ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА»

СТАТИСТИЧЕСКИЙ КОНТРОЛЬ ТОЧНОСТИ ПРИ ПРОИЗВОДСТВЕ ДЕТАЛЕЙ

Методические указания

CAMAPA 2008

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА»

СТАТИСТИЧЕСКИЙ КОНТРОЛЬ ТОЧНОСТИ ПРИ ПРОИЗВОДСТВЕ ДЕТАЛЕЙ

Методические указания

Статистический контроль точности при производстве деталей: методические указания к лаб. работе / Самар. гос. аэрокосм. ун-т. Сост. Д.Л. Скуратов, В.Н. Трусов — Самара, 2008. — 19 с.

Излагается методика статистической обработки размеров в партии деталей, содержится описание микрометра и микрокатора.

Предназначены для студентов специальностей 150802, 160301, 160302, 200202 изучающих дисциплину: «Метрология, стандартизация и сертификация».

Подготовлены на кафедре механической обработки материалов.

Печатаются по решению редакционно-издательского совета Самарского государственного аэрокосмического университета им. академика С. П. Королева

Рецензент д-р техн. наук, проф. Н.Д. Проничев

Цель работы: ознакомление со статистическим методом оценки случайных погрешностей размеров в партии деталей; ознакомление с устройством и принципом работы микрометра и микрокатора; приобретение навыков в измерении размеров деталей и обработке полученных результатов, определение точности изготовления деталей.

1.НЕКОТОРЫЕ СВЕДЕНИЯ О ПОГРЕШНОСТЯХ, ВОЗНИКАЮЩИХ ПРИ ИЗГОТОВЛЕНИИ И ИЗМЕРЕНИИ ДЕТАЛЕЙ

При изготовлении деталей и измерении их размеров неизбежно возникают погрешности. В результате этого их действительные размеры отличаются один от другого.

Погрешности бывают двух видов: систематические и случайные.

Систематическими называются погрешности постоянные по величине и знаку или изменяющиеся по известному закону, (например, вследствие неточной настройки оборудования, деформации деталей при обработке под воздействием сил резания и температуры, отличия рабочей температуры от нормальной, износа режущего инструмента и т.д.). В большинстве случаев систематические погрешности могут быть выявлены и устранены.

Случайными называются непостоянные по величине и знаку погрешности, которые принимают то или иное значение в зависимости от множества случайно действующих факторов, таких как непостоянство припуска на обработку, механических свойств мате-

риала, сил резания, измерительного усилия и т.д., причем в общем случае ни один из этих факторов не является доминирующим.

В инженерной практике достаточно часто появляется необходимость анализа точности применяемого технологического процесса изготовления деталей.

В зависимости от степени охвата применяемой продукции различают сплошной и выборочный контроль. При сплошном контроле измерению подвергаются все детали. Однако такой контроль часто не применим из-за экономических соображений при крупносерийном и массовом производствах. В эт х случаях применяют статистический (выборочный контроль). Статистический контроль используется как для регулирования хода технологического процесса, так и для оценки точности размеров деталей в контролируемой партии.

Для анализа точностных характеристик метода обработки и оборудования проводят статистическую обработку размеров партии деталей и определяют показатели рассеивания деталей.

За наиболее вероятное значение размеров (математическое ожидание) обычно принимают в таких случаях среднеарифметическое значение \overline{X} размеров деталей в контролируемой партии:

$$\overline{X} = \frac{X_1 + X_2 + ... + X_n}{n} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

где X_i значение размера i - ой детали в партии; n - количество деталей в партии.

Отклонение каждого результата измерения X_i от среднеарифметического значения \overline{X} является погрешностью отдельного размера ΔX_i .

Основным теоретическим законом распределения случайных величин является закон Гаусса (нормальное распределение), по которому плотность вероятности случайной величины в нормированном виде описывается зависимостью

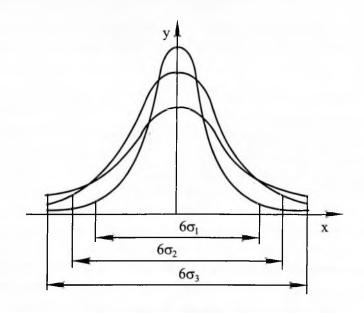
$$y(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},\tag{1}$$

где $z = x / \sigma$.

