МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РСФСР

КУЙБЫШЕВСКИЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ АВИАЦИОННЫЙ ИНСТИТУТ имени С. П. КОРОЛЕВА

А Н А Л И З
ЭКСПЛУАТАЦИОННОЙ
НАДЕЖНОСТИ
АВИАЦИОННОЙ
ТЕХНИКИ

### УДК 629.7.017.1—192

В методических указаниях дан анализ и приведен расчет характеристик надежности для невосстанавливаемых (неремонтируемых) объектов при установлении законов распределении их отказов и неисправностей; предложена методика выполнения курсовой работы, рассмотрены основные правила ее оформления.

Книга предназначена для студентов, обучающихся по специальности 1610. Она может быть полезна студентам других факультетов, изучающим проблемы надежности технических устройств.

Составитель Е. А. Милов
Рецензенты: Ю. Е. Просвиров, В. А. Хитов

Утверждены редакционно-издательским советом института 12.12.1980 г.

Составитель Евгений Акимович Милов

### АНАЛИЗ ЭКСПЛУАТАЦИОННОЙ НАДЕЖНОСТИ АВИАЦИОННОЙ ТЕХНИКИ

Методические указания

Редактор Э. Грязнова Техн. редактор Н. Каленюк Корректор Н. Куприянова

Сдано в набор 6.05.81 г. Подписано в печать 10.06.81 г. Формат  $60 \times 84^{1}/_{16}$  Высокая печать. Литературная гарнитура. Бумага оберточная белая. Усл. п. л. 2,5. Уч.-изд. л. 2,0. Тираж 500 экз. Заказ № 437. Бесплатно.

Куйбышевский ордена Трудового Красного Знамени авиационный институт им. С. П. Королева, г. Куйбышев, ул. Молодогвардейская, 151.

### 1. ЦЕЛЬ И ЗАДАЧИ КУРСОВОЙ РАБОТЫ

Курсовая работа «Анализ эксплуатационной надежности авиационной техники» выполняется студентами самостоятельно на основе знаний, полученных при изучении курсов «Надежность и долговечность авиационной техники», «Техническая эксплуатация летательных аппаратов и двигателей», «Авиационная техника», общетехнических дисциплин, а также сведений и материалов, собранных студентами во время производственной практики. Основная цель работы — привить студентам навыки самостоятельного выполнения анализа и расчета надежности авиационной техники.

При выполнении курсовой работы студент должен изучить конструкцию, действующие нагрузки и условия работы авиационной техники, регламент технического обслуживания (ТО) летательных аппаратов (ЛА), освоить методы сбора, обработки и анализа отказов и неисправностей, с инженерных позиций сделать выводы и предложить рекомендации по обеспечению заданного уровня надежности авиационной техники.

### 2. СОДЕРЖАНИЕ И ОБЪЕМ КУРСОВОЙ РАБОТЫ

Несмотря на большое разнообразие тематики курсовых работ, что обусловлено многотипностью авиационной техники и возможных отказов и неисправностей, можно выделить характерные основные этапы, определяющие содержание работ.

К ним относятся:

- 1. Изучение конструкции, принципа работы объекта (системы, узла, агрегата), условий его эксплуатации, действующих регламентов и технологии технического обслуживания—15% объема.
- 2. Сбор статистических данных по отказам и неисправностям объекта 10%.
- 3. Обработка и качественный анализ статистических данных. Выбор объекта для анализа и расчета его на надежность  $15\,\%$ .
- 4. Выполнение анализа и расчета надежности объекта 50%.

5. Выводы и рекомендации по обеспечению заданного

уровня надежности объекта — 10%.

Курсовая работа состоит из расчетно-пояснительной записки (текстовая часть) и графической части (чертежей), оформ-

ляемых в соответствии с требованиями ЕСКД.

Объем пояснительной записки составляет 25-30 листов формата 11 (A-4), объем графических работ — 1-1,5 листа ватмана формата 24 (A-1).

# 2.1. ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ

Пояснительная записка [1] должна быть написана от руки чернилами, четкс, грамотно, без помарок на одной стороне лисчего листа (формат 11).

Поля страниц должны быть: верхнее — 30 мм, левое —

20 мм, правое — 10 мм и нижнее — 25 мм.

В записке кратко и четко излагается сущность каждого вопроса. При этом следует избегать многословия, переписывания из учебников и других литературных источников общеизвестных положений.

Пояснительная записка состоит из следующих разделов:

Титульный лист, задание (выдается кафедрой).

Реферат.

Оглавление.

Основная часть.

Приложение.

Список литературы.

На титульном листе указывается кафедра, тема курсовой работы, фамилия, инициалы и группа студента, выполняющего работу; фамилия, инициалы руководителя работы.

**Реферат** составляется на отдельном листе в объеме, не превышающем 2500 печатных знаков. Он должен отражать ос-

новное содержание работы.

Например: «В пояснительной записке рассматриваются конструктивные особенности шасси самолета Ту-154, анализируются действующие на него нагрузки и условия работы. Представлена статистика отказов и неисправностей, выполнен качественный анализ и расчет характеристик надежности шасси. Записка содержит 30 страниц, в том числе 5 таблиц и 8 иллюстраций. Приложение к записке — чертеж шасси с указанием дефектов, гистограммы статистического и графики теоретического распределений на 1,5 листа».

Оглавление представляет собой последовательное перечисление заголовков разделов, подразделов и пунктов основной части записки с указанием номеров страниц, на которых эти заголовки помещены. Заголовки нумеруются арабскими цифрами. Оглавление составляется на отдельном листе (листах).

Основная часть должна содержать следующие разделы:

- 1. Введение 1,5—2 с.
- 2. Особенности конструкции, принцип работы и условия эксплуатации объекта 3-4 с.
- 3. Сведения о регламенте и технологии ТО объекта 2-3 с.
- 4. Статистические данные об отказах и неисправностях объекта 2—3 с.
  - 5. Качественный анализ надежности объекта 2—3 с.
  - 6. Расчет характеристик надежности объекта 12—15 с.
- 7. Выводы и рекомендации по обеспечению заданного уровня надежности объекта 1-2 с.

При оформлении основной части записки следует руковод-

ствоваться требованиями ГОСТа [1].

Ссылки на литературу даются с указанием номера в квадратных скобках, под которым данный источник приведен в списке литературы.

Формулы должны иметь ссылку на источник, из которого они взяты, и расшифровку символов в той последова-

тельности, в какой они приведены в формуле.

Если на формулы имеются ссылки в последующем тексте, то они должны иметь порядковые номера в пределах раздела. обозначенные арабскими цифрами в круглых скобках, например (3.2). где 3— номер раздела, 2— номер формулы (допускается также сквозная нумерация формул).

Таблица 6.1 — таблица 6 в разделе 1). На них в тексте должны быть текстовые ссылки, например: «Результаты расчета эмпирических характеристик надежности приведены в табл. 6.1». Таблицы следует помещать после первого упоминания о них в тексте.

Кроме номера, таблица должна иметь тематический заголовок, например: «Расчет эмпирических характеристик надежности».

При переносе части таблицы на следующие страницы над перенесенными частями пишут — Продолжение табл. 6.1, а вместо головки таблицы (заголовков граф) приводится нумерация, которую следует указать в первой части таблицы. На последней странице таблицы следует написать — Окончание табл. 6.1.

Иллюстрации и следует размещать по тексту так, чтобы ими удобно было пользоваться при чтении записки. Иллюстративный материал должен быть органически связан с текстом, дополнять и пояснять его. Иллюстрации нумеруются арабскими цифрами в пределах раздела (рис. 2.1, 2.2 и т. д.). Ссылки на иллюстрации даются в круглых скобках— (рис. 2.1). Каждый рисунок должен иметь подрисуночную подпись. Например: рис. 6.1. Гистограммы статистического распределения. Если иллюстрации размещаются вдоль страницы, то оня должны быть расположены так, чтобы при их рассмотрении записку надо было повернуть по часовой стрелке.

Если в основной части много рисунков и таблиц, выполненных на отдельных страницах, то их можно помещать по

порядку в конце записки в приложении.

Все листы записки, включая отдельные рисунки и таблицы, должны иметь сквозную нумерацию справа в верху страницы.

**Приложения** содержат дополнительный материал, не вошедший в основную часть записки. Раздел этот может отсутствовать.

Список литературы составляется в порядке упоминания литературы по тексту (иногда — в алфавитном порядке).

Обязательные элементы библиографического описания: 1 — номер библиографической ссылки (повторяемый в тексте), точка; 2 — фамилия автора (всегда предшествует инициалам), точка; 3 — имя, отчество (сокращенно), точка; 4 — заглавие книги (без кавычек), точка; 5 — подзаголовочные данные (название статьи, том), точка; 6 — место издания — город

(двоеточие), допускается сокращение только городов Москва, Ленинград —  $M.:,\ J.::\ 7$  — название издательства (без кавычек), запятая; 8 — год издания (буква «г» опускается), запятая; 9 — номер журнала (если это журнал), запятая; 10 — число страниц, точка.

Например: 1. Смирнов Н. Н. и др. Эксплуатационная надежность и режимы технического обслуживания самолетов.—

М.: Транспорт, 1974, с. 303.

### 2.2. СОДЕРЖАНИЕ ГРАФИЧЕСКОЙ ЧАСТИ ПРОЕКТА

- 1. Конструктивный чертеж объекта (системы, узла, агрегата) с указанием мест возникновения отказов и неисправностей и их видов 0.5—1 лист.
- 2. Диаграммы качественного анализа статистических данных, гистограммы статистических и графики теоретических законов распределения отказов и неисправностей 1—0,5 листа.

# 3. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗУЧЕНИЮ И СБОРУ МАТЕРИАЛА ДЛЯ КУРСОВОЙ РАБОТЫ В ПЕРИОД ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ

Качественное выполнение курсовой работы зависит от того, насколько всесторонне и глубоко студент изучил вопросы по теме работы и какой объем статистических данных об отказах и неисправностях объекта он собрал в период произ-

водственной практики.

