MINISTRY OF SCIENCE AND HIGHER EDUCATION OF THE RUSSIAN FEDERATION

SAMARA NATIONAL RESEARCH UNIVERSITY
(SAMARA UNIVERSITY)

CMSIS-RTOS FOR CORTEX-M3 MICROCONTROLLERS

PexoMEHII0OBaHO pPEeNAKIOHHO-U3/AaTENbCKUM COBETOM (DeIepaIbHOrO TOCYJapCTBEHHOTO
ABTOHOMHOTO 00pa3oBaTeNbHOTO y4YpeXIOeHHs Bbicmiero oOpasoBanus «Camapckuit
HallMOHANbHBINA HCCIeA0BaTEIbCKUM yHUBepcuTeT uMeHH akagemuka C.I1. KoponeBa» B kauecTBe
METOAMYECKUX yKa3aHWH il cTydeHToB (CaMapcKOro YHHBEPCHTETa, OOyYaOLIMXCS
110 OCHOBHBIM O6pa30BaTe.HBHBIM mnmporpaMMaM BBICHIETO O6pa30BaHI/IH M0 HaIpaBJICHUAM

nojaroroku 11.04.01 Paguorexuuka, 24.04.01 PakeTHbIe KOMIUIEKCHI 1 KOCMOHABTHKA

Compilers: I.A. Kudryavtsev,
D.V. Kornilin,
0.0. Myakinin

SAMARA
SAMARA UNIVERSITY PUBLISHING HOUSE
2020

VIK 004.382.7(075)+811.111(075)
BBK 32.973.2657+811.2Anrx 57

Compilers: I.A. Kudryavtsev, D.V. Kornilin, 0.0. Myakinin

Reviewer: Dr. M.P. Kalaev, Cand. of Tech. Sc.

CMSIS-RTOS for CORTEX-M3 microcontrollers: laboratory training guide /
Compilers: I.A. Kudryavtsev, D.V. Kornilin, O.0. Myakinin. — Samara: Samara University Pub-
lishing House, 2020. — 16 p.

The guide is focused on the development of RTOS-based software for microcontrollers with
the Cortex-M3 core. Main techniques of development and debugging with CMSIS-RTOS are
demonstrated.

The guidelines are intended for the students of 11.04.01 Radioengineering, 24.04.01 Space
Vehicle Systems and Cosmonautics. Laboratory training with CMSIS-RTOS may be performed
within the courses «Digital Devices and Microprocessors», «Fundamentals of microprocessor
systems and programming microcontrollersy.

The guide is prepared at the Department of Laser and Biotechnical Systems.

YJIK 004.382.7(075)+811.111(075)
BbbK 32.973.2647+811.2Aurn a7

© Samara University, 2020

CONTENT

0o U Tox o] o TSRO 4
1 Creating RTOS-based Project........cccciieiieiieiieeiee e 4
2 Preemptive DENAVIONcccuv it 6
3 RESOUICE SNAING....ctieiiiiiiie et sreesree e 7
A IMIULEXES ..otttk ettt e et e et e e ekt e e e kbt e e et b e e e e bt e e e enbe e e e anre e e e neeas 7
RO 1 {[or= L IRT=Tox o] SRR 7
B SEMAPNOIES. ... ei ettt et e et e et e e b e e e e ae e reens 7
A = U0 TSRS 8
8 MESSAPE QUEUESeeeveieiiiiesitieeiee ettt stt e sttt e et et e e ssb e e snb e e st e e s be e e neeenneas 9
O THread PrIOFITIES ...cc.eeiie et aeens 9
(=] =] TSRS 9
F AN o] 0 1=] 1T LG TSR SPPR 11
APPENAIX Bt ra e 12
N 0] 0 =TT |G PSSR 15

Introduction

Operating system is a popular instrument, used to improve functionality of
MCU-based digital devices. Main advantages, provided by operating systems, in-
clude easy portability between various platforms, executing several tasks in paral-
lel, easier implementation of trivial functions etc. Real Time Operating Systems
(RTOS) are popular because of their compact cores and opportunity to ensure un-
interruptible execution of a certain thread, if needed. It is recommended to study
[1] for better understanding RTOS fundamentals.

This guide is focused on CMSIS-RTOS v.2, intended for CORTEX architec-
tures. Main functionality of this RTOS will be investigated using CORTEX-M3
MCU (K1986WE92QI) in Keil uVision environment. It is recommended to get
aware of CORTEX-M3 core prior to this laboratory training, using [2, 3]. This
guide does not pretend to be a manual or reference guide to RTOS, thus all the de-
tails of functional implementation should be investigated, for example, in [4].

