Министерство высшего и среднего специального образования $P \ C \ \Phi \ C \ P$

КУЙБЫШЕВСКИЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ АВИАЦИОННЫЙ ИНСТИТУТ ИМ. С.П.КОРОЛЕВА

АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ РЫЧАЖНОГО МЕХАНИЗМА ПАССИ САМОЛЕТА С ИСПОЛЬЗОВАНИЕМ ЭВМ

Методические указания по курсовому проектированию

Составители: В.М.Я стребов, Л.А. Повошкова

Излагается метод аналитического исследования рачажного механизма шасси самолета с использованием ЭВМ. Разработаны программы расчетов, позволяющие существенно сократить время на выполнение курсового проекта. Используются элементы оптимизации по углу давления.

Указания рекомендованы студентам, выполняющим курсовой проект по ТММ.

Рецеизенты: Л.В. Мегедь, Ю.А. Еремин

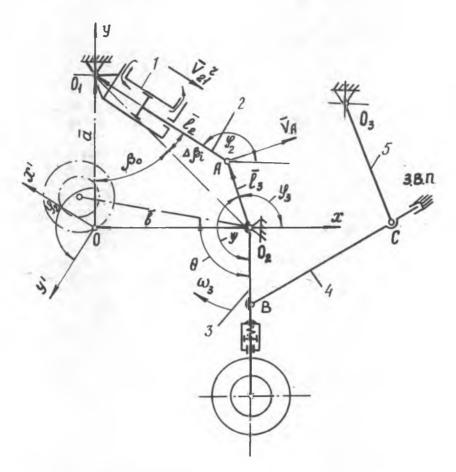
Утверждены редакционно-издательским советом института 12.12.81 г.

ПРИМЕНЕНИЕ РЫЧАЖНЫХ МЕХАНИЗМОВ В АВИАЦИОННОЙ ТЕХНИКЕ

В авиационной технике широко применяются рычажные механизмы с ведущим гидроцилиндром. К ним относятся механизмы выпуска и уборки шасси, управления рудями и закрылками.

Шасси-это система опор самолета, служащая для передвижения по аэродрому, для пробега при взлете и посадке, смягчения удара при приземлении, для управления на земле и торможения. После втерой мировой войны шасси выполняется трехопорным, состоящим из носовой опоры, расположенной в носовой части фозеляжа, и двух главных опор. После взлета самолета для уменьшения аэродинамического сопротивления шасси убирается в фозеляж и крыло, У тяжелых самолетов шасси имеет тележку с несколькими (до 30) колесами. Каждая опора или нога шасси (рис. I) состоит из амортизационной стойки 3 с цилиндром, в котором ходит шток с поршнем амортизатора, подкосов 4 и 5 — стержней, являющихся дополнительной опорой стойки и гидроцилиндра-подъсыника, имеющего цилиндр I и шток 2. Имеются также замки выпущенного положения (3.В.П) и убранного положения (3.У.П.).

Гидронасос шестеренчатого типа постоянной производительности гонит жидкость в полость цилиндра I, заставляя поршень со штоком 2 равномерно перемещаться относительно цилиндра с постоянной скоростью V_{ij} , определяемой по формуле


$$V_{2i}^{z} = const = \frac{H}{t_{y\delta}}, \tag{I}$$

где

H - ход штока с поршнем;

tus - время уборки шасси (от 5 до 10 с).

Исследование механизма шасси можно проводить как графическим, так и более точным, но громоздким аналитическим методом. Применение ЭВМ позволяет существенно сократить расчетное время, что делает последний метод наиболее перспективным.

Р и с. I. Схема шасси

СИНТЕЗ МЕХАНИЗМА ШАССИ С УЧЕТОМ УГЛОВ ДАВЛЕНИЯ

Исходные данные и пояснения

В проекте заданы координаты шарниров \mathcal{O}_1 , \mathcal{O}_2 и \mathcal{O}_3 , так как они определяются конструкцией самолета и местом расположе-

ния силовых несущих элементов (координаты Q и B). Заданы также: длина кривошипа ℓ_3 = ℓ_{QA} , угол поворота ноги 3 (амортизационной стойки) B и время уборки шасси ℓ_{QA} . Исходя из условия получения наименьших углов давления A , определим угол Y установки кривошипа ℓ_{QA} относительно ноги. Для этого из точки O_ℓ проведем касательную к траектории точки (рис.2), и из точки O_ℓ в точку касания A восстановим пер-