Прежде всего следует детально изучить конструкцию заданных систем, узла, агрегата, принцип работы, основные характеристики, действующие нагрузки и условия работы, а также регламент и технологию технического обслуживания объекта в основном по техническим описаниям самолета, вертолета, двигателя, с помощью регламента и технологии для заданного типа авиационной техники. Лучший метод изучения указанных вопросов — работа с технической литературой и непосредственное участие студента в процессе технического обслуживания самолета (вертолета).

Статистические данные об отказах и неисправностях авиационной техники могут быть получены в группах учета неис-

правностей при технических отделах (ТКБ, ОТК), в бюро надежности авиационно-технических баз, в группах статистики при отделах главного технолога (ОГТ) на заводах ГА, в отделах надежности на заводах МАП в виде карточек учета неисправностей авиатехники, дефектных ведомостей, годовых и квартальных отчетов, технических отчетов по исследованию причин досрочного снятия с эксплуатации агрегатов и двигателей, технических (рекламационных) актов, бюллетеней, сводных ведомостей и др.

Полученные данные следует сгруппировать в виде таблицы (приложение 1).

В первой графе указывается бортовой или заводской номер летательного аппарата, если рассматривается неисправность его систем (узлов, агрегатов), и дополнительно заводской номер двигателя, если рассматривается неисправность систем (узлов) двигателя.

Во второй графе указывается наименование и шифр узла (агрегата, детали), на котором обнаружена неисправность. Например: «Гидравлический плунжерный насос, НП-89».

В третьей графе отмечается вид или характер неисправности, отказа с учетом физической сущности явления, следствием которого явилась данная неисправность. Здесь же следует указать, что произошло: отказ или дефект, а также дату их обнаружения. Например: «Разрушение вала привода насоса, отказ, 20.6.80» или — «Течь АМГ-10 из штуцера нагнетания, дефект, 8.08.80».

В четвертой графе указывается налет в часах или наработка в посадках, циклах включения (выключения) и т. д. объекта на момент обнаружения отказа или неисправности после последнего ремонта (ППР) и с начала эксплуатации (СНЭ).

В пятой графе отмечаются обстоятельства обнаружения неисправностей (при взлете, наборе высоты, крейсерском режиме, снижении, заходе на посадку, посадке, висении, запус ке двигателей, обслуживании по форме А, Б, В, Г, 1, 2, 3 и г. д., разовом осмотре, буксировке и др.) и метод их обнаружения (визуально или с помощью неразрушающих методов контроля).

Например, отказ передней стойки шасси обнаружен при взлете по табло сигнализации положения шасси. В этой графе следует записать: «При взлете горит зеленое табло». Или при техническом обслуживании по форме 2 с помощью магнитно-

тё контроля обнаружена трещина подкоса шасси. В графе следует записать: «Ф-2, магнитный контроль».

В шестой графе указывается, что послужило причиной возникновения отказа или неисправности и как они классифицируются. Установить истинную причину появления отказов и неисправностей без специальных дополнительных исследований, как правило, очень трудно. Поэтому заключение в данном случае можно сделать только предположительно, что не исключает необходимости серьезного обоснования предположений. В установлении причин отказов и неисправностей большую помощь может оказать инженерно-технический состав, к которому следует обращаться за консультацией.

Причина отказа или неисправности может быть выражена в форме: Недостаточная усталостная прочность, перезатяжка резьбового соединения, потеря физико-механических свойств, нарушение технологии технического обслуживания и т. д.

В зависимости от причин отказы и неисправности принято классифицировать как конструктивные, технологические (про-изводственные) и эксплуатационные.

**Конструктивные неисправности** обусловлены ошибками конструктора, несовершенством применяемых методов конструирования и расчета, несоответствием выбранных материалов действующим нагрузкам и т. п.

**Технологические (производственные) неисправности** вызваны низким качеством изготовления материалов, деталей, нарушением технологического процесса изготовления и др.

Эксплуатационные неисправности являются следствием нарушения установленных правил эксплуатации, технического обслуживания и ремонта летательных аппаратов.

В седьмой графе отмечаются последствия выявленного отказа или неисправности в форме: летное происшествие, предпосылка к летному происшествию, вынужденная посадка, полет с выключенным двигателем, певыполнение задания, задержка рейса, простой, без последствий.

В восьмой графе указывается способ устранения неисправности: досрочный съем двигателя, регулировка, ремонт, замена агрегата, узла, модуля, детали.

В девятой графе приводятся дополнительные сведения о рассматриваемом объекте и неисправностях, а именно — количество ремонтов, ресурс, наличие бюллетеней по предупреждению данной неисправности, сведения об их выполнении и др.

После сбора статистики отказов и неисправностей следует установить общее число летательных аппаратов, эксплуатирующихся в АТБ в период, за который был собран материал.

Следует еще раз подчеркнуть, что полнота и качество собранного для выполнения курсовой работы материала целиком зависят от того, насколько серьезно студент отнесется к этому этапу работы в период производственной практики.

### 4. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ РАЗДЕЛОВ КУРСОВОЙ РАБОТЫ

### 4.1. ВВЕДЕНИЕ

Во введении следует кратко изложить цель курсовой работы, показать влияние надежности авпационной техники на безопасность полетов и эффективность использования летательных аппаратов, охарактеризовать избранный метод расчета надежности, указать область задач, решение которых возможно с помощью собранных статистических данных об отказах и неисправностях авиационной техники.

Здесь же приводится характеристика предприятия по месту прохождения производственной практики с точки зрения организации работы по сбору информации, анализа, расчета и обеспечения надежности авиационной техники.

### 4.2. ОСОБЕННОСТИ КОНСТРУКЦИИ, ПРИНЦИП РАБОТЫ И УСЛОВИЯ ЭКСПЛУАТАЦИИ ОБЪЕКТА

В этом разделе следует кратко описать конструкцию, принции работы, основные характеристики заданной системы (узла, агрегата), подчеркнув особенности и отличия их от других однотипных изделий.

Далее нужно проанализировать действующие нагрузки и условия работы объекта.

### 4.3. СВЕДЕНИЯ О РЕГЛАМЕНТЕ И ТЕХНОЛОГИИ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ ОБЪЕКТА (ТО)

В этом разделе следует кратко охарактеризовать метод технического обслуживания объекта, показав его преимущества и недостатки, принцип построения регламента и технологии ТО, основные работы, выполняемые при техническом обслуживании.

# 4.4. СТАТИСТИЧЕСКИЕ ДАННЫЕ ОБ ОТКАЗАХ И НЕИСПРАВНОСТЯХ ОБЪЕКТА

В этом разделе в табличной форме (приложение 1) представляется весь материал по отказам и неисправностям авиационной техники, собранный на производственной практике.

## 4.5. **КАЧЕСТВЕННЫЙ** АНАЛИЗ НАЛЕЖНОСТИ ОБЪЕКТА

В разделе в описательной форме приводится анализ табличных данных о неисправностях и отказах. При этом рассматриваются такие вопросы, как частота отказов и неисправностей данного вида, неисправности и отказы, представляющие наибольшую опасность в отношении снижения безопасности полетов, частота отказов и неисправностей агрегатов
(узлов) определенного типа, более подробно анализируются
причины отказов и неисправностей. Если по результатам анализа можно выдать конкретные рекомендации по обеспечению
требуемой надежности объекта, то такие рекомендации следует дать.

Количественные соотношения (в %) по типу агрегатов, по виду неисправностей и отказов и др. следует представить в

виде круговых или прямоугольных диаграмм.

Узел (агрегат), имеющий наибольшее число неисправностей определенного вида, выбирается для дальнейшего расчета характеристик его надежности.

### 4.6. РАСЧЕТ ХАРАКТЕРИСТИК НАДЕЖНОСТИ ОБЪЕКТА

Собранный на производственной практике статистический материал позволяет рассчитать эмпирические характеристики

надежности объекта, а затем установить теоретические функ-

ции распределения отказов\*.

Знание функций распределения позволяет осуществить контроль уровня надежности в период эксплуатации объекта, уточнить возможность дальнейшего увеличения ресурса, рассчитать и откорректировать сроки профилактических рабог, определить необходимость проведения работ по совершенствованию объекта с целью повышения уровня его надежности, решить другие задачи.

Как правило, на производственной практике студент собирает статистический материал, который с позиций теории надежности классифицируется как усеченная выборка (усечен-

ные данные). Суть ее состоит в следующем:

Допустим, что наблюдаются N однородных объектов в течение времени  $t_a$ . При этом, если отказ появляется при наработке меньшей  $t_a$ , то фиксируется эта наработка  $t_i$ . Если отказ

не появился за время  $t_a$ , то наблюдение прекращается.

Эта ситуация близка к реальной. Действительно, допустим, что речь идет о воздушном винте, имеющем ресурс  $T_{\rm p}$ . Если неисправность на нем обнаружена до отработки ресурса, то фиксируется наработка  $t_i$ ; если неисправность не обнаруживается, то винт снимается с эксплуатации по отработке ресурса.

Рассмотрим последовательность обработки статистических данных при определении функций распределения для невос-

станавливаемых (неремонтируемых) объектов.

# Первичная обработка статистических данных об отказах и неисправностях

Из общей статистики выбирается наработка до появления отказа данного вида для объекта, расчет надежности которого производится. Эта наработка располагается в ряд в порядке возрастания (строится вариационный ряд):  $t_1,\ t_2,\ t_3,\ ....\ t_i,\ ...,\ t_n$ . Устанавливается общее число объектов N (по месту практики), находящихся на эксплуатации, число объектов n, имеющих отказ, и время наблюдения  $t_a$ .

Тогда N— $\hat{n}$  объектов будут иметь наработку до появления

отказа  $t_i > t_a$ .

Производится группировка выборки по интервалам. Для этого общее время наблюдения  $t_a$  разбивается на k интервалов (разрядов)  $\Delta t_i$  с таким расчетом, чтобы в каждый интер-

<sup>\*</sup> Здесь и далее имеются в виду также неисправности, дефекты.

