МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РСФСР

КУЙБЫШЕВСКИЙ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ АВИАЦИОННЫЙ ИНСТИТУТ имени академика С. П. КОРОЛЕВА

И З М Е Р Е Н И Е СОПРОТИВЛЕНИЙ ПРОВОДНИКОВ

Утверждено редакционно-издательским советом института в качестве методических указаний к лабораторным работам № 2-3 и 2-29 для студентов

УДК 530 (075.8)

Лабораторные работы содержат: описание схемы моста постоящого тока; описание экспериментальной установки; верядок выполнения практической части работы, включая сбработку полученных результатов; контрольные вопросы и керечень рекомендуемон литературы. Использована следующая нумерания работ: первая цифра — 2 — шифр лаборатории электричества и магнетизма, принятый на кафедре, второе число — порядковый номер работы, в соответствии с которым гронумерованы все применяемые приборы и принадлежности в лаборатории.

Лабораторные работы выполняются студентами всех

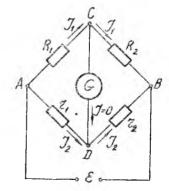
факультетов дневного и вечернего отделений.

Составители: Л. П. Муркин, Л. Ф. Сарбатова

Рецензент Л. А. Медиков

ИЗУЧЕНИЕ СХЕМЫ МОСТА ПОСТОЯННОГО ТОКА И ПРОВЕРКА ЗАКОНОВ СОЕДИНЕНИЯ РЕЗИСТОРОВ

Цель работы: измерение сопротивления резисторов с помощью моста Уитстона.


Приборы и принадлежности: реохорд, декада резисторов, гальванометр, нажимная кнопка, мост постоянного тока MO-47, два резистора с неизвестными сопротивлениями.

ОПИСАНИЕ СХЕМЫ МОСТА ПОСТОЯННОГО ТОКА

Схема моста постоянного тока, называемого иначе мостом Унтстона, представлена на рис. 1. Резисторы R_1 , R_2 , r_1 , r_2 образуют

плечи моста. В одну диагональ моста включается источник питания E, в другую — гальванометр G. Эта диагональ и называется мостом в собственном смысле. Весь процесс измерений при помощи данной схемы связан с требованием равенства нулю тока в мосте, отсюда и распространение названия моста на всю схему.

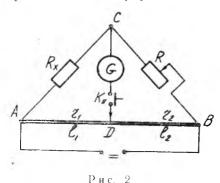
Подбирая значения сопротивлений плеч моста, можно добиться равенства потенциалов точек C и D. В этом случае ток через гальванометр G отсутствует, а мост называется уравновешенным. Пусть через резисторы R_1 и R_2

шенным. Пусть через резисторы R_1 и R_2 — Рис. 1 идет ток I_1 , а через резисторы r_1 и r_2 — ток I_2 . Тогда, учитывая

равенство потенциалов точек C и D, можно записать:

$$I_1R_1 = I_2r_1;$$

 $I_1R_2 = I_2r_2.$


Деля почленно левые и правые части этих равенств, получим

$$\frac{R_1}{R_2} = \frac{r_1}{r_2}.$$
 (1)

Это соотношение может служить для отыскания любого из четырех сопротивлений, если известны остальные три.

Упражнение 1 измерение сопротивления резисторов с помощью лабораторного моста уитстона

На рис. 2 представлена схема моста постоянного тока, используемая в данном упражнении. На этой схеме R_x — резистор с не-

известным сопротивлением, R декада резисторов, $K_{\rm H}$ — нажимная кнопка. Резисторы r_1 и r_2 являются участками длинной проволоки (реохорда), намотанной на каркас.

При перемещении контактного движка меняются значения r_1 и r_2 участков реохорда, однако величина r_1+r_2 остается постоянной. В данной работе с целью уменьшения габаритов применен спиральный реохорд, в котором высо-

коомпая проволока памотана по спирали на цилиндрическом керамическом каркасе. Перемещение движка реохорда производится с помощью ручки, выведенной на верхнюю панель корпуса реохорда. Здесь же приведены данные реохорда и пример, иллюстрирующий порядок отсчета по шкалам.

Так как проволока реохорда однородна и калибрована, то отношение сопротивлений участков реохорда r_1 и r_2 можно заменить отношением длип этих участков l_1 и l_2 :

$$\frac{r_1}{r_2} = \frac{l_1}{l_2}.$$

С учетом последнего равенства соотношение (1) имеет вид

$$R_x = R \frac{l_1}{l_2} = R \frac{l_1}{l - l_1}.$$

Недостатком схемы является то, что неконтролируемое сопротивление соединительных проводов прибавляется к значению измеряемого сопротивления и к значению сопротивления декады резисторов. По этой причине с помощью простого моста Уптстона нельзя измерять достаточно малые сопротивления.

