KyAN:6 A 224

> Министерство высшего и среднего специального образования РСФСР

Куйоншевский ордена Трудового Красного Знамен авиационный институт им.академика С.П.Королева

На дом

Кафедра "Автоматизированные системы управления"

Даборатория автоматизированных систем научных исследований АН СССР

АВТОМАТИЗИРОВАННЫЙ КОМІЛІЕКС ДЛЯ СЦЕНИВАНИЯ ХАРАКТЕРИСТИК АСНИ И ИХ КОМПОНЕНТОВ И ОБУЧЕНИЯ ПРОЕКТИРОВАНИЮ АСНИ

Лабораторная работа ж 5 подсистема измерений (Динамический режим измерений)

Составители :

доцент Орищению В.И.

доцент Павлов В.П.

доцент Пшеничников В.В.

ст.инж. Опн Ю.К.

Рецензент:

доцент Кораблин М.А.

Учебнии фонд

авиационные институт

Куйсншев - 1987

COMEPKAHME

	CTP.
I. Описание исследуемого компонента	3
2. Исследование характеристик погрешностей подсистемы из-	
мерений в динамическом режиме	3
2.1. Общая структура априорных моделей погрешностей под-	
системы измерений в динамическом режиме	3
2.2. Декомпозиция задачи исследования	5
2.3. Определение максимальных значений времен выполнения	
функциональных частей задач	6
2.3.1. Концептуальные модели времен выполнения функцио-	
нальных частей задач	6
2.3.2. Экспериментальное определение максимальных времен	
выполнения функциональных частей задач	7
3. Построение математической модели компонента	7
4. Порядок выполнения лабораторной работы	8
5. Контрольные вопросы	9
Список сокращений	9
Литература	9

Целью лабораторной работи является :

- исследование точностних характеристик подсистеми измерений (ПСИ) в динамическом режиме.

ОПИСАНИЕ ИССЛЕДУЕМОГО КОМПОНЕНТА

Назначение и описание методического, аппаратного, программного и информационного обеспечений ПСИ в динамическом режиме измерений приведено в п.п.2.І...2.5 /І/. Здесь рассмотрим лишь метрологическое обеспечение.

Погрешности измерений ПСИ в динамическом режиме определяются следующим образом

$$\Delta g\rho k(t) = \tilde{X}_{k}(t) - X_{k}(t), \qquad (I.I)$$

$$t \in [0, T_{H}), k = \overline{I, K};$$

где $\widetilde{X}_{A}(t)$ — результат измерения (оценка) параметра $X_{A}(t)$; $X_{A}(t)$ — истинное значение измеряемого параметра;

 T_{M} — длительность временного интервала, на котором производится измерение параметров $X_{A}(\xi)$, $k=\overline{I,K}$.

Целью исследования, проводимого в лабораторной работе, является определение предельных значений погрешностей ИСИ в динамическом режиме

$$\Delta g \rho k n = \max / \Delta g \rho k (t) / , \qquad (I.2)$$

$$t \in [0, T_{\rm N}) , k = \sqrt{K}.$$

- 2. ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ПОГРЕПНОСТЕЙ ПОДСИСТЕМЫ ИЗМЕРЕНИЙ В ДИНАМИЧЕСКОМ РЕЖИМЕ
- 2.1. Общая структура априорных моделей погрешностей подсистемы измерений э динамическом режиме
- Из (I.I) и (2.25) /I/ погрешности измерений в динамическом

режиме

$$\Delta g_{pk}(t) = \widetilde{X}_{k}(t_{RR}) - X_{k}(t), t \in [t_{RRH}, t_{R(RH)H}), (2.1)$$

$$k = 1, K, R = 1, N.$$

Допустим, что отличием истинных моментов дискретизации t_{RR} от номинальных t_{RRR} можно пренебречь. Тогда периоды опроса по каждому измерительному каналу равны номинальному T_{CR} . При этом (2.1) примет вид

$$\Delta g_{PR}(t) = \tilde{X}_{R}(t_{RRH}) - X_{R}(t), \qquad (2.2)$$

$$t \in [t_{RRH}, t_{R}(t_{RH})], \qquad k = I, K, \quad n = I, N$$

Преобразуя (2.2), получим

гле $\Delta_{CA}(X_R(t_{RRN})) = \tilde{X}_R(t_{RRN}) - X_R(t_{RRN}) -$ - отатическая составляющая погрешности измерения или погрешность измерения выборки $X_R(t_{RRN})$ в статическом режиме;

- имнамическая составляющая погрешности измерения.