вал попадало не менее 3—5 значений  $t_i$ . Если в интервал попадает меньшее число  $t_i$ , то соседние интервалы следует объединить.

# Расчет эмпирических характеристик надежности объекта

Производится расчет эмпирических характеристик надежности: плотность распределения вероятностей  $f_i^*(t)$ ; интенсивность отказов  $\lambda_i^*(t)$  и вероятность безотказной работы  $P_i^*(t)$ .

Результаты расчета сводятся в табл. 4.1.

Вероятность безотказной работы можно определять также по формулс

 $P_i^*(t) = 1 - \frac{\sum \Delta n_i}{N}.$ 

Таблица 4.1 Расчет эмпирических характеристик надежности

| Помер<br>интервала<br>(разряда) | $t_i, t_{i+1}$    | $\Delta t_i$ | $\Delta n_i$ | $f_i^*(t) = \frac{\Delta n_i}{N \Delta t_i}$ | $\lambda_i^*(t) = \frac{\Delta n_i}{(N - n_{i-1})\Delta t_i}$ | $P_{l}^{*}(t) = \frac{f_{l}^{*}(t)}{\lambda_{l}^{*}(t)}$ |
|---------------------------------|-------------------|--------------|--------------|----------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|
| 1                               | $t_1, t_2$        | $\Delta t_1$ | $\Delta n_1$ | $j_1^*$                                      | $y_{ik}^{1}$                                                  | $P_{1}^{*}$                                              |
| 2                               | $t_2$ . $t_3$     | A to         | $\Delta n_2$ | $f_2^*$                                      | $\lambda_2^*$                                                 | $P_2^*$                                                  |
| :                               | 1                 | 1            | :            | :                                            | :                                                             | :                                                        |
| i                               | $t_i$ , $t_{i+1}$ | $\Delta t_i$ | $\Delta n_i$ | $f_t^*$                                      | $\lambda_I^*$                                                 | $P_I^*$                                                  |
| 4                               | - :               | :            | 1            | :                                            | :                                                             |                                                          |
| k                               | $t_k$ , $t_k+1$   | $\Delta t_k$ | $\Delta n_k$ | $f_{R}^{*}$                                  | ).*<br>R                                                      | $P_k^*$                                                  |

### Построение гистограммы

По данным табл. 4.1 строятся гистограммы — геометрическая интерпретация таблицы (рис. 4.1). На оси абсцисс откладываются интервалы  $\Delta t_i$ , которые будут служить основаниями прямоугольников. Высота каждого прямоугольника (ордината) равна соответственно  $f_i^*$ ,  $\lambda_i^*$ ,  $P_i^*$ .

Если объем выборки N неограниченно возрастает, а длина интервала  $\Delta t_i$  стремится к нулю, то ступенчатая гистограмма постепенно переходит в некоторую непрерывную функцию, например, в плотность распределения вероятностей (рис. 4.1).

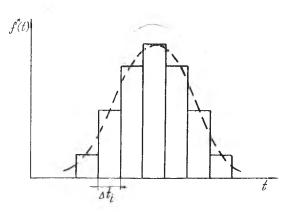



Рис. 4.1. Гистограмма и ее огибающая

На основе анализа вида гистограмм при сравнении их с известными функциями распределения (приложение 2) и с учетом физической сущности рассматриваемого отказа, структуры объекта, условий эксплуатации подбирается теоретический закон распределения отказов [2, 3, 4].

Так, отличительной особенностью экспоненциального распределения является то, что интенсивность отказов здесь не зависит от наработки. Такое распределение характерно для внезапных отказов, которые появляются без каких-либо предмествующих симптомов.

Физическая сущность таких отказов заключается во внезапной случайной концентрации нагрузок, действующих внутри и вне объекта. При этом отказ наступает только тогда, когда нагрузка превысит допустимую величину. Ясно, что наработка объекта в этом случае не будет сказываться на интенсивности отказов.

Экспоненциальное распределение имеет место также в случае, когда объект состоит из большого числа элементов и вероятности отказа каждого из них малы. Обычно это отказы радио-электронного и высотного самолетного оборудования, течь через уплотнения и др.

Нормальное распределение имеет место, когда суммируется достаточно большое число независимых или слабозависимых случайных величин. При этом накладывается ограничение, состоящее в том, что все величины в общей сумме должны играть относительно малую роль. В противном случае резко превалирующая в этой сумме величина и определяет закон ее распределения.

При неограниченном росте числа испытаний другие рас-

пределения приближаются к нормальному.

В практике эксплуатации авиационной техники нормальное распределение характерно для износовых отказов с постоянной скоростью износа, под которым понимается собственно износ, старение, накопление повреждений и другие процессы с постоянной скоростью развития.

Примером может служить износ протекторов авиания,

живучесть усталостных трещин лопаток турбин и др.

Физической моделью логарифмически-нормального распределения может быть следующая ситуация. Каждое воздействие внешней нагрузки приводит к накоплению повреждений в материале объекта. При этом величина добавляемого повреждения пропорциональна накопленному. Отказ наступает тогда, когда накопленное повреждение превысит определенную величину. Примером может служить усталостная долговечность многих деталей авиационной техники (лопатки, диски, валы и другие детали авиадвигателей, силовой набор, узлы крепления агрегатов и другие детали летательных аппаратов).

Распределению Вейбулла обычно отвечает физическая модель так называемого «слабого звена». Объект представляется состоящим из большого числа элементов, подверженных поломкам. Накопление повреждений в элементах идет независимо друг от друга. Отказ объекта наступает при отказе первого элемента. При этом независимо от типа распределения отказов каждого элемента распределение отказов

объекта будет Вейбулловским.

Распределение Вейбулла, как и логарифмически-нормальное распределение, хорошо описывает усталостную долговечность авиационных конструкций, а также приработочные отказы.

Равномерное распределение применяется, если отсутствуют физические предпосылки, приводящие к изложенным моделям, а гистограмма плотности не имеет явно выраженной тенденции к увеличению или уменьшению.

Для объектов, имеющих интенсивные износы, накопления повреждений, старение, характерно распределение Рэлея.

Рассмотренные функции распределения (математические модели отказов) не являются исчерпывающими. При обработке статистических данных могут быть получены и другие \*

типы распределений.

В некоторых случаях гистограммы могут указывать на сочетание двух и более распределений, что свидетельствует о различных физических причинах отказов на различных этапах эксплуатации. Например, экспоненциальное распределение переходит в нормальное. В этом случае на основе ранее выполненного качественного анализа надежности, действующих нагрузок и условий работы следует обосновать такой вид гистограммы. Дальнейший расчет для соответствующих распределений ведется раздельно.

### Определение значений параметров распределения

Число неизвестных параметров зависит от типа распределения (приложение 3). Расчет значений параметров сводится к составлению и решению уравнений. Число уравнений равно числу неизвестных параметров. Следует подчеркнуть: поскольку определение неизвестных параметров распределений базируется на опытных (эксплуатация ЛА с позиций теории надежности есть также опыт) данных, речь может идти только об оценках этих параметров, а не об истинных теоретических значениях.

Существует несколько методов составления уравнений. Для усеченной выборки следует использовать метод максимума правдоподобия или метод разделяющих разбиений (отдавая предпочтение первому).

Метод максимума правдоподобия [5] основан на идее определения вероятности наблюдаемых событий и нахождении таких значений параметров, которые обращают эту

вероятность в максимум.

Для усеченной выборки из всей совокупности объектов N имеем реализацию случайной величины  $t_i$ :  $t_1$ ,  $t_2$ , ...,  $t_i$ , ...,

 $t_n < t_a$ , где  $t_a$  — время наблюдений.

Поскольку время есть непрерывная случайная величина, вероятность попадания в точку  $P\left(t=t_{i}\right)=0$ . Поэтому следует рассматривать вероятность попадания случайной величины  $t_{i}$  в некоторый интервал времени  $t_{i}\pm\frac{\Delta t_{i}}{2}$ .

Вероятность попадания в этот интервал

$$P\left\{t_{i}-\frac{\Delta t_{i}}{2} \leqslant t \leqslant t_{i}+\frac{\Delta t_{i}}{2}\right\} \stackrel{.}{=} f\left(t_{i}\right) \Delta t_{i}.$$

Вероятность же получения совокупности значений  $t_{\ell}$ 

$$P_i = \int (t_1) \int (t_2) \dots \int (t_i) \dots \int (t_n) \Delta t_1 \Delta t_2 \dots \Delta t_i \dots \Delta t_n.$$

При равных интервалах  $P_1 = f(t_1) f(t_2) \dots f(t_n) \Delta t^n = \Delta t^n \prod_{i=1}^n f(t_i)$ .

Вероятность превышения наработки до отказа времени наблюдения  $t_i > t_a$ , где  $j \in \{n+1, n+2, ..., N\}$ , будет  $P(t_i > t_a) = 1 - F(t_a)$ , где F(t) — функция распределения случайной величины T.

Для совокупности значений  $P_2 = [1 - F(t_a)]^{N-n}$ .

Полное уравнение вероятности получения всей совокупности значений величины t имеет вид:  $P=P_1$ ,  $P_2=\Delta t^n\prod_{i=1}^n\int (t_i)\left[1-F\left(t_u\right)\right]^{N-n}$ . Эта вероятность должна быть максимальной.

Действительно, данная совокуппость значений случайной величины t уже реализована, поскольку статистика отказов получена по данным реальной эксплуатации объекта.

Максимальной должна быть и величива  $\frac{P}{\Delta t^n}=\prod\limits_{i=1}^n f(t_i) imes (1-F(t_a))^{N-n}.$ 

Для удобства расчетов берется логарифм этого выражения:

$$L = \ln \frac{P}{\Delta i^n} = \sum_{i=1}^{n} \ln f(t_i) + (N - n) \ln [1 - F(t_a)]. \tag{4.1}$$

 $\Phi$ ункцию L и называют функцией правдоподобня.