ПОРЯЛОК ВЫПОЛНЕНИЯ УПРАЖНЕНИЯ 1

- 1. Собрать схему, приведенную на рис. 2.
- 2. Уравновесить мост в следующей последовательности:
- а) установить контактный движок на середину реохорда (как установлено в теории погрешностей, такое положение контактного движка дает возможность произвести измерение сопротивления с наибольшей точностью);
 - б) включить питание схемы;
- в) изменяя значение сопротивления декады резисторов, добиться наименьшего отклонения стрелки гальванометра от нуля (пробы на ток в гальванометре делают кратковременным нажимом на кнопку $K_{\rm H}$ во избежание возможной перегрузки гальванометра, если мост далек от равновесия);
- г) путем перемещения движка реохорда окончательно уравновесить мост. Значения сопротивления R и длины плеч l_1 и l_2 записать в протокол наблюдений (таблица).

Измеряемая величина	Измерения с мостом Уитстона					По	Нзмерения
	, R, Ом	<i>l</i> ₁ ,	l_2 ,	<i>R</i> _x , Ом	Rxcp, Om	Го расчету	с мостом МО-47
Rvi							
R_{+2}							
Последователь- ное соединение						٥	
Параллельное соединение							

3. Опыт повторяют трижды, изменяя сопротивление декады резисторов.

4. Аналогичным образом найти значение второго неизвестного

сопротивления.

5. Произвести однократное измерение сопротивления последовательно соединенных неизвестных резисторов и, наконец, параллельно соединенных резисторов.

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

- 1. По результатам отдельных наблюдений вычислить каждое R_z и найти среднее значение.
 - 2. Оценить случайную погрешность результата измерений

$$\Delta R_x = t_{\alpha n} S_R^-.$$

3. Оценить погрешность метода измерений

$$\Delta R_x = R_x \sqrt{\left(\frac{\Delta R}{R}\right)^2 + \left(\frac{\Delta l}{l_1}\right)^2 + \left(\frac{\Delta l}{l - l_1}\right)^2},$$

где $\frac{\Delta R}{R}$ определяется классом точности декады резисторов;

 Δl — погрешность отсчета по шкале реохорда с учетом чувствительности гальванометра. В данной установке $\Delta l = 2$ мм.

4. Сравнить оба вида погрешности.

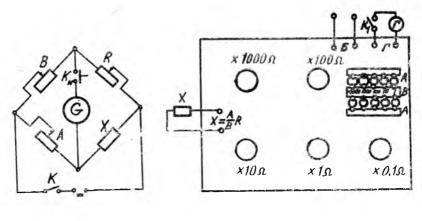
5. Записать окончательный результат измеренця.

6. Аналогичную обработку провести для второго резистора.

7. По измеренным значенням сопротивлений отдельных резисторев вычислить общее сопротивление при последовательном и нараллельном их соединении. Расчетные данные сравнить с результатами измерений.

Упражнение 2

НЗМЕРЕННЕ СОПРОТИВЛЕНИЯ РЕЗИСТОРОВ С ПОМОЩЬЮ ТЕХНИЧЕСКОГО ПЕРЕНОСНОГО МОСТА МО-47


Мост постоянного тока предназначен для точных измерений омических сопротивлений в пределах от 10 до 10⁶ Ом. Класс точности моста 0,1. Упрощенная схема моста представлена на рис. 3.

Все элементы моста находятся в общем корпусе, закрытом панелью (рис. 4). На панели установлены:

1. Клеммы для подключения источника постоянного тока и гальванометра, обозначенные соответственно «Б» и «Г».

2. Зажимы «Х» для подключения неизвестного резистора.

3. Пять ручек управления декадами переменного резистора, обозначенные « $\times 1000$ », « $\times 100$ », « $\times 10$ », « $\times 1$ », « $\times 0,1$ »,

Рпс. 3

4. Коммутатор для установки соотношения плеч A/B. Он состоит из трех контактных пластии и десяти круглых контактов, расположенных между пластинами в два ряда. Соединение контактов с контактными пластинами производится с помощью двух штекеров, устанавливаемых в соответствующие гнезда. В этом случае отношение A/B равно отношению цифр, нанесенных на пластине против гнезд, в которых установлены штекеры.

ПОРЯДОК ВЫПОЛНЕНИЯ УПРАЖНЕНИЯ 2

- 1. Подсоединить к мосту источник интания, гальванометр подли из неизвестных резисторов, используемых в упражнении 1. Гальванометр подключить через нажимную кнопку.
- 2. Установить на коммутаторе плечи моста A и B. Соотношение плеч выбирается равным 1. В этом случае штекеры устанавливаются в гнезда с надписью 1000.

Подключить к мосту питание кратковременным нажатизм на кнопку — гальванометр. Вращением рукояток декадных сопротивлений добиться отсутствия тока через гальванометр. В этом случае значение неизвестного сопротивления будет равно отсчету по декадам.

- 4. Произвести измерения сопротивления другого неизвестного резистора.
- 5. Соединить резисторы последовательно и измерить сопротивление полученной цепи.
- 6. Соединить резисторы нараллельно и измерить сопротивление полученной цепи.