Значения плотности вероятности, заданные формулой (1) табулированы и приведены в табл. П1.

Мерой точности действительных размеров, т.е. степени их группирования относительно среднего арифметического значения, служит среднее квадратическое отклонение σ :

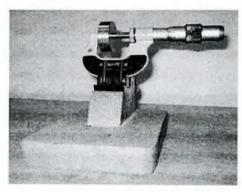
$$\sigma = \sqrt{\frac{\sum\limits_{i=1}^{n}\left(X_{i} - \overline{X}\right)^{2}}{n - 1}} \ .$$


С увеличением среднего квадратического отклонения σ увеличивается поле рассеивания размеров. Величина σ основной параметр, определяющий вид кривой распределения случайных погрешностей (рис. 1). В таком случае вероятность нахождения случайной величины X_i в интервале (c,d) при распределении Гаусса определяется по формуле

где
$$\Phi\left(\frac{d-a}{\sigma}\right) = \Phi(z_1) = \frac{1}{2\pi} \int_0^{z_1} e^{-\frac{z^2}{2}} dz$$
, $\Phi\left(\frac{c-a}{\sigma}\right) = \Phi(z_2) = \frac{1}{2\pi} \int_0^{z_2} e^{-\frac{z^2}{2}} dz$,

а - математическое ожидание случайной величины.

Вероятность нахождения случайной величины X вне интервала $(a-3\sigma,a+3\sigma)$ очень мала — всего 0,0027. В силу этого в технических приложениях считается, что практически предельное отклонение случайной величины X от ее математического ожидания равно $\pm 3\sigma$.

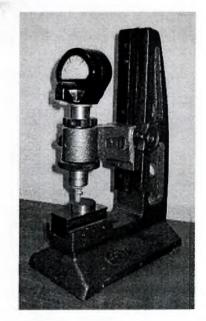

Распределение размеров (или погрешностей размеров) партии деталей по закону Гаусса возможно на настроенном станке при условии хорошей отлаженности и стабильности технологического процесса, когда влияние закономерно изменяющихся факторов отсутствует или проявляется незначительно.

Puc.~1.~ Зависимость плотности вероятности y(x) от среднего квадратического отклонения $\sigma:\sigma_1<\sigma_2<\sigma_3$

2. СОДЕРЖАНИЕ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Для оценки точности размера выполняется измерение диаметра ста круглых дисков-образцов из партии. На основании статистиче-

Puc. 2. Общий вид микрометра со стойкой


ской обработки результатов измерений образцов строятся кривые эмпирического и нормального распределения погрешностей. Степень соответствия эмпирической кривой нормальному распределению оценивается по критерию согласия χ^2 Пирсона. По

величине 6σ определяется значение поля рассеивания.

На первом этапе измерения производится предварительная сортировка партии деталей на группы с интервалом размеров в 0,01...0,02 мм. Для этой цели может быть использован микрометр. Общий вид микрометра со стойкой при измерении образцов представлен на рис. 2.

После предварительной сортировки деталей производится их измерение в пределах каждой группы с помощью микрокатора (рис. 3).

По результатам всех измерений заполняется промежуточная таблица (табл. 1), определяется размах распределения R (разность между

Puc. 3. Общий вид микрокатора со стойкой при измерении образцов

наибольшим и наименьшим размерами в партии $R = X_{max} - X_{min}$), который разбивается на k равных интервалов (k = 8...10).

Таблица 1 Результаты наблюдений размеров образцов

<i>№</i> n/n	1	2	3			N-1	N
X_i						X_{N-1}	X_N

После этого заполняется рабочая таблица (табл. 2). Размеры в ней группируются в соответствии с определенными ранее интервалами и определяется их частота n_i , т.е. количество размеров, по-

павших в каждый интервал. В эту же таблицу заносятся другие данные, полученные расчетом и необходимые для анализа.