Для определения неизвестных параметров  $(\alpha_1, \alpha_2, ..., \alpha_m)$  распределения, соответствующих максимальной вероятности, следует взять частные производные от функции L по этим параметрам, приравнять их к нулю и решить систему уравнений (исследование функции на экстремумы):  $\frac{\partial L}{\partial \alpha_1} = 0$ ;  $\frac{\partial L}{\partial \alpha_2} = 0$ ,

..., 
$$\frac{\partial L}{\alpha_m} = 0$$
.

Так, для экспоненциального распределения случайной величины имеем:  $f(t) = \lambda e^{-\lambda t}$ ,  $1 - F(t_a) = P(t_a) = e^{-\lambda t_a}$ .

Производная по неизвестному параметру  $\lambda$  от функции правдоподобия будет иметь вид  $\frac{\partial L}{\partial \lambda} = \sum_{l=1}^n \frac{\partial}{\partial L} \ln \left( \lambda e^{-\lambda t} \right) +$ 

$$+ (N-n)\frac{\partial}{\partial \lambda} \ln e^{-\lambda t_a} = 0.$$

Решая это уравнение, получим  $\frac{\partial}{\partial \lambda} \ln (\lambda e^{-\lambda t}) = \frac{1}{L} - t$ ;  $\frac{\partial}{\partial \lambda} \ln e^{-\lambda t} = -t_a$ .

Отсюда 
$$\frac{\partial L}{\partial L} = \frac{n}{L} - \sum_{i=1}^{n} t_i - (N-n) t_a = 0$$

$$u \frac{1}{\lambda} = T_{cp} = \frac{1}{n} \left[ \sum_{i=1}^{n} t_i + (N-n) t_a \right]. \tag{4.2}$$

Для нормального распределения по усеченным данным без вывода уравнения имеют вид:

$$(N-n)\frac{\Phi'\left(\frac{t_a-m_t}{\sigma_t}\right)}{1-\Phi\left(\frac{t_a-m_t}{\sigma_t}\right)} + \frac{1}{\sigma_t^2} \sum_{i=1}^n t_i - \frac{n}{\sigma_t^2} m_t = 0;$$

$$(N-n)\frac{\Phi'\left(\frac{t_a-m_t}{\sigma_t}\right)}{1-\Phi\left(\frac{t_a-m_t}{\sigma_t}\right)} t_a - n + \frac{1}{\sigma_t^2} \sum_{i=1}^n t_i^2 - \frac{m_t}{\sigma_t^2} \sum_{i=1}^n t_i = 0, \quad (4.3)$$

где  $\Phi$   $(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-\frac{u^2}{2}} du$  — стандартная нормальная функ-

ция распределения;  $\Phi'\left(\frac{t_a-m_t}{\sigma_t}\right)=f\left(t_a\right)$ .

Уравнения (4.3) могут быть решены только численным методом с использованием ЭВМ.

Простейший способ решения состоит в поиске корней по сетке на плоскости  $(m_t, \sigma_t)$ . Левую часть уравнений (4.3) можно представить в виде  $\varphi_1(m_t, \sigma_t)$  и  $\varphi_2(m_t, \sigma_t)$ . На плоскости  $(m_t, \sigma_t)$  задается сетка значений  $m_t$  и  $\sigma_t$  (рис. 4.2.). В функции  $\varphi_1$  и  $\varphi_2$  подставляются значения  $m_t$  и  $\sigma_t$ , лежащие в узлах сетки. Очевидно, что найдется множество попарных значений  $m_t$  и  $\sigma_t$ , обращающих последовательно функции  $\varphi_1$  и  $\varphi_2$  в нуль. А это значит, что могут быть построены кривые  $\sigma_t = \psi_1(m_t)$  и  $\sigma_t = \psi_2(m_t)$ , такие, что  $\varphi_1[m_t, \psi_1(m_t)] \equiv 0$  и  $\varphi_2[m_t, \psi_2(m_t)] \equiv 0$  (см. рис. 4.2). В точке пересечения этих кривых лежит искомое решение уравнений (4.3).

Схема поиска следующая. При движении от одного узла сетки к другому знак функций  $\varphi_1$  и  $\varphi_2$  будет оставаться постоянным, пока не будут пройдены кривые  $\psi_1$  и  $\psi_2$ . В этом случае знак меняется на обратный. В узлах прямоугольника, где лежат корни уравнений (4.3), знак должен смениться дважды.

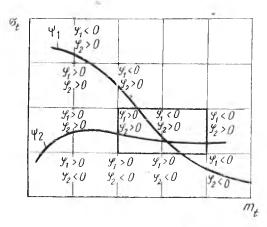
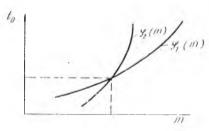



Рис. 4.2. Схема поиска корней уравнения -

Для ЭВМ по этой схеме можно задать программу поиска этого прямоугольника. После того как он будет найден, его стороны делятся пополам и снова определяется прямоугольник, содержащий корни, и т. д. до момента, когда сторона прямоугольника станет меньше заданной точности вычисления корней.

Здесь важно правильно задать крайние значения  $m_t$  и  $\sigma_t$  на сетке, чтобы была уверенность, что корни уравнений лежат внутри исходного прямоугольника. Рекомендуется предварительно вычислить параметры распределения, считая выборку полной. При этом следует учитывать, что вычисленные параметры надежности будут занижены.

Для распределения Вейбулла можно получить уравнения, выраженные в явном виде:


$$t_0 = \frac{1}{n} \sum_{i=1}^{n} t_i^m + \frac{N-n}{n} t_a^m;$$

$$t_0 = \frac{\sum_{i=1}^{n} t_i^m \ln t_i + (N-n) t_a^m \ln t_a}{\sum_{i=1}^{n} \frac{\sum_{i=1}^{n} \ln t_i}{\sum_{i=1}^{n} \ln t_i}},$$
 (4.4)

где  $t_0$  и m — неизвестные параметры.

Эту систему можно решать графически или с помощью ЭВМ.

Графический метод предусматривает построение кривых  $t_0 = \varphi_1(m)$  и  $t_0 = \varphi_2(m)$  по ряду значений m. Точка пересечения этих кривых даст значения искомых параметров  $t_0$  и m (рис. 4.3).



*Рис. 4.3.* Графическое решение урав-

Метод максимума правдоподобия является наилучшим из известных методов определения неизвестных параметров распределений. Если неизвестный параметр имеет эффективную оценку, то эгот метод позволяет получить такую оценку. Практически метод максимума правдоподобия во всех случаях при

больших объемах выборки дает более эффективные оценки, чем другие методы, но реализовать его часто бывает сложно. В таких случаях следует использовать метод разделяющих разбиений.

Метод разделяющих разбиений [2] заключается в приравнивании эмпирических значений функции распределения  $F^*$  (t) при некоторых выбранных значениях  $t_i$  к значениям теоретической функции распределения F (t). При этом составляется и решается система уравнений по числу неизвестных параметров.

Так, для двух неизвестных параметров система имеет вид:

$$F^*(t_1) = F(\alpha_1, \alpha_2, t_1); F^*(t_2) = (\alpha_1, \alpha_2, t_2).$$

В данном случае значения  $t_1$  и  $t_2$  следует выбирать в первой и последней третях значений  $t_i$ .

Для нормального распределения неизвестные параметры определяются из уравнений:  $F^*(t_1) = \Phi\left(\frac{t_1 - m_t}{z_t}\right)$ ;  $F^*(t_2) = \Phi\left(\frac{t_2 - m_t}{z_t}\right)$ . По эмпирическим значениям функций 20

 $F^*$   $(t_1)$  и  $F^*$   $(t_2)$  из таблицы значений  $\Phi$  (z) [2-4] определяем аргументы  $z_1$  и  $z_2$ . Тогда

$$z_1 = \frac{t_1 - m_t}{\sigma_t} ; z_2 = \frac{t_2 - m_t}{\sigma_t}.$$

При решении уравнений получим

$$m_t = \frac{t_1 z_2 - t_2 z_1}{z_2 - z_1}; \ \sigma_t = \frac{t_2 - t_1}{z_2 - z_1}.$$
 (4.5)

Случай логарифмически-нормального распределения сводится к предыдущему, так как нормальное распределение здесь имеют логарифмы случайных величин. Параметры данного распределения вычисляются по формулам:

$$m_l = \frac{\ln t_1 z_2 - \ln t_2 z_1}{z_2 - z_1}; \quad \sigma_l = \frac{\ln t_2 - \ln t_1}{z_2 - z_1}, \tag{4.6}$$

где  $m_l$  и  $\sigma_l$  — параметры логарифмически-нормального распределения.

Тогда  $m_t = \exp [m_t + 0.5 \sigma_t^2];$ 

$$\sigma_t^2 = [\exp(\sigma_t^2) - 1] \exp(2m_t + \sigma_t^2) = [\exp(\sigma_t^2) - 1] m_t^2.$$

Знание параметров распределения дает возможность построить графики функций распределения:  $\hat{j}(t)$ ,  $\hat{\lambda}(t)$ , P(t). Однако прежде чем строить эти графики, следует убедиться в правильности подобранного распределения.

# Проверка правильности принятой гипотезы о виде распределения

Часто такая проверка делается с помощью критерия Кол-

могорова или «критерия  $\chi^2$ » Пирсона.

Критерий Колмогорова применяется только в случае, когда вид распределения и его параметры известны заранее, до опыта, из каких-либо теоретических соображений. При определении вида распределения и значений его параметров по статистическим данным для проверки правильности принятой гипотезы следует использовать «критерий χ²».

Суть любого метода оценки расхождения теоретического и статистического распределений состоит в установлении некоторой величины U, характеризующей степень расхождения. Это может быть сумма квадратов отклонений теоретических вероятностей  $P_i$  от соответствующих эмпирических  $P_i^*$ , максимальное отклонение статистической функции распределения  $P^*$  (t) от теоретической P (t) и т. д. [6].