7. Сравнить результаты измерений с расчетными данными, которые определяются по формулам:

$$R_{\text{посл}} = R_1 + R_2;$$

$$\frac{1}{R_{\text{парал}}} = \frac{1}{R_1} + \frac{1}{R_2}.$$

8. Сравнить полученные данные с результатами измерений в упражнении 1.

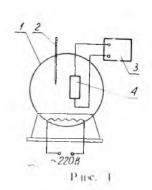
КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Выведите условия равновесия моста Уитстона.

2. Выведите формулу относительной погрешности для R_x .

3. Докажите, что относительная погрешность в определении минимальна при $l_1=l_2$.

4. Почему с помощью рассматриваемого лабораторного моста Унтетона нельзя измерять малые сопротивления?


ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНОГО КОЭФФИЦИЕНТА СОПРОТИВЛЕНИЯ МЕТАЛЛОВ

Цель работы: экспериментальное определение температурного коэффициента сопротивления металлов.

Приборы и принадлежности: электропечь, в которой установлены термометр и терморезисторы; мост постоянного тока.

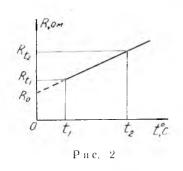
ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Схема установки приведена на рис. 1. В электропечи *I*, питаемой от сети переменного тока, смонтированы термометр *2* и терморезистор *4*. Терморезистор изготовлен из тонкой проволоки, намотанной на изолированный каркас, который для предохранения от повреждений заключен в защитный металлический кожух. Сопротивление этой проволоки можно определить с помощью моста постоянного тока *3*.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Включить электропечь.
- 2. В процессе нагревания терморезистора регистрировать его сопротивление и температуру в печи. Правила включения и работы с мостом постоянного тока приведены в работе 2-3 (второе упражнение). Сопротивление терморезистора регистрировать через 20° .
- 3. Выключить печь, когда температура в ней достигнет $\sim 120 ^{\circ} \mathrm{C}$. Регистрировать сопротивление терморезистора и температуру при охлаждении печи.
 - 4. Результаты наблюдений записать в таблицу.

Harpe	вание	Охлаждение		
t, °C	R, O _M	t,°C −	R, Om	
	<u> </u>			


ОБРАБОТКА РЕЗУЛЬТАТОВ НАБЛЮДЕНИЙ

- 1. По данным таблицы построить график R=f(t). Наличие двух серий результатов при нагревании и охлаждении терморезистора позволяет учесть гистерезис, т. е. отличие температуры терморезистора от температуры воздуха в печи за счет тепловой инерции. Это запаздывание изменения температуры имеет разные знаки при нагревании и охлаждении, поэтому результирующий график R=f(t) должен представлять собой прямую, проводимую с использованием графического усреднения нанесенных экспериментальных точек.
- 2. Зависимость сопротивления проводника R_t от температуры дается формулой

$$R_t = R_0 (1 + \alpha t) , \qquad (1)$$

где R_0 — сопротивление проводника при $t=0^{\circ}{\rm C}$. Из формулы (1) следует:

$$\alpha = \frac{1}{R_0} \frac{R_{t2} - R_{t1}}{I_2 - I_1},$$

- 3. Определить значение R_0 , экстраполируя график на t=0. Вычислить значение α , выбрав произвольно значения t_1 и t_2 и взяв по графику соответствующие значения R_{t_2} и R_{t_1} (рис. 2).
- 4. Определить погрешность результата измерения α . При этом для нахождения погрешностей R_0 и $\Delta R = R_{t2} R_{t1}$ необходимо использовать график $R = \int_{-\infty}^{\infty} f(t)$.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дать определение величинам: сопротивление, удельное сопротивление.

2. Записать приближенную зависимость удельного сопротивле-

ния от температуры для металлов.

3. Почему в формуле (1) данной работы не учитывается линейное расширение проводника? Оценить погрешность, возникающую вследствие такого допущения.

4. Начертить график $\rho = f(t)$ и объяснить ход этого графика.

5. Объяснить принцип действия моста постоянного тока и порядок работы с ним.

6. Что называется гистерезисом, как он учитывается в данной работе?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Савельев И. В. Курс общей физики. Т. 2. М.: Наука, 1964. гл. 5, § 31, 32, 33, 36; гл. 9, § 79, 82.

Составители: Леонид Павлович Муркин, Лидия Федоровна Сарбатова

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЙ ПРОВОДНИКОВ Редактор Т. К. Кретинина Техп. редактор Н. М. Каленюк Корректор А. П. Захардяева

Сдано в пабор 9.07.86 г. Подписано в печать 9.10.86 г. формат 60×84 1/16. Печать высокая. Гарпитура литературная. Бумага оберточная. Усл. п. л. 0.6. Уч.-изд. л. 0.5. Т. 2000 экз. Заказ 738. Бесплатно. Куйбышевский ордена Трудового Краспого Знамени агнационный институт им. академика С. П. Королева, г. Куйбышев, ул. Молодогвардейская, 151.