Таблица 2

Анализ исходных данных

Интеј разм	овалы еров	ение \bar{X}_k	n_k	į.	2		X	(
Свыше	До	Среднее знач- интервала	Частота п	$X_k n_k$	$(\overline{X}_k - \overline{X})$	$(\overline{X}_k - \overline{X})^2 n_k$	$z_k = \frac{\overline{X_k} - 1}{\sigma}$	$y_{z_k} = F(z_k)$	$y_k = A \cdot y_{Z_k}$
			$\sum n_k$	$\Sigma \overline{X}_k n_k$		$\Sigma (\overline{X}_k - \overline{X})^2 n_k$			

По данным табл. 2 подсчитываются:

- среднее значение интервала

$$\overline{X}_k = \frac{\sum \overline{X}_{ki}}{n_k} \,,$$

где n_k - количество значений в интервале, i - номер размера в рассматриваемом k - ом интервале;

- среднее арифметическое значение (центр группирования)

$$\overline{X} = \frac{\sum \overline{X}_k \cdot n_k}{\sum n_k} ;$$

- среднее квадратическое отклонение

$$\sigma = \sqrt{\frac{\sum (\overline{X} - \overline{X}_k)^2 \cdot n_k}{\sum n_k - I}} \ .$$

Далее по табл. 2 строится кривая эмпирического распределения. В прямоугольных координатах по оси абсцисс откладываются интервалы размеров ΔX_k , а по оси ординат частоты n_k (рис. 4).

$$\Delta X_k = \frac{R}{k}$$
.

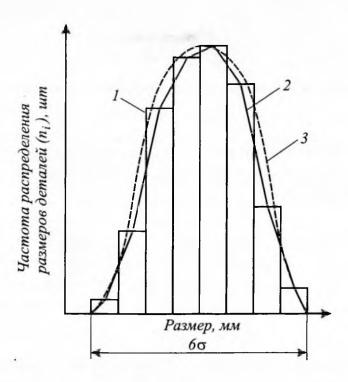


Рис. 4. Графики теоретического и эмпирического распределений; 1 — гистограмма; 2 — эмпирическая кривая (полигон); 3 — кривая нормального распределения

Полученные параметры эмпирической кривой позволяют определить величину $\delta\sigma$ и считать ее точностью исследуемого метода обработки, однако лишь в том и только в том случае, если экспериментальные результаты согласуются с гипотезой о нормальном распределении. Поэтому необходимо произвести оценку степени соответствия эмпирического распределения закону нормального распределения.

Для визуальной оценки удобно использовать совмещение графиков эмпирического и теоретического нормального распределений, построенных в одном масштабе.

Уравнение кривой нормального распределения имеет вид

$$y = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2}}.$$
 (2)

Значение независимой переменной находится по соотношению

$$z_k = \frac{\overline{X}_k - \overline{X}}{\sigma} .$$

Для построения этой кривой в том же масштабе, в каком вычерчена экспериментальная зависимость, уравнение (2) преобразуется следующим образом:

$$y_k = Ay_{z_k}\;,$$
 где
$$A = \frac{\Delta X_k \cdot \sum n_k}{\sigma}\;,$$

$$(\Delta X = X_2 - X_1 = X_3 - X_2 = ... = X_N - X_{N-1}, \sum n_k - \text{сумма частот}),$$

$$y_z = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{z^2}{2}}\;.$$

Пользуясь табл. П1 функции y(z), подсчитывают значения частот y_{z_k} и заносят их в табл. 2. Вычисленные таким образом значения y_{z_k} представляют собой координаты кривой нормального распределения, приведенные к масштабу экспериментальной зависимости. Кривая нормального распределения вычерчивается на графике пунктирной линией (см. рис. 4).