Очевидно, в любом случае величина U есть случайная величина. Закон ее распределения зависит от закона распределения случайной величины T, которая исследовалась (наработка объекта до отказа), и числа испытаний n. Если гипотеза верна, то закон распределения величины U определяется законом распределения величины T (функцией F (t)) и числом n.

Допустим, величина U приняла некоторое значение u. Тогда, если вероятность события U>u весьма мала, то принятую гипотезу следует отвергнуть как малоправдоподобную, т. е. в данном случае расхождение между теоретическим и статистическим распределениями нельзя объяснить только случайными причинами, связанными с недостаточным объемом опытного материала.

Если же вероятность события U>u значительна, следует признать, что экспериментальные данные не противоречат ги-

потезе о подобранном распределении.

Какую же величину следует выбрать за меру расхождения? Оказывается, что при некоторых способах ее выбора закон распределения величины U практически не зависит от функции F(t) (при достаточно больших n). Именно такими свойствами обладает «критерий  $\chi^2$ ».

Допустим, что проводятся испытания N однотипных объектов, из которых n отказали, т. е. за период испытаний  $t_a$  слу-

чайная величина T приняла ряд значений  $t_{i}$ 

Результаты испытаний сведены в k разрядов (интервалов  $\Delta t_i$ ) и оформлены в виде статистического ряда (табл. 4.2).

Таблица 4.2 Статистический ряд

| Разряды     | $t_1; t_2$ | t <sub>2</sub> : t <sub>3</sub> | *** | $t_k; t_{k+1}$ |
|-------------|------------|---------------------------------|-----|----------------|
| Вероятности | $q_1^*$    | 9 <sub>2</sub> *                |     | $q_k^*$        |

В таблице  $q_l^*$  есть вероятность отказа на интервале  $\Delta t_l$ .

Требуется проверить, согласуются ли эти экспериментальные данные с гипотезой о том, что случайная величина T имеет данный закон распределения  $F\left(t\right)$ . Поскольку теоретический закон  $F\left(t\right)$  в данном случае считается известным, можно найти теоретические вероятности q попадания случайной

величины в каждый из разрядов (вероятности отказов объ-

екта на каждом интервале):  $q_1, q_2, ..., q_k$ .

В качестве меры расхождения следует выбрать сумму квадратов отклонений  $q_i^* - q_i$ , взятых с некоторыми «весами»  $c_i$ :

$$U = \sum_{i=1}^{k} c_i (q_i^* - q_i)^2.$$

«Веса» разрядов вводятся вследствие того, что отклонения  $(q_i^* - q_i)$  в различных разрядах нельзя считать равноценными по значимости, так как одно и то же абсолютное отклонение может быть малозначимым при больших q и существенным при малых q. Поэтому «веса» берутся обратно пропорциональными вероятностям разрядов  $q_i$ .

К. Пирсон показал, что если «веса» представить в виде  $c_i = \frac{N}{q_i}$ , то при больших N закон распределения величины U практически не зависит от функции F(t) и числа опытов N, а зависит только от числа разрядов k. Этот закон при увеличении N приближается к так называемому «распределению  $\chi^2$ ».

При таком выборе коэффициентов  $c_i$  мера расхождения обычно обозначается  $\chi^2$ :  $U=\chi^2=N\sum\limits_{i=1}^k\frac{(q_i^*-q_i)^2}{q_i}$ .

Для удобства вычислений (чтобы исключить дробные величины с большим числом нулей) N вводится под знак суммы. С учетом того, что  $q_i^* = \frac{\Delta n_i}{N}$ , эта формула приобретает следующий вид:

$$U = \chi^2 = \sum_{i=1}^{k} \frac{(\Delta n_i - Nq_i)^2}{Nq_i}.$$
 (4.7)

Распределение  $\chi^2$  зависит от параметра r—числа «степеней свободы» распределения, которое равно числу разрядов k минус число независимых условий («связей»), наложенных на  $q_i^*$ .

Число связей равно числу неизвестных параметров распределения плюс единица (для всех случаев накладывается требование  $\sum\limits_{i=1}^k q_i^*=1$ ).

Для распределения  $\chi^2$  составлены таблицы [2, 4, 6]. По ним для каждого значения  $\chi^2$  и числа степеней свободы r можно найти вероятность того, что величина, распределенная по закону  $\chi^2$ , превзойдет табличное значение. Если эта вероятность мала (0,1 и менее), то гипотезу следует отвергнуть.

 $^2 = \sum_{i=1}^{k+1} U_i^2$ 

Таблица 4.3 Оценка сходимости теоретического и статистического расписалений

|                                 | 91)2                                                                        |                     |                     |          |                     |                                                                                  |
|---------------------------------|-----------------------------------------------------------------------------|---------------------|---------------------|----------|---------------------|----------------------------------------------------------------------------------|
|                                 | $U_I^2 = \frac{(\Delta \ n_i - Nq_i)^2}{Nq_i}$                              | $U_1^2$             | $U_2^2$             |          | U.2                 | $U_{R+1}^{2}$                                                                    |
| 7                               | $\Delta n_i - Nq_i$                                                         | $\Delta n_1 - Nq_1$ | $\Delta n_2 - Nq_2$ | <i>j</i> | $\Delta n_k - Nq_k$ | $N(1 - \sum_{i=1}^{n} q_i)$ $N - n - N(1 - \sum_{i=1}^{k} q_i)$                  |
|                                 | Nqī                                                                         | $Nq_1$              | Nq <sub>2</sub>     | 22.5     | Nqk                 | $N\left(1 - \sum_{i=1}^{n} q_i\right)$                                           |
|                                 | $f_{i+1} = \begin{cases} q_i(t) = \\ t_{i+1} = \\ - f(t)  d(t) \end{cases}$ | 41                  | 92                  | ****     | 96                  | $1 - \sum_{i=1}^{k} q_i$                                                         |
| слении                          | Δ α;                                                                        | Δ η,                | Δ n <sub>2</sub>    |          | $\Delta n_k$        | $ \begin{array}{c c} \Delta \ \ell_{k+1} \\ (\gg \lambda \ \ell_k) \end{array} $ |
| dadiinad G                      | 111                                                                         | A 1,1               | $\Delta t_2$        |          | $\Delta t_{k}$      | $\begin{array}{c} \Delta \ t_{k+1} \\ (\gg 3 \ t_k) \end{array}$                 |
| и статистического распределении | $t_{i+1}$                                                                   | 122                 | to                  | 2.7      | $t_{k+1}=t_{\mu}$   | t + 2                                                                            |
| E C                             | £ .                                                                         | $t_1$               | 12                  | 3.17     | 1 th                | $t_{k+1}$                                                                        |

Оценку согласованности распределений можно производить и другим спссобом, задаваясь уровнем значимости —  $\alpha$ . Уровень значимости в данном случае — это выраженная в процентах максимально допустимая вероятность того, что гипотеза отвергнута неправильно. Наиболее употребительны уровни значимости — 1, 5, 10%.

По табличным данным, задаваясь уровнем значимости для данного числа степеней свободы, определяется критическая область ( $\chi^2_{1-0.01} \approx \infty$ ). Если подсчитанное по формуле (4.7) значение критерия попадает в критическую область, гипотеза

отвергается.

Все расчеты по оценке согласованности теоретического и статистического распределений оформляются в виде таблицы (табл. 4.3).

Следует обратить внимание на то, что для усеченных данных добавляется еще один разряд (интервал)  $\Delta t_{k+1} \gg \Delta t_k$ , т. е. число разрядов увеличится на единицу.

### Построение графиков теоретического распределения

Убедившись, что закон подобран верно, строятся графики распределений f(t),  $\lambda(t)$  и P(t). Для получения полного представления о поведении характеристик надежности объекта диапазон изменения величины t следует увеличить.

### Определение точности оценок параметров распределения

Точность оценок параметров распределения определяется по заданию консультанта. В общем случае требуется установить, к каким ошибкам может привести замена параметра m его оценкой  $m^*$  или с какой степенью уверенности можно ожидать, что эти ошибки не выйдут за известные пределы. Это особенно важно для малых выборок, какими обычно являются статистические данные, полученные в период прохождения производственной практики.

Для этого в математической статистике используются до-

верительные вероятности и доверительные интервалы.

Пусть для параметра m получена несмещенная оценка  $m^*$ . Оценим возможную при этом ошибку. Назначим некоторую достаточно большую вероятность  $\beta$  ( $\beta = 0.9$ ; 0.95; 0.99; 0.999 и т. д.) и найдем такое значение  $\epsilon$ , для которого

$$P(|m^*-m|<\varepsilon)=\beta. \tag{4.8}$$

Тогда диапазон практически возможных ошибок при использовании  $m^*$  вместо m будет равен  $\pm \varepsilon$ . Ошибки больше этого значения возможны с малой вероятностью  $\alpha = 1 - \beta$ .

Равенство (4.8) можно представить в виде

$$P(m^* - \varepsilon < m < m^* + \varepsilon) = \beta. \tag{4.9}$$

Это равенство означает, что с вероятностью  $\beta$  интервал  $I_3=-(m^*-\epsilon;\ m^*+\epsilon)$  накроет истинное значение m. Вероятность  $\beta$  называется доверительной вероятностью, а интервал  $I_{\beta}$ — доверительным интервалом. При этом  $m_1=m^*-\epsilon$  является нижней границей интервала, а  $m_2=m^*+\epsilon$ — верхней

границей; 2 с — точность оценки параметра.

Идея точных методов построения доверительных интервалов сводится к следующему. Любой доверительный интервал находится из условия, выражающего вероятность выполнения неравенств, в которые входит оценка  $m^*$ . В общем случае закон распределения  $m^*$  зависит от самих неизвестных параметров (в том числе и m) закона распределения случайной величины T. Однако в неравенствах иногда удается перейти от случайной величины  $m^*$  к какой-либо другой функции наблюдаемых значений  $t_1, t_2, \dots, t_n$ , закон распределения которой не зависит от неизвестных параметров, а зависит только от числа опытов N и от вида закона распределения величины T.