1 Creating RTOS-based project

CMSIS-RTOS needs few operations for creating a project, using its functionali-
ty. Create an empty project, as described in [2] then add RTOS core as shown in
fig. 1.

K Manage Run-Time Environment

| | Software Component Sel. Variant Version Description
|| = € cmsis Cortex Microcontroller Software Interface Compenents
¥ CORE [v 520 CMSIS-CORE for Cortex-M, SC000, SC300 ARMvE-M, ARMvE 1-M
¥ DSP I Library | 1,60 CMSIS-DSP Library for Cortex-M, SCO00 _and SC3I00
¢ NN Lib [1.1.0 CMSIS-NN Neural Network Library
i € RTOS (API) 1.00 CMSIS-RTOS API for Cortex-M, SC000, and SC300
=K 3 213 CMSIS-RTOS AP for Cortex-M, SC000, and SC300
¥ Keil RTX5 [v Library v |5.5.0 CMSIS-RTOS2 RTXS for Cortex-M, SC000, C300 and Armv8-M (Library)
i 4 CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
i 4 Compiler ARM Compiler 1.6.0 Compiler Extensions for ARM Compiler 5 and ARM Compiler 6
i 4 Device Startup, System Setup
i 4% Drivers Select packs 'ARM.CMSIS.3.20.x" and 'Keil. MDK-Middleware.5.1.x" for compatibility
i 4 File System MDK-Plus v |6.11.0 File Access on various storage devices
R Graphics MDK-Plus + | 5.46.5 User Interface on graphical LCD displays
1 € Network MDK-Plus v | 7.10.0 IPv4 Networking using Ethernet or Serial protocols
i & USB MDK-Plus ~|6.13.0 USB Communication with various device classes

Fig. 1. Adding RTOS2 support to a project

In RTOS projects all the user functionality is concentrated in threads, thus main
function usually performs only initialization of RTOS, core, peripheral modules
and user structures. RTOS is initialized by the function osStatus t

4

osKernellnitialize (void). Then user threads are created by calling osThreadld_t
osThreadNew (osThreadFunc_t func, void * argument, const osThreadAttr_t
* attr). When everything is prepared, it is necessary to start scheduler by calling
osStatus_t osKernelStart (void). This line will be the last, executed in main func-
tion. All necessary prototypes are declared in rtx_os.h file, which is necessary to
add by #include <rtx_os.h> line.

RTOS configuration can be easily done, using RTX_config.h. Note that you
can edit this file in text form or as a wizard, as shown in fig.2. For our first exper-
iment, do not alter any settings, except unchecking Round-Robin Thread Switch-
ing. This Round-Robin switching provides preemptive behavior, discussed below.
In our experiment we will use evaluation board, described in [3], with its LCD,
used for visualization. All necessary details of using LCD are described in [3], we
need only text output in the LCD rows, performed by the function void
LCD_PutString(const char* string, uint8 t y). In our experiment, we create
eight threads, writing into separate lines of the LCD and observe their behavior.

_] mainc _] RTX Configh*] startup MDR32FSQns | Threads_simplec °] i osh

Epand Al | Collapse M1 Help I~ Show Grid
Option Value
System Configuration
Global Dynamic Memaory size [bytes] 4096
Kemnel Tick Frequency [Hz] 1000

Round-Robin Thread switching r

ISR FIFO Queue 16 ¢| Enables Round-Robin Thread switching
Object Memeory usage counters [

Thread Configuration

Timer Configuration

Event Flags Configuration

Mutex Configuration

Semaphore Configuration

Memeory Pool Configuration

Message Queue Configuration

Event Recorder Configuration

Round-Robin Thread switching
Enables Round-Robin Thread switching.

_W{\(onﬂguram« Wizard gr
Fig. 2. RTOS configuration

Create the file main.h and copy there the code from Appendix A, then create
another file threads.c and copy there the code from Appendix B. You can see that
the functions are identical except the line row, where the text is written and the
number of task. Calling osDelay(1); at the end of the loop is necessary to yield the
control to scheduler, however, other ways are possible.

5

Configure the project for the placement in RAM, as shown in fig.3, build it and
run as described in [2]. You can see that all the threads are running synchronously
and the numbers, written at LCD, are changing almost simultaneously.