Визуальное сравнение на графике обеих кривых позволяет приближенно судить о соответствии эмпирического распределения нормальному. Такая оценка носит только качественный характер, для количественной оценки в теории вероятностей предложен ряд критериев согласия, которые позволяют объективно оценить степень соответствия эмпирического распределения закону Гаусса. В частности, для этой цели может быть использован статистический критерий χ^2 Пирсона:

$$\chi^2 = \sum_{i=1}^k \frac{\left(n_k - mP_k\right)}{mP_k},$$

где n_k - экспериментальная частота; k - число интервалов группирования; $m=\sum n_k$ - число всех результатов измерения; P_k - теоретическая вероятность попадания размера в данный интервал при нормальном законе распределения.

Для вычисления критерия Пирсона результаты измерений группируют по интервалам, охватывающим всю зону рассеивания размеров по оси абсцисс, теоретически от $-\infty$ до $+\infty$. При этом необходимо, чтобы частота в каждом интервале была не менее 5. Интервал, в котором частота менее 5, объединяют со следующим. Количество интервалов рекомендуется иметь не менее 8.

Теоретическая вероятность P_k попадания размера в интервал определяется по формуле

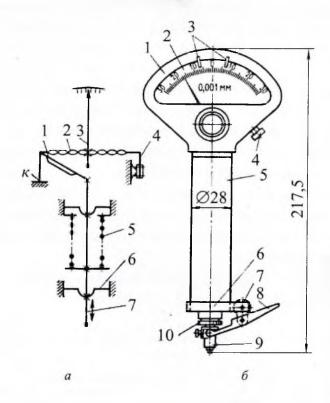
$$P_{k} = \Phi\left(\frac{\overline{X}_{k-l} - \overline{X}}{\sigma}\right) - \Phi\left(\frac{\overline{X}_{k} - \overline{X}}{\sigma}\right),$$

где Φ – интеграл вероятности (функция Лапласа) определяется по табл. П2.

Расчетная величина $\chi^2 P$ сравнивается с критическим значением χ^2 при некоторой доверительной вероятности P и числе степеней свободы f=k-3 (табл. $\Pi 3$).

Если $\chi^2 P \ge \chi^2$, то нормальный закон экспериментального распределения не отрицается. В этом случае точностная характеристика размеров образцов определяется величиной поля рассеивания, принимаемой равной величине $6\sigma = Td$. По определенной таким образом величине допуска и известном номинальном размере толщины дисков-образцов устанавливаются квалитет и основное отклонение.

Вычисление критерия Пирсона


Ин- тер- валы разме ров (от - ∞ до +∞)	n_k	$\frac{\overline{X}_k - \overline{X}}{\sigma}$	$\frac{\overline{X}_k - \overline{X}}{\sigma} \phi \left(\frac{\overline{X}_k - \overline{X}}{\sigma} \right)$		$n_k - mP_k$	$\frac{(n_k - m_k P_k)^2}{m P_k}$	
-	Σn_k	1	-	$\Sigma P_k = 1$	Ŷ.	$\chi^2 = \Sigma \frac{(n_k - m_k P_k)^2}{m P_k}$	

Обработку результатов измерений можно производить как с помощью калькулятора, так и с помощью специальной программы на ПЭВМ. Для этого достаточно ввести в машину результаты измерений (табл. 1).

Mикрокатор — это рычажно-механический измерительный прибор, преобразующий малые отклонения размеров изделий в удобные для отсчета перемещения стрелки по шкале.

Схема пружинной измерительной головки ИГП — микрокатора приведена на рис. 5. Микрокаторы применяют для высокоточных относительных измерений размеров, а также отклонений форм изделий со стойками С-I и С-II и приспособлениями, имеющими присоединительный размер 28 мм.

В качестве чувствительного элемента в микрокаторах (см. рис. 5, *а*) используется специальная ленточная пружина 2, завитая спирально от середины в разные стороны и закрепленная по концам на плоских пружинах. К середине пружины приклеена стрелка 3. Перемещение измерительного стержня 7 вызывает изменение длины пружины 2 и поворот ее средней части. Смещение стрелки

Рис. 5. Пружинная измерительная головка ИГП – микрокатор: a – схема; δ – внешний вид

относительно шкалы прибора пропорционально перемещению измерительного стержня. Преимущества пружинных передач: высокая чувствительность ленточных пружин, обеспечивающая большую точность измерений; отсутствие внешнего трения и минимальная разность прямого и обратного хода.