Составляющая погрешности $\Delta_{\varphi_A}(\cdot)$ будет действительно иметь статический характер по двум причинам :

- I. Из введенного допущения (—) следует, что погрешности вноорки и запоминания $\Delta_{BR}(\cdot)$ имеют только статическую составляющую (см.п.2.2 /I/). Таким образом, только погрешности восстановлений $\Delta_{BCR}(\cdot)$ имеют динамический характер.
- 2. Погрешности восстановления $\Delta_{ec.k}(\cdot)$ равны соответствующим динамическим составляющим $\Delta_{ec.k}(t)$ погрешностей $\Delta_{ec.k}(t)$ в

$$\Delta_{gunk}(t) = \Delta_{ack}(\bar{X}(t_{RRN})),$$

$$t \in [t_{RRN}, t_{A(R+ON}), k=1, K, R=1, N].$$
(2.4)

Следовательно, динамические составляющие погрешностей измерений обусловлены только погрешностями восстановления параметров X_{A} (t) по оценкам X_{A} (t) выборок X_{A} (t).

2.2. Декомпозиция задачи исследования

Из (2.3) и (2.4) следует, что предельные значения погрешностей измерений в динамическом режиме

$$\Delta g \rho_{RR} = \max \left| \Delta g \rho_{R}(t) \right| 4$$

$$4 \max \left| \Delta \varphi_{R}(X_{R}(t_{RR})) \right| + \max \left| \Delta g \rho_{R}(X_{R}(t_{RR})) \right| =$$

$$= \Delta \varphi_{RR} + \Delta g \rho_{RR}, \qquad A = f_{0}K,$$
(2.5)

тже $\Delta_{Co,RR}$ — предельное значение погрешности измерения параметра $X_{h}(t)$ в статическом режиме;

 Δ_{sckn} — предельное значение погрешности восстановления параметра X_k (ϵ).

Величина Дожи определяется из выражения (3.9) /1/.

Определям Δ_{BCAA} , положив, что измеряемне дараметры X_{A} (+), $A = \overline{AK}$ имеют ограниченную производную

$$\max |X_{k}(t)| \leq A_{k}, k \in I, K.$$
 (2.6)

Torna

$$\Delta_{BCRR} = \max_{i} |X_{k}'(t)| \cdot T_{OH} = A_{k} T_{OH} . \qquad (2.7)$$

Таким образом, для определения Δ_{scA} необходимо знать период опроса T_{ow} , для которого должно выполняться условие (см.(3.1)/1/)

(2.8)

где $T_{kmax} = max T_{kn}$ — максимальное время выполнения функциональной части задачи (ФЧЗ) TASKR, $R=T_{kn}$;

 $T_{y}(K)$ - время, затрачиваемое на управление K задачами TASKR, $k = \overline{K}$, которое определяется из выражения (2.7) /I/.

Из величин, входящих в (2.5), (2.7), (2.8), неизвестным является только $T_{R,max}$, k=7, K.

- 2.3. Определение максимальных значений времен выполнения функциональных частей задач
- 2.3.1. Концептуальные модели времен выполнения функциональных частей запач.

При обосновании концептуальных моделей времени T_{AB} выполнения Φ ЧЗ $TASK^{k}$, k=1,K, будем полагать, что выполняются условия :

- I. Прерывания от системного таймера и системные задачи ОС РВ не изменяют времена выполнения ФЧЗ.
- 2. Времена выполнения одних и тех же машинных команд всть постоянные величины, не изменяющиеся во времени.

При этом можно принять следущее :

- I. Время выполнения подпрограммы опроса AOSRA есть детерминированная величина, зависящая от значения нормализованного напряжения $\mathcal{L}_{k}(t)$ на выходе программно-неуправляемой части измерительного канала (ПНУИК). Это уже следует только из того, что время преобразования АЦП-I4, которое входит в состав времения выполнения подпрограммы опроса, есть переменная величила, зависящая от преобразуемого напряжения.
- 2. Время выполнения подпрограмми тарировки TAR4 есть детерминированная величина, зависящая от кодового представления $\tilde{\mathcal{L}}_{A}(\mathcal{L}_{AR})$ (см.п.4.2 /3/).

3. Время записи в последовательный отфер *виг* есть постоянная величина.

Таким образом, времена T_{RR} выполнения ФЧЗ TASKR, $k=\sqrt{K}$, равные суммам трех указанных выше времен с учетом вызывающей программы, представляют собой детерминированные величины, зависящие от значений напряжений на выходе ПНУИК R UR CCO, $R=\sqrt{K}$.

2.3.2. Экопериментальное определение максимальных времен выполнения функциональных частей задач

Оценки максимальных времен T_{AR} выполнения $\Phi T TASKA, k \sim 1, K$ определяются следующим образом

$$\widetilde{T}_{k,max} = max \ \widetilde{T}_{k} (u_m), \ m = i_m, \ k = i_k K$$
 (2.9)

где

$$\widetilde{T}_{R}(U_{m}) = \widetilde{T}_{mR}(U_{m}) + \widetilde{T}_{R}(U_{m}) + \widetilde{T}_{S} - \qquad (2.10)$$

- оценка времени выполнения ФЧЗ ТАКК, полученная на основании результатов прямых измерений времен выполнения подпрограмы опроса AOSRA, тарировки ТАКА и буферизации ВUFFER;

 U_{RR} - значение фактора (напряжения на выходе ПНУИК).