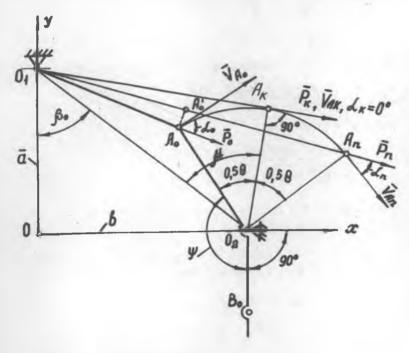


Рис. 2. Расчетная схема

пендикуляр O_2A_n к линии O_1A_n . Отложим по обе стороны от O_2A_n углы, равные 0.5 \mathcal{S} , в результате получим два крайних положения кривошипа – O_2A_0 и O_2A_n , соответствующие выпущенному и убранному положению шасси. Угол $A_0O_2B_0$ и есть искомый угол установки Ψ , обеспечивающий минимальные и примерно равные значения углов давления Ψ между направле-

ниями усилия вдоль штока и скорости в точке A в крайних положениях (углы d_0 и d_2).

Аналитическое определение угла установки

Из треугольника O_1OO_2 (см. рис.2):

$$tg\beta_0 = \frac{b}{a}$$
; (2)

$$\ell_{0,0_2} = \sqrt{a^2 + b^2}$$
 (3)

Из прямоугольного треугольника $O_1O_2A_K$ (см. рис.2):

$$\cos \mathcal{M} = \frac{Q_2 A_R}{Q_1 Q_2} = \frac{\ell_3}{\ell_0 Q_2}. \tag{4}$$

Тогда угол установки

$$Y = 90^{\circ} + (90^{\circ} - \beta_{0}) + \mu - 0.50 =$$

$$= 180^{\circ} + \mu - (\beta_{0} + 0.50).$$
 (5)

Аналитическое определение хода поршня Н

Если из точки O_1 сделать на линии O_1 A_n засечку радиу-

$$H = \ell_{O_1 A_D} - \ell_{O_2 A_0}. \tag{6}$$

Из треугольника $\mathcal{O}_1 A_0 \mathcal{O}_2$ по теореме косинусов

$$\ell_{20} : \ell_{0,A_0} : \sqrt{\ell_3^2 + \ell_{0,0_2}^2 - 2\ell_3 \ell_{0,0_2} \cos(\mu - 0.5\theta)}. \tag{7}$$

Из треугольника $O_1A_nO_2$

$$\ell_{2n} = \ell_{0,A_n} = \sqrt{\ell_3^2 + \ell_{0,0}^2 - 2\ell_3\ell_{0,0} \cos(\mu + 0.58)}. \tag{8}$$

Найденное по формуле (6) значение H надо разделить на R равных частей (в проекте R=6), получим приращение длины вектора

 ℓ_{e} (переменное расстояние между точками ℓ_{e} и ℓ_{e} штока с цилиндром при изменении времени на ℓ_{e} ℓ_{e} с). Тогда для любого ℓ_{e} го положения штока относительно цилиндра длина

$$\ell_{2i} = \ell_{eo} + i \Delta t \ V_{2i}^{T} = \ell_{eo} + i \frac{H}{R}$$
 (9)

АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ. АНАЛОГИ УГЛОВЫХ СКОРОСТЕЙ И УСКОРЕНИЙ

Функция положения и аналоги

Функция положения для ноги шасси (см. рис. І)

$$\mathcal{Y}_3 = \mathcal{Y}(\ell_a). \tag{10}$$

Это зависимость угла f_3 поворота ноги 3 од положения штока в цилиндре ℓ_2 .