Read/Only Memory Areas Read/Wnte Memory Areas

default off-chip Start Size Startup default off-chip Start Size Noinit
~ RoMI: | [™ RAMI: | | r
RoMZ | [~ RAMZ | [m
™ ROM3: | | ™ RAM3: | [r

on-chip on-chip

~ IROM1: |[®x20000000 [0x4000 ¥ IRAM1: [%x20004000 [0x4000 r
™ IROM2 | [™ IRAMZ | | r

Fig. 3. Memory configuration for RAM-based experiment

In this case, the functionality of the threads does not require much CPU time
and all the threads are having the same priority, which is not the case for all the
tasks. In real conditions, we often have threads, taking various amount of CPU
time and maybe having various priorities.

2 Preemptive behavior

Let’s imitate various requirements of CPU time in two threads. Add for (int
1=0; i<1000000; i++); into the threads One and Two just before the line, writing in
LCD. You can see that despite of the slowing only two threads, all other threads
became visibly slower. The reason is that the all the threads have to wait when
slow ones yield the control. In this case, preemptive behavior can improve the situ-
ation. In Round-Robin Thread Switching a thread is suspended by the scheduler
after the timeout is expired, regardless of the completion of the operation and the
control is transferred to another waiting thread. In this case all the threads get CPU
time in accordance with their priority level, thus in case of equal priorities CPU
time is shared equally. Put Round-Robin Thread Switching in RTOS settings in
checked state (fig. 2), compile the project and run the program. We can see that the
threads, where we did not insert any delays, work quickly. However, the LCD
works with some glitches. The reason is in thread switching, when writing to LCD
by LCD_PutString has not completed.

3 Resource sharing

In case like the one, we have now, when the threads should share the resources
(Operation of writing to LCD has to be completed before the scheduler switch the
threads). There are several solutions: mutexes, critical sections, semaphores and
flags.

4 Mutexes

Mutex is a binary semaphore, which can be in one of two states, displaying the
availability of a re-source. A thread, trying to access a resource, should try to ac-
quire a mutex. If the resource is not available, the thread is suspended, until its re-
lease by a current owner.

Declare a mutex by inserting osMutexld_t Mutexld; into declarative part and
create it by Mutexld = osMutexNew(NULL); in main.c. Then insert into thread
functions osMutexAcquire(Mutexld,osWaitForever); prior to calling
LCD_PutString and release mutex by calling osMutexRelease(MutexId); just
after it. To make Mutexld visible in the file threads.c it is necessary to declare it
in this file with extern attribute. You should correct all the thread functions. Run
the project and observe changes. Change Round-Robin settings and study, how it
affects the performance.

5 Critical sections

Critical sections are not explicitly declared in CMSIS-RTOS, however one can
prevent switching by the scheduler with the help of int32_t osKernelLock (void).
Insert osKernelLock() and osKernelUnlock() instead of
osMutexAcquire(Mutexld,osWaitForever); and osMutexRelease(Mutexld);
and com-pare with mutex usage.

6 Semaphores

Semaphore is used, when one need to provide restricted access to a resource for
several threads (in-stead of atomic access by the only thread, provided by mutex-
es). In our experiment, we study the be-havior of a semaphore, limiting access to
LCD by four threads. Declare the semaphore (osSemaphoreld t
osSemaphoreld;) and create it, calling osSemaphoreld = osSemaphoreNew
(4,4 NULL).

Insert calls to osSemaphoreAcquire(osSemaphoreld,osWaitForever); before
while(1) into all thread functions. Do not forget to declare your semaphore ID in
the file threads.c with extern attribute. Then insert into any four functions after
the call to osKernelUnlock() the following block:

if (Count>400)
{

osSemaphoreRelease (osSemaphoreld) ;

return;

}

These four threads will have completed after variable Count reaches 400, then
waiting functions can acquire the semaphore. Investigate this behavior.

7 Flags

There are two types of flags in CMSIS-RTOS: event flags and thread flags. You
can see more about these objects in [4]. We will use event flags to inform thread
about an event (completion of ADC con-version). Details of ADC behavior and
settings were described in [3], thus we do not discuss them again here. Copy the
code, configuring ADC, from Appendix C to the thread function Thread One (be-
fore while(1)). Now this thread will wait for event flag, which is set in the interrupt
handler. Copy the code of the handler from Appendix C into main.c file.

Declare the event (osEventFlagsld t event;) and create it, calling event =
osEventFlagsNew(NULL); in the main.c file. Investigate the code and check data
displaying, carefully changing the voltage with the help of TRIM. The code, used
in this experiment may require more code memory, than used before. Select appro-
priate settings for memory configuration, as shown in fig. 3. Data manipulations,
executed by threads, can require more space, than allocated by default. You can
change this setting, creating thread, as shown below or directly changing settings
in ThreadAttr structure.