Напряжения U_m , m-M задаются всточником калиброванных напряжений Φ -7046/6 (см. Рис. 7/5/).

3. ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОЛЕЛИ КОМПОНЕНТА

Погрешности измерений в динамическом режиме определяются из соотношения

где Δ_{CPRR} - предельное значение погрешности измерения параметра X_R (t) в статическом режиме;

 $\Delta_{cc,k,q}$ — предельное значение погрешности восстановления. Величини $\Delta_{cc,k,q}$ определены в лабораторной работе k 4.

Величина 🕰 🚜 может быть найдена из соотношения, следующего из (2.7)...(2.9) и (4.2) /I/ :

$$\Delta_{BCRR} = A_{A} \left(\sum_{k=1}^{\infty} \tilde{T}_{Amax} + \hat{T}_{r}(k) \right).$$

где оценка сверху $\widehat{T}_{r}(K)$ временя $T_{r}(K)$ на управление K задачами $TASKA, A=\sqrt{K}$ определена в лабораторной работе $\frac{1}{2}$ 3, а оценен \widehat{T}_{A} , $A=\sqrt{K}$ максимальных времен T_{AMAX} , $K=\sqrt{K}$ выполнения Φ ЧЗ TASKA, $A=\sqrt{K}$ определяются в соответствии с п.2.

4. ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

При выполнении лабораторной работы студент должен сделать следующее :

- І. Получить у преподавателя номер индивидуального задания.
- 2. Изучить методические указания к лабораторной работе. Подготовить ответы на контрольные вопросы.
- 3. Подготовить исходные данние для выполнения лабораторной работы в соответствии с требованиями, приведенными в /4/.
 - 4. Отчитаться преподавателю по изученному материалу.
- 5. Провести экспериментальное исследование динамических карактеристик ФЧЗ на АК-ОІ. Порядок запуска лабораторного эксперимента в диалоговом режиме приведен в /4/.
- 6. Провести анализ полученных результатов и построить математическую модель ПСИ в динамическом режиме измерений.
- О*ормить отчет по лабораторной работе в состветствии с требованиями, изложенными в п.5 /5/.
 - 8. Отчитаться по лабораторной работе.

5. KOHTPOJILHLE BOILPOCH

- 2. Как соотносятся статическая и динамическая составляюще погрешности ПСИ при различном числе каналов К (определить по полученным в лабораторной работе результатам)?
 - 3. Каким требованиям должни удовлетворять задачи ТАЗКА, А-ТК ?
- - 5. Чем определяется план проводимого эксперимента ?
- 6. По каким причинам могут отличаться истинные моменти дискретизации измеряемых параметров от номинальных ?

CHICOR CORPANIESHIN

ПСИ — подсистема измерений

ПНУИК – программно-неуправляемая часть измерительного каналь

ФЧЗ - функциональная часть задачи

MATERIATY PA

- І. Автометизированный комплекс иля спенивания карактеристик АСН в их компонентов и обучения проектированию АСНИ. Лабораторная работа В 4. Подсистема измерения: Статический режим измерений. /КуАИ. —Куйбышев. —1987.
- Автоматизированный комплекс для оценивания характеристик АСНИ.
 и их компонентов и обучения проектированию АСНИ. Лабораторная

- работа № 3. Подсистема управления АСНИ. /КуАИ. -Куйбышев. -1987.
- Автоматизированный комплекс для оценивания характеристик
 АСНИ и их компонентов и обучения проектированию АСНИ. Лабораторная работа № 1. Система измерения характеристик АСНИ и их компонентов. /КуАИ. -Куйбышев. -1986. -С.76.
- 4. Автоматизированный комплекс для оценивания характеристик АСНИ и их компонентов и обучения проектированию АСНИ. Варпанти индивидуальных заданий по лабораторным работам и порядок проведечия экспериментальных исследований. /КуАИ. -Куйбышев.-1987.
- 5. Автоматизированный комплекс для оценивания характеристик АСНИ и их компонентов и обучения проектированию АСНИ. Общие принципы построения. /КуАИ. -Куйбышев. -1986. -C.58.

Подписано в печать 16.06.87. Формат 60ж84/1/16. Бумага обёрточная белая. Офсетная печать.

Усл. п.ч. 0.75 Уч. кап. л. 0.75 Тарах 50 акв.

Заказ № 350 Бесплетно.

г. Куйбинев, КуАИ, Ульяновская, 18 учесток оперативной политрафии.