Особенно хорошо эти величины изучены для случая нормального распределения [6]. Например, доказано, что при нормальном распределении величины X случайная величина  $T=\sqrt{N}\frac{m^*-m}{\sqrt{D^*}}$ , где  $m^*=\frac{1}{N}\sum_{i=1}^N x_i$ ;  $D^*=\frac{1}{N-1}\sum_{i=1}^N (x_i-m^*)^2$ , подчиняется закону распределения Стьюдента с (N-1) степенями свободы и показано, что при нормальном распределении величина  $\varepsilon$  для математического ожидания с заданной доверительной вероятностью  $\varepsilon$  равна  $\varepsilon_{\varepsilon}=t_{\varepsilon}\sqrt{\frac{D^*}{N}}$ , где  $t_{\varepsilon}$ — коэффициент Стьюдента, определяемый из таблицы распределения Стьюдента [6] по доверительной вероятности и числу степеней свободы.

Доверительный интервал для математического ожидания будет иметь вид:  $I_{\beta}\!\left(m^* - t_{\beta} \sqrt{\frac{\overline{D^*}}{N}}; \, m^* + t_{\beta} \sqrt{\frac{\overline{D^*}}{N}}\right)$  .

Доказано также, что случайная величина  $V = \frac{(N-1)D^*}{D}$  имеет распределение  $\chi^2$  с (N-1) степенями свободы [6]. Это рас-

пределение несимметрично, поэтому доверительный интервал выбирается из соображений, что вероятности выхода величины V за его пределы влево и вправо одинаковы и равны  $\frac{a}{2}=\frac{1-\beta}{2}$ . Для нижней границы эта вероятность равна  $p_1=\frac{a}{2}$ , для верхней  $p_2=1-\frac{a}{2}$ . Величины  $\chi^2$  и  $\chi^2$  определяются из таблицы распределения  $\chi^2$  по вероятностям (уровням значимости)  $p_1,\,p_2$  и числу степеней свободы [4]. Доверительный интервал для дисперсии будет иметь вид:

$$I_{\beta}'\left(\frac{D^*(N-1)}{\chi_1^2}\;;\;\frac{D^*(N-1)}{\chi_2^2}\right)$$
.

Подобные величины изучены также для некоторых других видов распределения.

# 4.7. ВЫВОДЫ И РЕКОМЕНДАЦИИ ПО ОБЕСПЕЧЕНИЮ ЗАДАННОГО УРОВНЯ НАДЕЖНОСТИ ОБЪЕКТА

В этом разделе на основании анализа изменения характеристик  $\hat{f}(t)$ ,  $\hat{\lambda}(t)$ , P(t) студент должен сделать вывод об уровне надежности объекта и дать практические рекомендации по его обеспечению или повышению.

Рекомендации могут носить как организационный, так и технический характер. Это может быть изменение конструкции объекта, применение новых материалов, ограничения по эксплуатации, корректировка периодичности регламента, ресурса и др. В частности, корректировка межремонтного ресурса  $T_q$  может быть осуществлена по заданной вероятности отказа q. Обычные уровни вероятности отказа q лежат в пределах от  $10^{-7}$  до  $10^{-3}$ . Межремонтный ресурс устанавливается на основе решения уравнения P ( $t < T_q$ ) = F ( $T_q$ ) = q.

Например, если величина t имеет пормальное распределение, то имеем уравнение  $\Phi(\frac{T_q-m_t}{\sigma_t})=q$ . Отсюда  $T_q=m_t+\sigma_t\psi(q)$ , где  $\psi(q)$  — функция, обратная функции  $\Phi(z)$ .

### 5. ПРИМЕРЫ РАСЧЕТА ХАРАКТЕРИСТИК НАДЕЖНОСТИ АВИАЦИОННОЙ ТЕХНИКИ\*

### Пример 1.

В АТБ собрана статистика неисправностей амортстоек самолета Ан-2. Неисправность проявилась в виде течи масла АМГ-10 из-под верхней буксы амортстойки (отказ уплотнения). Число самолетов в АТБ — 60 шт., время наблюдения  $t_a=1500$  ч. Вариационный ряд наработок до отказа: 1, 108, 114, 214, 310, 381, 456, 480, 503, 614, 714, 738, 840, 869, 915, 1070, 1160, 1164, 1309, 1318, 1475, 1488.

Общее число амортстоек  $N=60\times 2=120$ . Число амортстоек, имевших неисправность, n=23.

- 1. Группировка данных. Интервал наработки, на котором обнаружены неисправности всех 23 амортстоек, разбиваем на 6 разрядов, каждый из которых ограничивается величиной  $\Delta\,t=250$  ч.
- 2. Расчет эмпирических характеристик надежности. Производим расчет эмпирических плотности  $(\hat{J}_i^*(t))$  и интенсивности  $(\hat{\lambda}_i^*(t))$  отказов и вероятности безотказной работы  $(P_i^*(t))$ . Данные расчета сведены в табл. 5.1.

Таблица 5.1 Расчет эмпирических характеристик

| Номер интер-<br>вала, разряда | $t_i$ , $t_{i+1}$ | $\Delta t_i$ | $\Delta n_i$ | $ \hat{f}_i^*(t) = \frac{\Delta n_i}{N \Delta t_i} $ | $L = \frac{\Delta n_i}{(N - n_{i-1})\Delta t_i}$ | $P_{i}^{*}(t) = \frac{\int_{i}^{*}(t)}{\sum_{i}^{*}(t)}$ |
|-------------------------------|-------------------|--------------|--------------|------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------|
| 1                             | ()—250            | 250          | · 5          | 1,67.10                                              | 1,67.10-4                                        | 1                                                        |
| 2                             | 250-500           | 250          | 4            | $1.33 \cdot 10^{-4}$                                 | 1,39.10-4                                        | 0,957                                                    |
| 3                             | 500-750           | 250          | 4            | $1,33.10^{-4}$                                       | $1,44.10^{-4}$                                   | 0,924                                                    |
| 4                             | 750-1000          | 250          | 3            | $1.00 \cdot 10^{-4}$                                 | $1.12 \cdot 10^{-4}$                             | 0,893                                                    |
| 5                             | 1000-1250         | 250          | 3            | $1.0 \cdot 10^{-4}$                                  | 1.15.104                                         | 0,869                                                    |
| 6                             | 1250—1500         | 250          | 4            | 1,33-104                                             | 1,58.10-4                                        | 0,842                                                    |

<sup>\*</sup> В качестве примеров использованы материалы курсовых работ, выполненных студентами в разные годы обучения. Примеры приведены в сокращениом виде.

3. Выбор теоретического распределения. По данным табл. 5.1 строим и анализируем гистограммы (рис. 5.1). По виду гистограмм можно выдвинуть гипотезу о том, что закон распределения отказов уплотнений амортстоек близок к экспоненциальному. Такой вывод можно сделать и на основе физических соображений. Действительно, можно полагать, что отказ уплотнения наступает тогда, когда нагрузки (давлсние в амортстойке) в силу случайных факторов (условия посадки, состояния ВПП и т. д.) превышают допустимые. В этом случае интенсивность отказов не будет зависеть от наработки.

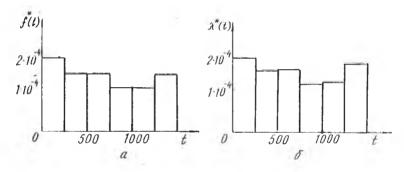



Рис. 5.1. Гистограммы характеристик надежности: a — плотность отказов;  $\delta$  — интенсивность отказов

4. Определение неизвестного параметра. Экспоненциальный закон распределения имеет один параметр— интенсивность отказов. Метод максимума правдоподобия дает следующее уравнение:

$$\frac{1}{\lambda} = T_{cp} = \frac{1}{n} \left[ \sum_{i=1}^{n} t_i + (N-n) t_a \right] = \frac{1}{23} \times$$

$$\times [16426 + (120-23)\cdot 1500] = 7040 \text{ q} \text{ if } \lambda = 1,42\cdot 10^{-4} [1/\text{q}].$$

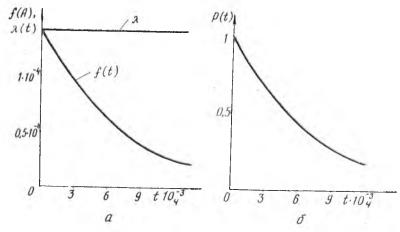

5. Проверка правильности выдвинутой гипотезы. Сходимость статистического и теоретического распределений определяем с помощью «критерия  $\chi^2$ ». Данные расчета сведены в  $\tau$ абл. 5.2.

Таблица 5.2 Расчет величины «ү<sup>2</sup>»

| Номер интер-<br>вала, разряда | t <sub>i</sub> | 11+1 | Δ / i | $\Delta n_i$ $\Delta n$ | $q_{i}(t) = \begin{cases} q_{i}(t) = \int_{t_{i}}^{t_{i}+1} \lambda e^{-\lambda t} dt \end{cases}$ | ·N q  | $\begin{vmatrix} \Delta n_i - \\ -Nq_i \end{vmatrix}$ | $u_i^2 = \frac{(\Delta \eta_i - N q_i)^2}{N q_i}$ |
|-------------------------------|----------------|------|-------|-------------------------|----------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------|---------------------------------------------------|
| ł                             | 0              | 250  | 250   | 5                       | 0,0349                                                                                             | 4,19  | 0,81                                                  | 0,1566                                            |
| 2                             | 250            | 500  | 250   | 4                       | 0,0337                                                                                             | 4,04  | -0.04                                                 | 0,0040                                            |
| 3                             | 500            | 750  | 250   | 4                       | 0,0320                                                                                             | 3,84  | 0,16                                                  | 0,0667                                            |
| 4                             | 750            | 1000 | 250   | 3.                      | 0,0314                                                                                             | 3,77  | -0,77                                                 | 0,1573                                            |
| 5                             | 1000           | 1250 | 250   | 3                       | 0,031                                                                                              | 3,72  | -0,72                                                 | 0,1394                                            |
| 6                             | 1250           | 1500 | 250   | 4                       | 0,029                                                                                              | 3,48  | 0,52                                                  | 0,0777                                            |
| 7                             | 1500           | 1500 | 250   | 97                      | 0,808                                                                                              | 96,96 | 0,04                                                  | 0,0002                                            |
|                               |                |      |       |                         |                                                                                                    |       |                                                       |                                                   |

$$\chi^2 = \sum_{i=1}^{z} u_i^2 \cong 0.602$$

Для уровня значимости  $\alpha=10\%$  и числа степеней свободы r=7-2=5 табличное значение  $\chi^2_{1-0.01}=\chi^2_{0.90}=9,24$ . Следовательно, критическая область будет иметь интервал  $(9,24\div\infty)$ . Так как подсчитанное значение критерия не попадает в критическую область, то принятая гипотеза не противоречит статистическим данным.