ThreadId[0] = osThreadNew (Thread One,NULL, & (0osThreadAttr t)
{.stack size=400});

The process of selection is not straightforward, but you can see some evalua-
tions, using menu View/Watch Windows/RTX RTOS. It is recommended to have
no more than 80% of stack usage.

8 Message Queues

Message queues are described in [4]. They provide a buffer of FIFO type, which
can be used for message exchange. We may investigate message queues, basing on
the previous experiment. Substitute events by queues using the following lines:

1.Declaration - osMessageQueueId t MsgQueue;
2.Creation - MsgQueue = osMessageQueueNew (4, 4,NULL) ;

3.Writing - uintlé t digit = MDR ADC->ADC1 RESULT &
ADC_RESULT Msk;

osMessageQueuePut (MsgQueue, &digit, osPriorityNormal, 0);

4.Reading - osMessageQueueGet (MsgQueue, &data, NULL, O0U);

data should be a doubleword (uint32_t) placeholder. Make the changes and inves-
tigate the code be-havior.

9 Thread priorities

Thread priorities can be set within a range from osPriorityLow to osPriori-
tyRealtime with some additional grades, as described in [4]. Changing this value
during thread creation phase, similar to stack size, as shown above, investigate
RTOS behavior and make conclusions.

References

1.Cooling, J. Real-time Operating Systems: Book 1. — The Theory (The engi-
neering of real-time embedded systems) / J. Cooling. — Lindentree Associates,
2013.

2.Kudryavtsev, I.A. Software development for Cortex-M3 in Keil pVision:
Guide / I.LA. Kudryavtsev, D.V. Kornilin, O.0. Myakinin. — Samara: Samara Na-
tional Research University, 2020. — 23 p.

3.Kudryavtsev, I.A. Studing of peripherals of Cortex-M3 in Keil pVision:
Guide / I.A. Kudryavtsev, D.V. Kornilin, O.O. Myakinin. — Samara: Samara Na-
tional Research University, 2020. — 25 p.

4. CMSIS-RTOS2 Documentation. — URL: https://www.keil.com/pack/doc/
CMSIS/RTOS2/html/index.html (accessed: 10/15/2019).

10

https://www.keil.com/pack/doc/%20CMSIS/RTOS2/html/index.html
https://www.keil.com/pack/doc/%20CMSIS/RTOS2/html/index.html

Appendix A

#include <rtx os.h>
#include "lcd.h"

void Thread One (void *argument) ;

void Thread Two (void *argument) ;

void Thread Three (void *argument) ;

void Thread Four (void *argument) ;

void Thread Five (void *argument);

void Thread Six(void *argument) ;

void Thread Seven (void *argument);

void Thread Eight (void *argument);

static osThreadAttr t ThreadAttr[8];
osThreadId t ThreadId[8];

int main ()

{

LCD_Init();

osKernelInitialize();

ThreadId]
ThreadId][
ThreadId][
ThreadId]
ThreadId][
ThreadId][
ThreadId]

[

]
]
]
]
]
]
]
ThreadId[7]

0
1
2
3
4
5
6
7

4

osThreadNew (Thread One,NULL, &ThreadAttr|
osThreadNew (Thread Two,NULL, &ThreadAttr|
osThreadNew (Thread Three,NULL, &ThreadAtt
Thread Four,NULL, &ThreadAttr

(01)

(11)

(rl[2])

([3]
osThreadNew (Thread Five,NULL, &§ThreadAttr[4]

(51)

(r[6

(r[7

]
) ;
) .

4

osThreadNew

osThreadNew (Thread Six,NULL, &ThreadAttr| ;
osThreadNew (Thread Seven,NULL, &ThreadAtt 1)
osThreadNew (Thread Eight, NULL, &ThreadAtt 1)

osKernelStart () ;

}

11

4

.
14
4

Appendix B

#include <rtx os.h>
#include "lcd.h"

void Thread One (void *argument)
{

int Count=0;

char Buffer([32];

while (1)

{
sprintf (Ruffer, "Task 0, Count=%d", Count++);

LCD PutString(Buffer,0);
osDelay (1) ;
}

void Thread Two (void *argument)
{

int Count=0;

char Buffer[32];

while (1)

{
sprintf (Buffer,"Task 1, Count=%d", Count++);

LCD PutString(Buffer,1);
osDelay (1) ;
}

void Thread Three (void *argument)
{

int Count=0;

char Buffer([32];

while (1)

{
sprintf (Buffer,"Task 2, Count=%d", Count++);

LCD PutString (Buffer, 2);
osDelay (1) ;
}

12

void Thread Four (void *argument)
{

int Count=0;

char Buffer([32];

while (1)