Как видно из рис. 5, *а*, ленточная пружина 2 закреплена на угольнике 1 и консольной пружине 4, установленной на угловом выступе. Изменяя положение пружины 4 с помощью винтов, которыми она крепится к выступу, регулируют натяжение ленточной пружины и устанавливают прибор на нуль. Измерительный стер-

жень 7 подвешен на мембранах 6 и жестко связан с угольником 1. Перемещение стержня вызывает поворот угольника вокруг точки \mathcal{K} и растяжение пружины. Измерительное усилие создается пружиной 5.

Пружинная передача микрокатора (рис. 5, δ) закреплена в корпусе 1, к которому присоединена гильза 5. Положение шкалы 2 регулируется в пределах ± 5 делений винтом 4 для установки прибора на нуль. Указатели 3 поля допуска перемещаются рычажками, расположенными на задней стороне корпуса. На конце гильзы с помощью хомута δ , зажимаемого винтом 7, установлен арретир 8, соединенный с измерительным наконечником 9 со сферической поверхностью. Фиксатором 10 измерительный стержень зажимают при транспортировании.

Основные параметры пружинных измерительных головок (микрокаторов) различных типов приведены в табл. 4.

Таблица 4 Основные параметры микрокаторов различных типов

Тип головки	Цена деления шкалы,	Диапазон измерений, мкм	Допускаем ность н участке шка	Размах показаний в делениях		
	MKM	Mich	Число,	делений	шкалы	
			до 30	св. 30		
01 ИГП	0,1	±4	0,1	0,15		
02 ИГП	0,2	± 6	0,15	0,2	1/3	
05 ИГП	0,5	± 15	0,25	0,4		
1 ИГП	1	± 30	0,4	0,6		
2 ИГП	2	± 60	0,8	1,2	1/	
5 ИГП	5	± 150	2,0	3,0	1/4	
10 ИГП	10	± 300	3,0	5,0		

Подготовка прибора к измерению заключается в его настройке на «0» шкалы по блоку концевых мер длины требуемого размера, который устанавливается на основании результатов измерения толщины дисков-образцов при помощи микрометра.

На рис. 6 показана типовая конструкция гладкого микрометра. К его основным деталям и узлам относятся скоба 1, пятка 2, микровинт 4, стопор винта 5, стебель 6, барабан 7 и трещотка 8 микрометрической головки, преобразующей вращательное движение барабана в поступательное движение микровинта.

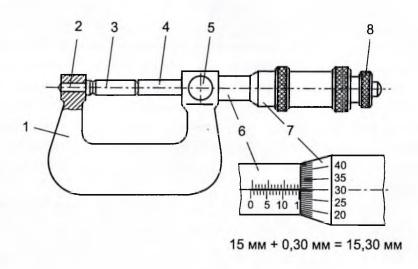


Рис. 6. Микрометр гладкий МК

На стебле 6 вдоль продольного штриха нанесена основная шкала с ценой деления a=0,5 мм и пределом измерений 25 мм. Для удобства отсчета четные штрихи шкалы, имеющие целое значение размера, отложены снизу продольного штриха. На коническом срезе барабана 7 нанесено 50 делений круговой шкалы с ценой деления, равной C=0,01 мм. За один оборот барабан 7 и микровинт 4 перемещаются на одно деление основной шкалы. Торец барабана является указателем для основной шкалы, а продольный штрих на стебле - указателем для круговой шкалы.

