, представляющее собой после инвертирования прямоугольные импульсы. Схема состоит из генератора прямоугольных импульсов (ГПИ), регулируемого элемента дискретного действия (РЭДД), реверсивного выпрямителя (РВ), фильтра (Ф), преобразователя кода уровня (ПКУ) и преобразователя кода уровня (ПКУ) и преобразователя кода знаков (ПКЗ). ГПИ формирует прямоугольные импульсы, поступающие на РЭДД и преобразователи кодов ПКУ и ПКЗ. Импульсы поступающие на РЭДД, осуществляют дискретизацию периода преобразования на интервалы, число которых определяет точностные и массогабаритные показатели схемы. ПКУ и ПКЗ выполняют преобразование кода уровня и кода знака соответственно, тем самым определяя функциональные возможности схемы. Таким образом, РЭДД программно изменяет форму сигнала, а РВ — его знак. Фильтр Ф отфильтровывает высокочастотные помехи.

Данная схема улучшает точность преобразования и снижает схемные затраты.

МЕТОДИКА СИНТЕЗА ВЫРАВНИВАЮЩИХ, СОГЛАСУЮЩИХ И СИММЕТРИРУЮЩИХ УСТРОЙСТВ НА СОСРЕДОТОЧЕННЫХ ЭЛЕМЕНТАХ АВИАЦИОННЫХ АНТЕНН

Иванов С.В.

Санкт-Петербургский государственный электротехнический университет

Суть метода заключается в выделении элементарных фазосдвигающих звеньев (ЭФЗ), одновременно являющихся и элементарными согласующими звеньями (ЭСЗ).

Разработаны программы синтеза и анализа устройств сопряжения антени с кабелем питания и фазовращателей для их включения в фазированную антенную решетку. Проведено макетирование антени метровых и дециметровых диапазонов. Результаты макетирования на реальных элементах и расчетов на ЭВМ ІВМ РС по разработанным программам синтеза практически совпадают. Программы пригодны для синтеза активных и пассивных, проходных и отражательных фазовращателей, усилителей, фильтров, симметрирующих устройств и т.д..