{
sprintf (Buffer, "Task 3, Count=%d", Count++);

LCD PutString(Buffer, 3);
osDelay (1) ;
}

void Thread Five (void *argument)
{

int Count=0;

char Buffer[32];

while (1)

{
sprintf (Buffer, "Task 4, Count=%d", Count++);

LCD PutString(Buffer,4);
osDelay (1) ;
}

void Thread Six(void *argument)
{

int Count=0;

char Buffer([32];

while (1)

{
sprintf (Buffer, "Task 5, Count=%d", Count++);

LCD PutString(Buffer,5);
osDelay (1) ;
}

void Thread Seven (void *argument)

{

int Count=0;

13

char Buffer[32];
while (1)

{
sprintf (Ruffer, "Task 6, Count=%d", Count++);

LCD PutString(Buffer, 6);
osDelay (1) ;
}

void Thread Eight (void *argument)
{

int Count=0;

char Buffer|[32];

while (1)

{
sprintf (Buffer,"Task 7, Count=%d", Count++);

LCD PutString (Buffer,7);
osDelay (1) ;
}

14

Appendix C

void Thread One (void *argument)
{

char Buffer[32];

ADC InitTypeDef sADC;

ADCx InitTypeDef sADCx;

RST CLK PCLKcmd (RST CLK PCLK ADC | RST CLK PCLK PORTD,
ENABRLE) ;

PORT InitTypeDef Nastroyka;

Nastroyka.PORT Pin = PORT Pin 7;

Nastroyka.PORT OE = PORT OE IN;

Nastroyka.PORT MODE = PORT MODE ANALOG;

PORT_Init (MDR_PORTD, &Nastroyka);

ADC DeInit();

ADC StructInit (&sADC);

sADC.ADC SynchronousMode= ADC SyncMode Independent;
ADCx StructInit (&sADCX);

sADCx.ADC ClockSource= ADC CLOCK SOURCE CPU;
SADCx.ADC_SamplingMode= ADC SAMPLING MODE SINGLE CONV;
SsADCx.ADC ChannelNumber= ADC CH ADC7;

sADCx.ADC Channels= 0;

SsADCx.ADC VRefSource= ADC VREF SOURCE INTERNAL;
SsADCx.ADC IntVRefSource= ADC INT VREF SOURCE INEXACT;
SsADCx.ADC Prescaler= ADC CLK div None;

MDR ADC->ADC1l STATUS = (1 << ADC STATUS ECOIF IE Pos);
NVIC SetPriority(ADC IRQn, 1);

NVIC EnableIRQ (ADC IROn) ;

ADCl Init (&sADCx);
ADC1 Cmd (ENABLE) ;

while (1)
{
ADCl Start();
osEventFlagsWait (event, 0x00000001, osFlagsWaitAny,
osWaitForever) ;
sprintf (Buffer, "Task 0, Result=0x%0X", MDR ADC->ADCl RESULT
ADC_RESULT Msk) ;
osKernelLock () ;
LCD PutString (Buffer,0);
osKernelUnlock () ;
osDelay (1) ;
}
}

// Interrupt handler

void ADC IRQHandler (void)

{

osEventFlagsSet (event, 0x000000010);
}

15

MeTtoanueckue MaTcpHaJibl

CMSIS-RTOS FOR CORTEX-M3 MICROCONTROLLERS

Memoouueckue ykazanus Kk 1abopamopHol pabome

CocraBurenu: Kyopaeuee Hnva Anexcanoposuu,
Kopuunun /Imumpuit Bnaoumuposuu,

Maxkunun Onez Onezoeuu

Penakrop A.B. fIpocinaBnesa

Komnrerotepnas Bepctka A.B. Spocnasiesoit

[Toamucano B mevats 30.12.2020. ®opmar 60x84 1/16.
bymara o¢cernas. Ileu. 1. 1,0.
Tupax 25 3k3. 3aka3 . Apt. — 28(P3M)/2020.

®EJEPAJIBHOE IT'OCYIAPCTBEHHOE ABTOHOMHOE
OBPA30OBATEJIbHOE YUPEX/EHUE BBICILIETO OFPA3BOBAHUA
«CAMAPCKUI HALIMOHAJIbHBIN NUCCJIEJOBATEJIbCKUN
YHUBEPCUTET UMEHU AKAJIEMHKA C.IT. KOPOJIEBA»
(CAMAPCKNM YHUBEPCUTET)

443086, Camapa, MockoBckoe mocce, 34.

N3parensctBo CamMapCKOro YHUBEPCUTETA.

443086, Camapa, MockoBckoe 1occe, 34.