Puc.~5.2.~ Графики теоретических распределений: a — плотности f (t) и интенсивности  $\chi$  (t) отказов;  $\delta$  — вероятности безотказной работы

6. Построение теоретических законов распределения (рис. 5.2). Построение теоретических законов распределения производим для диапазона изменения времени от 0 до 15000 ч.

Расчетные данные сведены в табл. 5.3.

Таблица 5.3 Расчет теоретических характеристик надежности

| t     | $f(t) = \lambda e^{-\lambda t}$ | $\lambda(t) = \lambda$ | $P(t) = e^{-\lambda t}$ |
|-------|---------------------------------|------------------------|-------------------------|
| 0     | 1,42.10-4                       |                        | 1                       |
| 1500  | $1,147.10^{-4}$                 |                        | 0,808                   |
| 3000  | $0,927.10^{-4}$                 |                        | 0,653                   |
| 4500  | 0,75.10-4                       | . 4                    | 0,528                   |
| 6000  | 0,605-10-4                      | -01                    | 0,426                   |
| 7500  | $0,49 \cdot 10^{-4}$            | .42.10                 | 0,345                   |
| 9000  | $0,395 \cdot 10^{-4}$           | end.                   | 0,278                   |
| 10500 | $0,32 \cdot 10^{-4}$            |                        | 0,225                   |
| 12000 | $0,258 \cdot 10^{-4}$           |                        | 0,182                   |
| 13500 | $0,209 \cdot 10^{-4}$           |                        | 0,147                   |
| 15000 | $0.169 \cdot 10^{-4}$           |                        | 0,119                   |

7. Определение двусторонних доверительных границ [7]. Выбираем доверительную вероятность  $\beta=0,9$ . Тогда нижняя граница

$$\lambda_{\rm H} = \frac{\frac{h N \chi^2_{1-\frac{\beta}{2}+2n}}{n \left(2N-n+\frac{1}{2} \chi^2_{\frac{1-\beta}{2}+2n}\right)} = \frac{1,42\cdot10^{-4}\cdot120\cdot31,44}{23\left(240-23+\frac{1}{2} 31,44\right)} = 1,001\cdot10^{-4},$$

а верхняя

$$\lambda_{\rm B} = \frac{\frac{\lambda N \chi^{2}_{1+\beta}}{\frac{1}{2}, 2n}}{n \left(2N - n + \frac{1}{2} \chi^{2}_{\frac{1+\beta}{2}, 2n}\right)} = \frac{1,42 \cdot 10^{-4} \cdot 120 \cdot 62,86}{23 \left(240 - 23 + \frac{1}{2} 62,86\right)} = 1,87 \cdot 10^{-4}.$$

Таким образом, интервал  $(1,001\cdot 10^{-4}-1,87\cdot 10^{-4})$  с вероятностью 0,9 покрывает истинное значение  $\lambda$ .

### Пример 2.

Из общего числа N=130 колес KT-141 за время наблюдения  $t_a=4500$  ч обнаружен n=31 барабан, имеющий уста-

лостные трещины в ребордах.

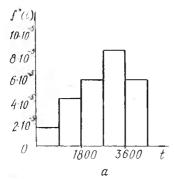
Вариационный ряд наработок до отказа имеет вид: 508, 783, 922, 991, 1092, 1649, 1753, 1892, 1965, 1970, 1981, 1989, 2070, 2385, 2738, 2896, 2901, 2982, 2985, 3007, 3111, 3207, 3274, 3500, 3796, 3929, 3935, 3977, 4056, 4080, 4392.

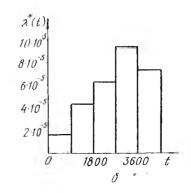
1. Группировка данных. Весь диапазон парабо-

ток разбиваем на 5 разрядов с  $\Delta t = 900$  ч.

2. Расчет эмпирических характеристик надежности. Производим расчет эмпирических плотности  $(f_i^*(t))$  и интенсивности  $(\lambda_i^*(t))$  отказов и вероятности безотказной работы  $(P_i^*(t))$ .

Данные расчета сводим в табл. 5.4.


Таблица 5.4 Расчет эмпирических характеристик


| Номер интер-<br>вала разрида | $t_i, t_{I+1}$ | $\Delta  t_i $ | $\Delta  n_i $ | $\int_{-\infty}^{\infty} (t) = \frac{\Delta n_i}{N \Delta t_i}$ | $= \frac{\sum_{k=1}^{\infty} (f)}{\sum_{i=1}^{\infty} (N - n_{i-1}) \Delta f_i}$ | $P_{i}^{*}(t) = \frac{f_{i}^{*}(t)}{\lambda_{I}(t)}$ |
|------------------------------|----------------|----------------|----------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|
| 1                            | <b>6</b> —900  | 900            | 2              | 1,71.10-5                                                       | 1,71.10-5                                                                        | 1                                                    |
| 2                            | 900-1800       | 900            | 5              | $4,27.10^{-5}$                                                  | $4.37.10^{-5}$                                                                   | 0,984                                                |
| 3                            | 1800-2700      | 900            | 7              | $5,98 \cdot 10^{-5}$                                            | $6.32 \cdot 10^{-5}$                                                             | 0,946                                                |
| 4                            | 2700—3600      | 900            | 10             | $8,55.10^{-5}$                                                  | $9,58.10^{-5}$                                                                   | 0,892                                                |
| 5                            | 3600-4500      | 900            | 7              | $5,98.10^{-5}$                                                  | 7.34.10 - 5                                                                      | 0,815                                                |

3. Выбор теоретического распределения. По данным табл. 5.2 строим гистограммы (рис. 5.3) и анализируем их. По виду гистограмм и, учитывая, что трещины реборд барабанов колес носят усталостный характер, выдвигаем гипотезу о логарифмически-нормальном распределении наработок до отказа.

4. Определение неизвестных параметров. Логарифмически-нормальное распределение имеет два пара-

метра —  $m_l$  и  $\sigma_l$ .





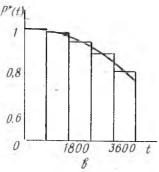



Рис. 5.3. Гистограммы характеристик падежности: a — плотности;  $\delta$  — интенсивности отказов;  $\epsilon$  — вероятности безотказной работы

По методу разделяющих разбиений имеем:

$$m_l = \frac{\ln t_1 z_2 - \ln t_2 z_1}{z_2 - z_1}$$
;  $\sigma_l = \frac{\ln t_2 - \ln t_1}{z_2 - z_1}$ .

Выбираем  $t_1 = 1000$  ч,  $t_2 = 4000$  ч, тогда

$$F^*(t_1) = 1 - P^*(t_1) = 1 - 0.994 = 0.006; F^*(t_2) = 1 - P^*(t_2) = 1 - 0.81 = 0.19.$$

113 таблицы [2—4] для нормального распределения имеем,  $z_1 = -2.5; \ z_2 = -0.88.$ 

Тогда 
$$m_l = \frac{6.91 (-0.88) - 8.294 (-2.5)}{-0.88 + 2.5} = 9.04;$$

$$\sigma_l = \frac{8.294 - 6.91}{1.62} = 0.85.$$

Оценки математического ожидания и среднеквадратического отклонения будут соответственно равны:

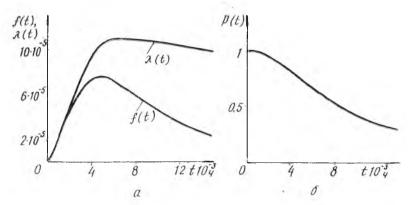
$$m_t = \exp \left[ m_t + 0.5 \,\sigma_t^2 \right] = \exp \left[ 9.04 + 0.5 \,(0.85)^2 \right] = 12088 \,\mathrm{g}.$$

$$\sigma_t = \sqrt{[\exp(\sigma_t^2) - 1] \exp(2m_t + \sigma_t^2)} =$$

$$= \sqrt{[\exp(0.72) - 1] \exp(18.08 + 0.72)} = 12386 \text{ q.}$$

5. Проверка правильности выдвинутой гипотезы. Сходимость теоретического и статистического распределений определяем с помощью «критерия  $\chi^2$ » (табл. 5.5).