Угловые скорость и ускорение ноги определяются через аналоги угловой скорости и ускорения по формулам:

$$\omega_3 = \frac{d \, \mathcal{Q}_3}{d \, t} = \frac{d \, \mathcal{Q}_3}{d \, \ell_2} \quad \frac{d \, \ell_2}{a \, t} = V_{21}^* (\omega_3) \ell_2 \; ; \qquad (II)$$

$$\mathcal{E}_3 = \frac{d\omega_3}{dt} = \frac{d\omega_3}{d\ell_2} \frac{d\ell_2}{dt} = (V_{21}^2)^2 (\mathcal{E}_3)_{\ell_2}. \quad (12)$$

Аналогично для угловой скорости и ускорения звена 2:

$$\omega_{2} = \frac{d \, \Psi_{2}}{d \, t} = V_{21}^{\, t} (\omega_{2}) \ell_{2} \, ; \tag{13}$$

$$\mathcal{E}_{z} : \frac{d\omega_{z}}{dt} = (V_{z_{1}}^{z})(\mathcal{E}_{z})\ell_{z}. \tag{14}$$

В этих формулах для любого / -го звена аналоги равны соответ-

$$(\omega_j)e_z = \frac{d\Psi_j}{d\ell_z}; \quad (\mathcal{E}_j)e_z = \frac{d^2\ell^n}{\omega^i\ell_z^n}.$$
 (15)

Вывод формул для аналогов

Исходя из замкнутости векторного четырекстороннего контура

00,A02 (cm. puc.I),

$$\bar{\ell}_3 + \bar{\ell}_2 = \bar{\delta} + \bar{\alpha} . \tag{16}$$

В проекциях на оси координат Х и У

$$ZX: l_3 \cos \varphi_3 + l_2 \cos \varphi_2 = b \cos 180^\circ = -b;$$

$$l_3 \sin \varphi_3 + l_2 \sin \varphi_2 = a.$$
(17)

Дифференцируя уравнение (I7) по ℓ_2 , получим

$$-l_3 \frac{d\varphi_3}{dl_2} \sin \varphi_3 - l_2 \frac{d\varphi_2}{dl_2} \sin \varphi_2 + \cos \varphi_2 = 0; 1$$

$$l_3 \frac{d\varphi_3}{dl_2} \cos \varphi_3 + l_2 \frac{d\varphi_2}{dl_2} \cos \varphi_2 + \sin \varphi_2 = 0.$$
(I8)

Так как все слагаемые имеют углы, то для упрощения выражения (18) вычтем φ_2 , что равносильно повороту осей координат на угол φ_2 (система координат $\chi' \mathcal{O} \mathcal{G}'$).

Тогда получим

$$- \ell_3 \frac{d\Psi_3}{d\ell_2} \sin(\Psi_3 - \Psi_2) + 1 = 0;$$

$$\ell_3 \frac{d\Psi_3}{d\ell_2} \cos(\Psi_3 - \Psi_2) + \ell_2 \frac{d\Psi_2}{d\ell_2} = 0.$$
(19)

Отсюда аналоги угловых скоростей звеньев:

$$\frac{d\Psi_1}{d\ell_2} = (\omega_3)_{\ell_2} = \frac{1}{\ell_3 \sin(\Psi_3 - \Psi_2)}; \qquad (20)$$

$$\frac{d \mathcal{L}_2}{d \mathcal{L}_2} = (\omega_2) \ell_2 = -\frac{\ell_3(\omega_3) \ell_2 \cos(\mathcal{L}_3 - \mathcal{L}_2)}{\ell_2}. \tag{2I}$$

Угловые скорости определяются из формул (II) и (I3). Аля определения аналогов угловых ускорений продифференцируем ℓ_2 формулы (I8):

$$- l_{3} \left(\frac{d \varphi_{3}}{d \ell_{2}} \right)^{2} Cos \ell_{3} - l_{3} \frac{d^{2} \varphi_{3}}{d \ell_{2}^{2}} sin \varphi_{3} - l_{2} \left(\frac{d \varphi_{2}}{d \ell_{1}} \right) cos \varphi_{2} - l_{2} \frac{d^{2} \varphi_{2}}{d \ell_{2}} sin \varphi_{2} - \frac{d \varphi_{2}}{d \ell_{1}} sin \varphi_{2} - \frac{d \varphi_{2}}{d \ell_{2}} sin \varphi_{2} = 0;$$

по

$$-l_{3}\left(\frac{d \, \varphi_{3}}{d \, \ell_{2}}\right)^{2} \sin \varphi_{3} + l_{3} \frac{d^{2} \varphi_{3}}{d \, \ell_{2}^{2}} \cos \varphi_{3} + \frac{d \, \varphi_{2}}{d \, \ell_{2}} \cos \varphi_{2} - l_{2}\left(\frac{d \, \varphi_{2}}{d \, \ell_{2}}\right)^{2} \sin \varphi_{2} + l_{2} \frac{d^{2} \varphi_{2}}{d \, \ell_{2}^{2}} \cos \varphi_{2} + \frac{d \, \varphi_{2}}{d \, \ell_{2}^{2}} \cos \varphi_{2}^{2} = 0$$

 $B_{\rm MUNTAR}$ $m{q_2}$ и с учетом (I5), получим

$$-l_{5}(\omega_{5})_{\ell_{2}}^{2}\cos(\varphi_{3}-\varphi_{2})-l_{5}(\varepsilon_{5})_{\ell_{2}}\sin(\varphi_{3}-\varphi_{2})-l_{2}(\omega_{2})_{\ell_{2}}^{2}=0;$$

$$-l_{3}(\omega_{5})_{\ell_{2}}^{2}\sin(\varphi_{5}-\varphi_{6})+l_{3}(\varepsilon_{5})_{\ell_{2}}\cos(\varphi_{3}-\varphi_{6})+2(\omega_{2})_{\ell_{2}}+l_{2}(\ell_{2})_{\ell_{2}}=0$$

$$(23)$$

Отсюда аналоги угловых ускорений имеют вид:

$$(E_s)_{E_s^2} = \frac{\ell_2(\omega_2)_{e_2}^2 + \ell_3(\omega_3)_{e_2}^2 \cos(\varphi_3 - \varphi_2)}{\ell_3 \sin(\varphi_3 - \varphi_2)}, \quad (24)$$

$$(\mathcal{E}_{2})_{\ell_{2}} = \frac{\ell_{3}(\omega_{3})_{\ell_{2}}^{2} \sin(4_{3} - 4_{2}) - \ell_{3}(\mathcal{E}_{3})_{\ell_{2}} \cos(4_{3} - 4_{2}) - 2(\omega_{2})_{\ell_{2}}}{\ell_{2}} \cdot (25)$$

Угловые ускорения рассчитываются из формул (12) и (14).

Определение углов 42 и 44

Угол 42 определяется по формуле (см. рис. I)

$$\varphi_z = go^\circ + \beta \circ + \Delta \beta , \qquad (26)$$

где β о определяется по (2), а $\Delta \beta i$ – из треугольника $\mathcal{O}_{\epsilon} A$ по теореме косинусов:

 $\cos \Delta \beta = \frac{\ell_z^2 + \ell_{0.0z}^2 - \ell_3^2}{2\ell_z \ell_{0.0z}}.$ (27)

Угол 43 рассчитывают из формулы (17):

$$Sin \, \varphi_3 = \frac{a - \ell_2 \sin \varphi_2}{\ell_3} \tag{28}$$

АЛГОРИТМ КИНЕМАТИЧЕСКОГО ИССЛЕЛОВАНИЯ

Исходные данные: a, b, loro, , ls, trus, Bo, O.

I. По формуле (4) определяем угол M .

2. По формуле (5) рассчитываем угол установки Ψ

- 3. По формулам (7) и (6) находим leo и len , по (6)-ход штока в цилиндре Н
- 4. По формуле (9) выбираем число делений 12 (в проекте 12=6) и находим длину вектора $\ell_{2\ell}$ для любого ℓ -го положения.

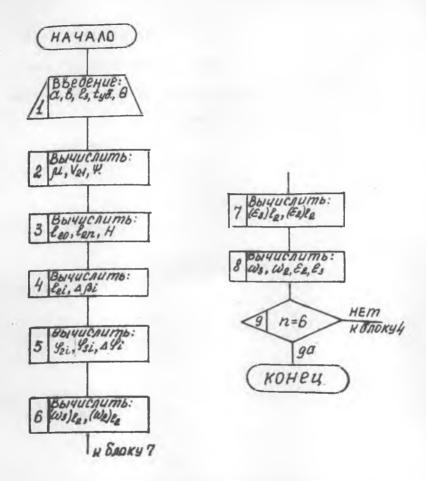
5. По формуле (26) находим *В* В:

6. По формулам (26) и (28) определяем \mathcal{L}_{i} и \mathcal{L}_{3i} .

7. Определяем разность углов: 4 4: = 43: -49:

8. По формулам (20) и (21) находим аналоги угловых скоростей

 $(\omega_3)_{\ell_2}$ и $(\omega_2)_{\ell_3}$. 9. По формулам (24) и (25) определяем аналоги угловых ускорений $(\mathcal{E}_s)_{\ell_2}$ и $(\mathcal{E}_e)_{\ell_2}$. 10. По формуле (I) определяем скорость штока в цилиндре.


- II. По формулам (II) (I4) рассчитываем истинные угловые скорости и ускорения.
- 12. Сравниваем результаты с данными графических метолов исслепований.

На рис. 3 представлена блок-схема аналитического исследования механизма шасси. Программа расчета по данной блок-схеме для машины "Проминь-2" дана в приложении I, в приложении 2 приведена программа на языке "Фортран".

Заключение

Представленная в данной работе методика аналитического исследования рычажных механизмов с помощью ЭВМ позволяет проводить исследования с минимальной затратой времени и с элементами оптимизации. Π ри этом определяется угол установки arphi , обеспечивающий наимечьшие значения углов давления 🗸 👚 в крайних положениях шасси.

Результаты расчетов могут быть использованы и для определения оптимального значения времени уборки шасси. Уменьшение времени уборки шасси позволяет снизить расход горючего на взлете. Однако

Р и с. 3. Алгоритм и блок-схема аналитического исследования

при этом растут динамические перегрузки и усилия на шток и поршень. Поэтому для оптимизации выбора времени усорки шасси целесообразно, используя график зависимости аналога углового ускорения ноги, определяющего величину момента сил инерции от положения штока, найти положение с наименьшим значением $(\mathcal{E}_3)_{\ell_2}$. Затем для ряда значений \mathcal{E}_3 и \mathcal{V}_{21} построить график $\mathcal{E}_3 = \mathcal{E}_3 + \mathcal{E}_3 + \mathcal{E}_3$ и выбрать то значение времени уборки, которое не дает превышения \mathcal{E}_3 над допустимым.

Литература

- I. Артоболевский И.И. Теория механизмов и машин. м.: Наука, 1975.
- 2. b е л о к о н с в Н.М. Механика машин. Расчеты с применением ЭЦВМ.-Киев: Вища школа, 1978.
- 3. Малиев Ю.И. Программирование для малых ЭВМ.-Куйбышев: КуАИ, 1973.

"НИМОЧП" ИНИШАМ КІД АММАЧТОЧІ.

Исходные данные располагаются в следующих ячейках

OI	02	03	04	05	06	07
L0,02	<i>l</i> ₃	8	tys	Bo	n	В

Программа

№ коман	ды Символ операции	Адрес	Пояснение
I	2	3	4
00	Чт	02	Чтение вз
10	Дел	OI	£3/£0,02
02	arccos		auccos l3/l0,02
03	Зп	08	№ записать в яч.08
04	Чт	03	θ
05	Дел	87	1/28
06	Сл	05	(Bo + 0,5 8)
07	3п	09	
08	Чт	18	\mathcal{F}
09	Сл	08	TI+ JU
10	Выч I	09	(T+N)-(Bo+0,58)
II	Умн	94	Перевод в градусы
12	Зп	IO	Запись У в яч. 10
13	Oct	OI	Печать У
14	$ \mathbf{q_{T}}$	02	ℓ_3
Ιō	Умн	02	$(\ell_3)^2$
16	Зп	II	
17	Чт	OI	$\left \begin{array}{c} \mathcal{L}_{Q,Q_2} \\ \left(\begin{array}{c} \mathcal{L}_{Q,Q_2} \end{array} \right)^2 \end{array} \right $
18	I У _{МН}	OI	(la,oz)

19 3π 12 20 4π 11 21	I	2	3	4
20	ĪΩ	2-	10	
2I	_			10 12 10 - 12
22 3π 13 6 24				123/ + (20,0e)
23				
24				<i>a</i>
25				
26				
28 ymh		1	00	
28			ОТ	EOS (M - 8/2)
29				
30				
31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 33 47 33 34 34 36 37 38 36 36 36 37 37 38 39 39 39 40 39 39 40 39 41 42 31 41 42 31 43 41 44 44 45 47 47 48 46 0ct 47 47 48 48 49 31 34 34 34 34 34 34 34 34 34 34 34 34 34				0 - 1/02 02 000
32 3π 14 3anuch B sq. 14 - ℓ20 33 4		BHU 2	13	C20 = VC3 + C0,02 - 2C3C0,02 COS(M - Q,50)
33		ν	T.4	2 74 4
34 Дел 87 0,5 6 м + 2,5 6 35 соѕ соѕ м + 2,5 6 36 соѕ соѕ м + 2,5 6 37 Умн 01 38 Умн 02 39 Умн 87 40 Выч 2 13 41 Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г				
35		1		
36				0,50 N = 0.58
37			00	
38			ОТ	COS[M+Q,56]
39 40 87 40 81 41 41 42 3п 15 3aпись в яч. 15 -l ₂ n 43 44 8ыч I 14 45 3п 16 3aпись в яч. 16 - Н 46 0ст 01 18 47 47 47 48 Дел 49 3п 34 3апись в яч. 34 - V ₂ 1 50 47 48 49 30 60 60 60 60 60 60 60 60 60 60 60 60 60				
40 41 41 42 3n 15 3anucb b sq. 15 -len 43 44 Buy I 14 Len-leo = H 45 3n 16 3anucb b sq. 16 - H 16 46 0ct 01 Revate H 47 47 16 H 48 Aen 04 H/tys = Ver 14 3anucb b sq. 34 - Ver 15 3anucb b sq. 34 - Ver 16 00				
41 42 3п 15 3апись в яч. 15 -len 43 44 44 45 3п 16 3апись в яч. 16 - н 45 3п 16 3апись в яч. 16 - н 46 0ст 01 Печать н 47 47 48 Дел 49 3п 34 3апись в яч. 34 - уг 50 47 00				
43		DHU &	13	0 1/22 02 00 0 000
43		3-	16	21 = VE3+LAO2-EL3LO,O2 COS(M+4,50)
44 Выч I I4 Сгл-Сго = Н 45 Зп I6 Запись в яч. I6 - Н 46 Ост ОІ Печать Н 47 Чт I6 Н 48 Дел О4 Н/туб = V2 50 Чт ОО				
45 Зп I6 Запись в яч. I6 - Н 46 Ост ОІ Печать Н 47 Чт I6 Н 48 Дел О4 Н/±уб = V ₂ , 49 Зп З4 Запись в яч. З4 - V ₂ , 50 Чт ОО				
46 Ост ОІ Печать Н 47 Чт І6 Н 48 Дел О4 Н/±уб = V _z , 2 49 Зп З4 Запись в яч. 34 – V _z , 3 50 Чт ОО				
47 Чт I6 Н 48 Дел О4 Н/±уб = V _z , 2 49 Зп З4 Запись в яч. 34 - V _z , 30				
48 Дел 04 H/tys=V ₂ , 49 Зп 34 Запись в яч. 34 - V ₂ , 50 Чт 00				
49 3п 34 Запись в яч. 34 - √2, 50 Чт 00	_			
50 Y _T 00				397401 P 777 34 - 1/2
				Calines B Nq. 04 - V21
31 1 3# 1 20 1	5I	3п	20	
52 Y _T 20 ¿				i
53		_		iH/n

-6 I	2	3	4
54	Дел	06	
55	Сл	14	
56	3п	17	626 = 620 + 6 H
57	Oct	OI	Revers Lat
58	Чт	17	Lei
59	Умн	17	10-12
60	Сл	12	$\left(\left(\ell_{2L}\right)^{2}+\left(\ell_{0,0_{2}}\right)^{2}$
6I	Burg I	M	
62	Дел	87	(lei)2+(laa)2-la
63	Дел	17	1022/ 120,02/-23
64	Дел	OI	2 2
65	grecos		SBL = arccos \(\frac{\langle_{2i} + \langle_{0.02} - \langle_{2}}{2\langle_{2i} \langle_{0.02}}\)
66	3π	18	AB: 8 94.18 262: 20.02
67	Чт	81	/
68	Дел	87	1/2 + Bo + OB = 42:
69	Сл	05	
70	Сл	18	
7I	3п	19	Запись в яч. 19 - 9
72	Y _T	19	
73	Умн	94	Перевод в градусы
74	Oct	OI	Печать Чес
75	Y _T	19	Yac
76	cos		CO342:
77	Умн	17	le cos Yei
78	Bury 2	07	B- L2 COS 42L
79	Дел	02	
80	arecos		Yel = arccos B-lesin Yei
81	3п	21	Запись в яч.21 - Узс
82	Y _T	21	Перевод в градусы
83	У _{МН}	94	repeach a reputy our
84	Oct	OI	Печать Узс
85	Y _T	21	436
86	Burg I	19	431-421 = A41
87	3п	22	Запись в яч. 22 - 4 4.
88	y _T	22	A 9i

I	2	3	4
89	sin		sin of
90	3п	25	Запись в яч. 25 - \$сп в 4.
91	y _{MH}	02	lasin ati
92	3п	23	Запись в яч. 23 - essin ave
93	Y _T	86	
94	Дел	23	1/23 sin sq:
95	3п	23	Запись в яч. 23 - (wa)le
96	Oct	OI	Nevara (Walle
97	Y _T	22	14:
98	tos		COSOGE
99	3п	26	Запись в яч. 26 - созаче
100	Умн	23	
IOI	Умн	02	$(\omega_2)_{\ell_2} = \frac{\ell_3(\omega_3)_{\ell_2} \cos(4_3 - 4_2)}{\ell_2}$
102	Дел	17	C2
103	Зп	24	Значение $(\omega_2)\ell_2$ -брать с обратным знаком
104	OCT	OI	Πεчать (ω2)02
105	Y _T	23	(W3) Es
106	Умн	23	(ω3) ε ₂ ((ω3)ε ₂) ²
107	Умн	02	
108	Умн	26	((W3)22)2 23 (COSA4i)
109	Зп	27	
110	Чт	24	- ((w2)e2)2+ ((w3)e2)23cos(441)
III	Умн	24	
II2	Burg 2	27	-
113	3п	28	
114	Чm	25	sin (A4)es
115	Умн	02	
116	3п	29	
II7	Чт	28	$(E_3)e_2 = \frac{((\omega_3)e_4)^2 e_3 cos(ov_1) - ((\omega_3)e_4)^2}{sin_1(ov_1)e_3}$
II8	Дел	29	81/6/842/63
II9	3п	30	
120	Oct -	OI	Neuarb (Ea)
I2I	Y _T	30	(8)22
I22	J YMH	02	23(E3)E2 COS(43-40)

I	2	3	4
123	Умн	26	
124	3п	31	
125	y _T	24	(Wa) e.
126	Умн	87	$(\omega_2)_{\mathcal{E}_2}$ $(\omega_2)_{\mathcal{E}_2}$
127	Сл	31	62
128	Зп	32	2/Wol + 82/801, cos/42-42)
129	Y _T	23	$2(\omega_2)_{\ell_2} + \ell_3(\epsilon_3)_{\ell_2} \cos(\varphi_3 - \varphi_2)$ $((\omega_3)_{\ell_2})^2$
130	Умн	23	11-3/22/
131	Умн	02	$(\ell_3(\omega_3)_{\ell_2}^2 \sin(\varphi_3 - \varphi_2) - \ell_3(\ell_3)\ell_2 \cos(\varphi_3 - \varphi_2) + 2(\omega_3)\ell_2)^{\ell_2}$
132	Умн	25	+ 2 (W3)E2) 1 E2
I33	Выч І	32	
I34	Дел	17	
I35	3п	33	Запись в яч. 33 - (E2)e,
I36	Oct	OI	Печать (Ег)г.
137	y _T	34	
138	Умн	23	$\omega_3 = V_{2i}^2 (\omega_3)_{\ell_2}$
139	Oct	OI	Печать ω_3
I40'	Чт	34	
141	Умн	24	$\omega_2 = V_{21}^{\mathcal{I}}(\omega_2)_{\ell_2}$
142	Ост	OI	Печать ω_2
143	y _T	34	$(V_{z_i}^{z_i})^2$
I44	Умн	34	
145	3п	3 6	Запись в яч. 36 - (V21)2
146	Умн	30	(V.)2/F-10 - F-
147	Ост	OI	$(V_{2i}^{\pm})^2 (\mathcal{E}_3/\mathcal{E}_2 = \mathcal{E}_3)$ ilevato \mathcal{E}_3
148	$q_{\mathbf{T}}$	3 6	
149	Умн	33	(V2) E2/E2 = E2
I50	Ост	10	lleyatb €2
151	Чт	20	i
152	Сл	86	L+1
153	3п	20	Запись (4+ I) в яч.20
154	Выч І	06	Проверка окончания счета
I55	YII I	52	•
I56	У П 2	52	.,
157	Oct		17

ФОРТРАН - ПРОГРАЗМА

Позиции

```
5 16 7
                                                     72 173
    PROGRAM SHASE
   REAL A.B. Q.T. M
    PIMENSION AW3(7), AW2(7), AE2(7), AE3 (7),
  * W3(7), W2(7), E3(7), E2(7)
   READ ( ,1) A, B, L3,Q,T
FORMAT (5(F7,2))
   1/= 0
    L12 = SQRT (A = 2 + B = 2)
    AM = L3/L12
    M = ARCCOS (AM)
    C = B/A
    BO = ARCTG (C)
    F = 3.14 + M - (80 + Q/2)
    AR = M - Q /2
    L20 = SQRT (L3 = 2 + L12 = 2 - 2 = L3 = L12 = COS(AR))
    AR1 = M = Q/2
    L2N = SQRT (L3 * + 2 + L12 * + 2 - 2 * L3 * L12 * cos(AR1))
    H = L2N - L20
    V21 = H/T
    DO 10 J= 1.7
    L2(J) = L20 + N* H/6
    B(J) = (L2(J) **2+L12**2-L3**2)/(2*L2(J)*L12)
    DET B(J) = ARCCOS (B(J))
```

```
F2(J) = 3.14/2 + B Ø + DETB(J)
     AK = (A - L2(7) * SIN(F2(7)))/ 43
    F3(J) = ARCSIN(AK)
    DF(7) = F3(7) - F2(7)
    AW3(3) = 1/L3 * SIN(DF(3))
     AW2(7) = - (L3 * AW3(7) * COS(DE(7))/L2(7))
     AE3(J) = - ((L2(J) = AW2(J) == 2 = L3 = AW3(J) == 2 =
  * COS (DF(J))) / (L3 * SIN (DF(J))))
    AE2(J)= (L3 * AW3(J) * *2 * SIN(DF(J)) - L3 *
    (AE3(7) + COS (DF(7)) - 2 * AW2(7)) / L2(7)
    W3(7) = V21 + A W3(7)
    E3 (7) = V21 ** 2 * AE3 (7)
    W2(3) = V21 * AW2(3)
    E2 (7) = V21 ** 2 * AE2(7)
10
    N = N + 1
    WRITE ( ,2)
FORMAT ( 11/40X, PESYNGTATO PACYETA' !!!)
    WRITE ( , 3) (F, L2(7), F3(7), W3(7), W2(7),
  * E3(7), E2(7), J=1,7)
    FORMAT (4X, F7.2, 6(F7.3))
3
    STOP
    END
```

Составители: Владимир Модестович Эстребов, Людмила Александровна Полюшкова

АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ РЫЧАЖНОГО МЕХАНИЗМА ШАССИ САМОЛЕТА С ИСПОЛЬЗОВАНИЕМ ЭВМ Методические указания к курсовому проектированию

Редактор Э. Грязнова Техн.редактор Н.М.Каленю к Корректор Н. Куприянова

Подписано к печати 5.II.82. Формат 60х84 I/I6 Бумага оберточная белая. Печать оперативная. Усл.п.л. I,I6. Уч.-изд.л. I,0.Тираж 200 экз. Заказ № 5354 Бесплатно.

Куйбышевский ордена Трудового Красного Знамени авиационный институт им.С.П.Королева, г.Куйбышев, ул.Молодогвардейская, I51 Областная типография им.В.П.Мяги, г.Куйбышев, ул.Венцека, 60