При измерении изделие помещают без перекоса между пяткой и микровинтом и, вращая трещотку до тех пор, пока она не начнет проворачиваться, плотно прижимают измерительные поверхности микрометра к поверхности изделия. Ближайший к торцу барабана штрих основной шкалы показывает число целых миллиметров в размере. К отсчету по основной шкале прибавляют отсчет по круговой шкале, равный произведению цены деления C на номер деления, который находится напротив продольного штриха. Отсчет на рис. 6: $l=15+0,01\cdot30=15,30$ мм.

Микрометры для размеров более 300 мм оснащены сменными или передвижными пятками, обеспечивающими диапазон измерений 100 мм. Перед измерением микрометры устанавливают в исходное (нулевое) положение, при котором пятка и микровинт прижаты, соответственно, к поверхностям установочных мер 3 (см. рис. 6) или друг к другу под действием силы, ограничиваемой трещоткой. При правильной установке нулевой штрих круговой шкалы барабана должен совпадать с продольным штрихом на стебле, а торец барабана с исходным (нулевым) штрихом основной шкалы.

Допускаемая погрешность микрометров различных классов точности для различных диапазонов измерений представлена в табл. 4.

Таблица 4 Допускаемая погрешность микрометров

Средство измерения	Класс точности микрометра	Диапазон измерений, мм	Допускаемая погрешность $\Delta_{_{\it CH}}$, мкм
	0	025	±2
Гладкий микрометр	1	0100 100200	±4 ±5
Микрометрический нутромер	-	50-75 75-150 75-600	±4 ±5 ±10

Приложение

Таблица П1

Значения функции
$$y(z) = \frac{1}{\sqrt{2\pi}}e^{\frac{-z^2}{2}}$$

Z	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
0	0,3989	0,3970	0,3910	0,3814	0,3683	0,3521	0,3332	0,3123	0,2897	0,2661
1,0	0,2420	0,2179	0,1942	0,1714	0,1497	0,1295	0,1109	0,0940	0,0790	0,0656
2,0	0,0540	0,0440	0,0335	0,0283	0,0224	0,0175	0,0136	0,0104	0,0079	0,0060
3,0	0,0044	0,0033	0,0024	0,0017	0,0012	0,0009	0,0006	0,0004	0,0003	0,0002

Таблица П2

Значения функции
$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{0}^{z} e^{-\frac{z^2}{2}} dz$$

Z	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
0	0.000	0,040	0,079	0,118	0,155	0,191	0,226	0,258	0,288	0,316
1,0	0,341	0,364	0,385	0,403	0,419	0,433	0,445	0,455	0,464	0,471
2,0	0,477	0,482	0,486	0,489	0,492	0,494	0,495	0,496	0,497	0,497
3,0	0,498	0,499	0,4993	0,4995	0,4997	0,4998	0,4998	0,4999	0,4999	0,500

T a б л u ц a II3 Значения χ^2 в зависимости от вероятности P

и числа степеней свободы

Число	Be	роятность	P	Число	Ве	Вероятность P			
степеней свободы	0,10	0,05	0,01	степеней свободы	0,10	0,05	0,01		
1	2,7	3,9	6,6	11	17,3	19,7	24,7		
2	4,6	6,0	9,2	12	18,5	21,0	26,2		
3	6,3	7,8	11,3	13	19,8	22,4	27,7		
4	7,8	9,5	13,3	14	21,1	23,7	29,1		
5	9,2	11,1	15,1	15	22,3	25,0	30,6		
6	10,6	12,6	16,8	16	23,5	26,3	32,0		
7	12,0	14,1	18,5	17	24,8	27,6	33,4		
8	13,4	15,5	20,1	18	26,0	28,9	34,8		
9	14,7	16,9	21,7	19	27,2	30,1	3,2		
10	16	18,3	23,2	20	28,4	31,4	37,6		

Учебное издание

СТАТИСТИЧЕСКИЙ КОНТРОЛЬ ТОЧНОСТИ ПРИ ПРОИЗВОДСТВЕ ДЕТАЛЕЙ

Методические указания

Составители Скуратов Дмитрий Леонидович Трусов Владимир Николаевич

Компьютерная верстка Д.Л. Скуратов Усл. печ. л. 1,19. Тираж 20 экз.