Таблица 5.5 Расчетные величины «у<sup>2</sup>»


| Номер интер-<br>вала, разряда | In $t_i$ | In t <sub>i+1</sub> | $\Delta n_i$ | $q_{i}(t) = t_{i+1}$ $= \Phi\left(\frac{\ln t - m_{l}}{\sigma_{l}}\right) \begin{vmatrix} t_{l} \end{vmatrix}$ | $Nq_i$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $u_i^2 = \frac{(\Delta n_i - Nq_i)}{Nq_i}$ | $(Vq_i)^2$ |
|-------------------------------|----------|---------------------|--------------|----------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------|--------------------------------------------|------------|
| 1                             |          | 6,802               | 2            | 0,0041                                                                                                         | 0,61   | 1,39                                                   | 3,17                                       |            |
| 2                             | 6,802    | 7.495               | 5            | 0,0297                                                                                                         | 3,86   | 1,14                                                   | 0,337                                      |            |
| 3                             | 7,495    | 7,901               | 7            | 0,0557                                                                                                         | 7,2    | 0,2                                                    | 0,005                                      |            |
| 4                             | 7,901    | 8,189               | 10           | 0,0689                                                                                                         | 8,92   | 1.08                                                   | 0,131                                      |            |
| 5                             | 8,189    | 8,412               | 7            | 0,071                                                                                                          | 9,23   | 2,23                                                   | 0,539                                      |            |
| 6                             |          |                     | 99           | 0,771                                                                                                          | 100,23 | -1,23                                                  | 0,015                                      |            |

$$\chi^2 = \sum_{i=1}^k u_i^2 \cong 4,197$$

Для уровня значимости  $\alpha = 10\%$  и числа степеней свободы r = 6 - 3 = 3 критическая область будет иметь интервал  $(6.25 \div \infty)$ . Так как подсчитанное значение критерия не попадает в критическую область, то принятая гипотеза не противоречнт статистическим данным.

6. Построение теоретических законов распределения (рис. 5.4). Построение теоретических законов распределения производим для диапазона изменения времени от 0 до 20 000 ч.

Расчетные данные сведены в табл. 5.6.



Puc.~5.4.~ Графики теоретических распределений: a — плотности f (t) и интенсивности  $\lambda$  (t) отказов;  $\delta$  — вероятность безотказной работы

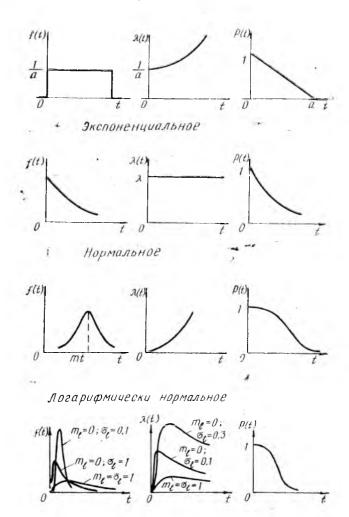
Таблица 5.6 Расчет теоретических характеристик

| $t_i$ | In $t_i$ | $\left(\frac{\ln t - m_l}{\sigma_l}\right)$ | $f(t) = \frac{1}{t  \sigma_I} \varphi \left( \frac{\ln t - m_I}{\sigma_I} \right)$ | $\begin{vmatrix} P(t) = \\ -1 - \Phi\left(\frac{\ln t}{t}\right) \end{vmatrix}$ | $\frac{1}{\sigma_l} \int_{a}^{b} \lambda(t) = \frac{\int_{a}^{b} (t)}{P(t)}$ |
|-------|----------|---------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 500   | 6,21-16  | - 3.32                                      | 0.376.10                                                                           | 0,9995                                                                          | 0,376.10-5                                                                   |
| 1000  | 6,9077   | 2,51                                        | 2,012.10 -5                                                                        | 0.9938                                                                          | $2,024.10^{-5}$                                                              |
| 5000  | 8,5172   | 0.61                                        | 7,793.10-5                                                                         | 0,729                                                                           | 10,69.10-5                                                                   |
| 6000  | 8,6995   | - 0,4                                       | 7,222.10 = 5                                                                       | 0,655                                                                           | 11.026 <b>-</b> 10 = <sup>8</sup>                                            |
| 10000 | 9,2103   | 0.2                                         | 4,6,10-5                                                                           | 0,421                                                                           | 10,926•10─5                                                                  |
| 15000 | 9,6158   | 0,6                                         | 2,48.10-5                                                                          | 0.248                                                                           | 10-10-5                                                                      |
| 20000 | 9,9035   | 1,02                                        | 1,395.10 -5                                                                        | 0,154                                                                           | 9,058-10-5                                                                   |

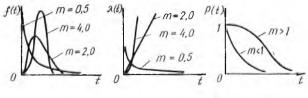
По данным табл. 5.6 строятся теоретические законы распределения отказов.

# СТАТИСТИЧЕСКИЕ ДАННЫЕ ОБ ОТКАЗАХ И НЕИСПРАВНОСТЯХ (рекомендуемая форма табляцы статистических данных об отказах и неисправностях авиационной техники)

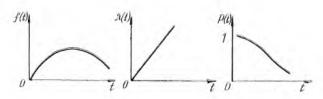
Форма1


указать наименование системы (узла, агрегата) и тип летательного аппарата

| кинврэ                                                       | миф∏                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <b>К</b> ИНЭН                                                | Choco<br>yerpa<br>orkas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| ед-<br>отка-                                                 | проП<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>продрам<br>прод продрам<br>прод продрам<br>прод прод прод<br>прод прод прод прод<br>прод прод прод прод прод прод<br>прод прод прод прод прод прод прод прод |  |  |
|                                                              | Прич                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Обстоятель-<br>ства и спо-<br>соб обнару-<br>жения<br>отказа |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Налет,<br>наработка                                          | снэ ишь                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Вид, характер<br>неисправности,                              | отказа, дата<br>обнаружения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Наименование в и шифр узла, в агрегата, детали               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| мовой<br>можекой<br>АП, ф<br>втеля                           | номе)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| ,11                                                          | № п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |


### Приложение 2

### ХАРАКТЕРНЫЕ ВИДЫ ЗАКОНОВ РАСПРЕДЕЛЕНИЙ ОТКАЗОВ И НЕИСПРАВНОСТЕЙ


### Равномерное



### Распределение Вейбулла



Распределение Рэлея



АНАЛИТИЧЕСКИЙ ВИД ХАРАКТЕРНЫХ ЗАКОНОВ РАСПРЕДЕЛЕНИЙ ОТКАЗОВ И НЕИСПРАВНОСТЕЙ

| Наименование<br>распределения | Плотность распределения                                                                                       | Интенсивность отказов                                                                                          | Вероятность<br>безотказной работы                                                          |
|-------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Равномерное                   | $\begin{cases} 0 \text{ npu } t = 0, x > a \\ \frac{1}{a} \text{ upu } 0 \leqslant t \leqslant a \end{cases}$ | $\frac{1}{a-t} \text{ iph } 0 \leqslant t \leqslant a$                                                         | $\begin{cases} 0 \text{ npn } t > a \\ 1 - \frac{t}{a} \text{ npn } 0 < t < a \end{cases}$ |
| Экспоненциальное              | 1.6-21                                                                                                        | V III                                                                                                          | $a = \lambda t$ $b = 0$ $c = \lambda t$                                                    |
| Нормальное                    | $\frac{1}{s_f} \varphi\left(\frac{t-m_t}{s_f}\right).$                                                        | $\frac{1}{\sigma_t} \frac{\psi\left(\frac{t-m_t}{\sigma_t}\right)}{1-\Phi\left(\frac{t-m_t}{\sigma_t}\right)}$ | $1-\Phi\left(\frac{l-m_t}{z_t}\right)$                                                     |
| Логарифмически-<br>нормальное | $\frac{1}{t  \sigma_l}  \varphi \left( \frac{\ln t - m_l}{\sigma_l} \right)$                                  | $\frac{1}{t^{\frac{1}{2}}} \approx \left(\frac{\ln t - m_l}{\sigma_l}\right)$                                  | $\left(\frac{1}{2l} - \frac{1}{2l}\right) \Phi = \frac{1}{2l}$                             |
| Распределение<br>Вейбулла     | $\frac{m}{t_0} t^{m-1} l - \frac{t^m}{t_0}$                                                                   | $\frac{m}{t_0}$ $t^{m-1}$                                                                                      | -1 m                                                                                       |
| Распределение<br>Рэлея        | $\frac{t}{\sigma^{2}} e^{-\frac{t^{2}}{2\sigma^{2}}}$                                                         | 4 4 4                                                                                                          | 202                                                                                        |
|                               |                                                                                                               |                                                                                                                |                                                                                            |

### ЛИТЕРАТУРА

- і. ГОСТ 19600-74. Отчет о научно-исследовательской работе. Общие требования и правила оформления. М.: Изд-во стандартов, 1975. 16 с.
- 2. Смирнов Н. Н. и др. Эксплуатационная надежность и режимы технологического обслуживания самолетов. М.: Транспорт. 1974. 303 с.
- 3. Косточкий В. В. Надежность авиационных двигателей и силовых установок. М.: Машиностроение, 1976. 248 с.
- 4. Сменковский Е. Г. Основы анализа и расчета надежности авиационной техники. Учебное пособие. Куйбышев: КуАИ. 1980. 43 с.
- 5. Кордонский Х. Б., Мартынов Ю. А., Корсаков Б. Е. Основы статистического анализа данных с неисправностях и отказах авиационной техники. Рига: РКИИГА, 1974. 135 с.
  - 6. Венцель Е. С Теория вероятностей. М.: Наука, 1969. 576 с.
- 7. ГОСТ 17509-72. Надежность изделий машиностроения. Система сбора и обработки информации. Методы определения точечных оценок показателей надежности по результатам наблюдения.

### СОДЕРЖАНИЕ

| 1 Цель и задачи курсовой работы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Содержание и объем курсовой работы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.1. Требования к оформлению пояснительной записки.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.2. Содержание графической части проекта                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3. Методические указания по изучению и сбору материала для кур-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| совой работы в период производственной практики.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4. Методические указания по выполнению разделов курсовой работы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.1. Введение                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.2. Особенности конструкции, принции работы и условий эксплуатации объекта                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The second secon |
| 4.4. Статистические данные об отказах и неисправностях                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| объекта                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.6. Расчет характеристик падежности объекта                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4.7. Выводы и рекомендации по обеспечению заданного                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| уровня надежности объекта                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5. Примеры расчета характеристик падежности авнационной техники                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Приложение 1. Статистические данные об отказах и неисправ-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| HOCTAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| При дожение 9. Характерные вилы законов распределений от-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| казов и неисправностей                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Придожение 3. Аналитический вид характерных законов рас-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| пределений отказов и венсправностей                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| The second secon |
| JINTEDALYDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |