Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования «Самарский государственный аэрокосмический университет имени академика С.П. Королева»

ИССЛЕДОВАНИЕ МЕХАНИЗМА ШАССИ

Методические указания к курсовому проекту

Самара 2007

Составители: В.П. Тукмаков, А.В. Суслин, Б.Б. Косенок УДК 621.01 (075)

Исследование механизма шасси: Метод. указания к курсовому проекту / Самарский гос. аэрокосм. ун-т; *Сост. В.П. Тукмаков, А.В. Суслин, Б.Б. Косенок;* Самара, 2007. 20 с.

Методические указания содержат требования к содержанию и оформлению курсового проекта по теории машин и механизмов разделов кинематического и динамического анализа механизма.

Рекомендованы студентам инженерно-технических специальностей. Подготовлены на кафедре основ конструирования машин.

Печатаются по решению редакционно-издательского совета Самарского государственного аэрокосмического университета.

Рецензент: С.В. Фалалеев

СОДЕРЖАНИЕ

Перечень условных обозначений	4
1. КИНЕМАТИЧЕСКОЕ ИССЛЕДОВАНИЕ МЕХАНИЗМА	5
1.1. Планы положений	5
1.2. Структурный анализ механизма	6
1.3. Планы скоростей	7
1.4. Планы ускорений	9
1.5. Кинематические диаграммы	11
1.6. Сравнительный анализ результатов	13
2. КИНЕТОСТАТИЧЕСКИЙ РАСЧЕТ МЕХАНИЗМА	14
2.1. Определение нагрузок механизма	14
2.2. Кинетостатика структурных групп	15
2.3. Кинетостатика входного звена	19
2.4. Сравнительный анализ результатов	19
Список использованной литературы	20

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ

ℓ – длина звена, м;

- ф угол поворота звена, рад;
- ω угловая скорость звена, 1/с;
- V линейная скорость точки, м/с;
- Н ход поршня, м;
- t время, с;
- α ускорение точки, м/с²;
- ε –угловое ускорение звена, $1/c^2$;
- μ_{ℓ} масштаб плана положений, $\frac{M}{MM}$;
- μ_V масштаб плана скоростей, $\frac{M/c}{MM}$;

 μ_{\Box} – масштаб плана ускорений, $\frac{M/c^2}{M}$;

- μ_t масштаб времени, с/мм;
- Δ_{ω} погрешность угловой скорости, %;
- Δ_{ϵ} погрешность углового ускорения, %.
- т масса звена, кг;

G – сила тяжести, Н;

- $J_{\rm S}$ момент инерции звена, кг м²;
- F_и главный вектор сил инерции, Н;
- F сила полезного сопротивления, Н;
- F_{ур} уравновешивающая сила, Н;
- R_{ij} реакция связи і-го звена на звено j, H;
- Т_и главный момент сил инерции, Нм;
- h плечо силы инерции, м;
- μ_F масштаб плана сил, Н/мм;
- D_к диаметр колеса, м;
- R_к радиус колеса, м.

1. КИНЕМАТИЧЕСКОЕ ИССЛЕДОВАНИЕ МЕХАНИЗМА

1.1. Планы положений

Для механизма шасси (рис. 1) даны: $\ell_{AF} = 0,45$ м, $\ell_{AB} = 1,13$ м, $\ell_{BC} = 1,1$ м, $\ell_{BE} = 0,785$ м, $\ell_{ED} = 1,8$ м – длины звеньев; $x_A = -1,3$ м, $y_A = 0,67$ м, $x_0 = -2,45$ м, $y_0 = 1,08$ м – координаты осей вращения звеньев относительно стойки D, $\ell_{AS_3} = 0,5\ell_{AB}$, $\ell_{BS_4} = 0,5\ell_{BC}$, $\ell_{ES_5} = 0,5\ell_{ED}$ – положение центра масс звеньев 3, 4 и 5, $V_r = \text{const}$ – относительная скорость штока, $t_{vo} = 4$ с – время уборки.

Угол между рычагом AF и элементом AB ломающейся стойки ABE шасси определяют из условия достижения угла 90° между штоком гидроцилиндра FO и рычагом FA в среднем положении. В этом случае в крайних положениях (0-м и 6-м) углы передачи усилий на рычаг FA будут примерно одинаково отличаться от оптимального, равного 90°. Тогда $\beta = 10°50'$ – угол BAF между элементами звена 3, $\theta = 46°10'$ – угол поворота подкоса 5, $\ell_{OF_0} = 1,5$ м – суммарная длина цилиндра со штоком в выпущенном положении шасси, $\ell_{OF_6} = 0,9$ м – суммарная длина цилиндра со штоком в убранном положении шасси.

Определяют:

$$\begin{split} \ell_{AS_3} &= 0.5 \ \ell_{AB} = 0.5 \cdot 1.13 = 0.565 \text{ m}; \quad \ell_{BS_4} = 0.5 \ \ell_{BC} = 0.5 \cdot 1.1 = 0.550 \text{ m}; \\ \ell_{ES_5} &= 0.5 \ \ell_{ED} = 0.5 \cdot 1.8 = 0.900 \text{ m}; \quad H = \ell_{OF_0} - \ell_{OF_6} = 1.5 - 0.9 = 0.600 \text{ m}. \\ \text{Масштаб длины } \mu_{\ell} &= \frac{\ell_{AF}}{AF} = \frac{0.45}{45} = 0.01 \frac{\text{m}}{\text{mM}}. \\ \text{Длины звеньев AB, AC и CD на чертеже:} \\ \text{AB} &= \frac{\ell_{AB}}{\mu_{\ell}} = \frac{1.13}{0.01} = 113 \text{ mm}; \quad \text{BC} = \frac{\ell_{BC}}{\mu_{\ell}} = \frac{1.1}{0.01} = 110 \text{ mm}; \\ \text{BE} &= \frac{\ell_{BE}}{\mu_{\ell}} = \frac{0.785}{0.01} = 78.5 \text{ mm}; \quad \text{ED} = \frac{\ell_{ED}}{\mu_{\ell}} = \frac{1.8}{0.01} = 180 \text{ mm}; \\ \text{OF}_0 &= \frac{\ell_{OF_0}}{\mu_{\ell}} = \frac{1.5}{0.01} = 150 \text{ mm}; \quad \text{OF}_6 = \frac{\ell_{OF_6}}{\mu_{\ell}} = \frac{0.9}{0.01} = 90 \text{ mm}. \end{split}$$

В масштабе μ_{ℓ} вычерчивают планы положений механизма в 6 рассматриваемых равностоящих положениях поршня гидроцилиндра (рис. 1).

1.2. Структурный анализ механизма

Степень подвижности механизма определяют по формуле Чебышева для плоских механизмов $W = 3n - 2p_H - p_6$, где: n = 5 – число подвижных звеньев механизма, $p_H = 7$ – число низших кинематических пар, $p_B = 0$ – число высших кинематических пар. Тогда $W = 3 \cdot 5 - 2 \cdot 7 - 0 = 1$.

При структурном анализе начинают отделять группу Ассура второго класса наиболее отдаленную от ведущего звена, причем после отделения каждой группы оставшаяся часть должна представлять собой кинемати-

ческую цепь с тем же числом степеней свободы, что и исходный механизм. Разложение механизма на группы Ассура ведется то тех пор, пока не останется ведущее звено и стойка. Формула строения механизма имеет вид: $1 (0,1) \rightarrow 2_{22} (2,3) \rightarrow 2_{21} (4,5)$. По классификации Ассура-Артоболевского данный механизм является механизмом 2-го класса. Разложение механизма на группы Ассура и входное звено показаны на рис. 2.

Механизм 1-го класса Группа Ассура 2₂₂

Группа Ассура 2₂₂ Рисунок 2

Группа Ассура 2₂₁

1.3. Планы скоростей

Кинематическое исследование механизма начинают с определения

скорости штока относительно цилиндра V_F^r : $V_F^r = \frac{H}{t_{y\overline{0}}} = \frac{0.6}{4} = 0.15 \text{ м/c}$.

Масштаб плана скоростей $\mu_V = \frac{V_F^r}{\overline{pr}} = \frac{0.15}{30} = 0.005 \frac{M/c}{MM}$.

Скорости точки F определяют из векторных равенств:

$$\overline{V}_{F_2} = \overline{V}_{F_3}$$
 или $\underline{\overline{V}_F} = \underline{\overline{V}_F^r} + \underline{\overline{V}_F^e}$
 $\perp AF \parallel FO \perp FO'$,

где V_F – абсолютная скорость точки F при вращении вокруг точки A,

V_F^e – переносная скорость точки F при вращении вокруг точки O.

Скорость точки В находят по теореме подобия.

Скорость точки E: $\frac{\overline{V}_E}{\perp ED} = \frac{\overline{V}_B}{\perp EB} + \frac{\overline{V}_{EB}}{\perp EB}.$

Скорость точки С и центров масс звеньев 3, 4 и 5 находят по теореме подобия. План скоростей для положения 1 показан на рис. 3.

Значения линейных и угловых скоростей точек и звеньев определяют через отрезки плана скоростей:

$$\begin{array}{ll} V_F^e = \overline{rf} \ \mu_V; & V_F = \overline{pf} \ \mu_V; & V_B = \overline{pb} \ \mu_V; & V_{EB} = \overline{be} \ \mu_V; \\ V_E = \overline{pe} \ \mu_V; & V_C = \overline{pc} \ \mu_V; \end{array}$$

$$\omega_2 = \frac{V_F^c}{\ell_{FO}}; \quad \omega_3 = \frac{V_F}{\ell_{AF}}; \quad \omega_4 = \frac{V_{EB}}{\ell_{EB}}; \quad \omega_5 = \frac{V_E}{\ell_{ED}}$$

7

Рисунок 3

Направление угловой скорости звена 4 определяют следующим образом: перемещают вектор относительной скорости V_{EB} в точку E, а точку B мысленно закрепляют и по направлению вектора относительной скорости определяют направление угловой скорости звена.

Для положения 1:

Результаты вычислений заносят в таблицу 1.

Таблица 1. Линейные и угловые скорости точек и звеньев

№	V _F ^e ,	V _F ,	V _В ,	V _{ЕВ} ,	V _Е ,	ω_2 , $1/c$	ω ₃ ,	ω ₄ ,	ω ₅ ,
пол.	м/с	м/с	м/с	м/с	м/с		1/c	1/c	1/c
1	0,0946	0,1773	0,4453	0,2650	0,2718	0,0675	0,3940	0,3375	0,1510

1.4. Планы ускорений

Ускорение точки F определяют из векторных равенств:

$$\overline{\mathbf{a}}_{F_{3}} = \overline{\mathbf{a}}_{F_{2}} \text{ или } \overline{\mathbf{a}}_{F} = \overline{\mathbf{a}}_{F}^{r} + \overline{\mathbf{a}}_{F}^{e} + \overline{\mathbf{a}}_{F}^{k}$$

$$\underline{\underline{\mathbf{a}}}_{FA}^{n} + \underline{\underline{\mathbf{a}}}_{FA}^{\tau} \mathbf{0} \quad \underline{\underline{\mathbf{a}}}_{FO}^{n} + \underline{\underline{\mathbf{a}}}_{FO}^{\tau}$$

где $extsf{Q}_F$ – абсолютное ускорение точки F при вращение вокруг точки A, $extsf{Q}_F^r$ – относительное ускорение точки F при движении штока относительно цилиндра, $extsf{Q}_F^e$ – переносное ускорение точки F при вращении штока с цилиндром вокруг точки O, $extsf{Q}_F^k$ – кориолисово ускорение (возникает при переносном вращательном движении).

Так как $V_F^r = \text{const}$, то относительное ускорение $\Box_F^r = 0$. Следовательно, ускорение точки F определяют по уравнению: $\underline{\overline{\Box}}_{FA}^n + \underline{\overline{\Box}}_{FA}^\tau = \underline{\overline{\Box}}_{FO}^n + \underline{\overline{\Box}}_{FO}^\tau + \underline{\underline{\Box}}_{F2F_1}^k$. $\|FA \perp FA \|FO \perp FO \perp FO$

Вектор нормального ускорения звена направлен вдоль звена FA от точки F к точке A (к центру относительного вращения звена).

Вектор ускорения Кориолиса направлен по вектору относительной скорости $V_{\rm F}^{\rm r}$ повернутого на 90° в направлении угловой скорости ω_2 переносного движения (движения звена 2).

$$a_{F_2F_1}^k = 2\omega_2 V_F^r = 2 \cdot 0,0676 \cdot 0,15 = 0,0203 \text{ M/c}^2.$$

Ускорение точки В находят по теореме подобия.

Ускорение точки Е определяют по векторному равенству:

$$\overline{\mathbf{a}}_{E_{5}} = \overline{\mathbf{a}}_{E_{4}} \mathbf{u} \mathbf{n} \mathbf{u} \quad \underline{\underline{\mathbf{a}}_{ED}}^{n} + \underline{\overline{\mathbf{a}}_{ED}}^{\tau} = \underline{\overline{\mathbf{a}}}_{\underline{B}} + \underline{\underline{\mathbf{a}}_{EB}}^{n} + \underline{\overline{\mathbf{a}}_{EB}}^{\tau}.$$
$$\|ED \perp ED \quad \|EB \perp EB$$

Величины нормальных ускорений:

$$\begin{split} & \mathsf{Q}_{FA}^n = \frac{V_F^2}{\ell_{FA}}; \qquad \overline{\pi n}_F = \frac{\mathsf{Q}_{FA}^n}{\mu_{\mathsf{Q}}}; \qquad \mathsf{Q}_{FO}^n = \frac{(V_F^e)^2}{\ell_{FO}}; \qquad \overline{\pi n}_{FO} = \frac{\mathsf{Q}_{FO}^n}{\mu_{\mathsf{Q}}}; \\ & \mathsf{Q}_{ED}^n = \frac{V_E^2}{\ell_{ED}}; \qquad \overline{\pi n}_E = \frac{\mathsf{Q}_{ED}^n}{\mu_{\mathsf{Q}}}; \qquad \mathsf{Q}_{EB}^n = \frac{V_{EB}^2}{\ell_{EB}}; \qquad \overline{bn}_{EB} = \frac{\mathsf{Q}_{EB}^n}{\mu_{\mathsf{Q}}}. \end{split}$$

Масштабы плана ускорений:

$$\mu_{\Box_1} = \frac{\Box_F^k}{n_{FO}k} = \frac{0,0203}{20,3} = 0,001 \frac{M/c^2}{MM}, \quad \mu_{\Box_2} = 2\mu_{\Box_1} = 0,002 \frac{M/c^2}{MM}.$$

Для положения 1:

$$\begin{aligned} & \mathsf{Q}_{FA}^n = 0,1773^2/0,45 &= 0,0699 \; \text{m/c}^2; & \overline{\pi n}_F &= 0,0699/0,001 = 69,90 \; \text{mm}; \\ & \mathsf{Q}_{FO}^n = 0,0946^2/1,4 &= 0,0064 \; \text{m/c}^2; & \overline{\pi n}_F = 0,0064/0,001 = 6,40 \; \text{mm}; \\ & \mathsf{Q}_{ED}^n = 0,2718^2/1,8 &= 0,0410 \; \text{m/c}^2; & \overline{\pi n}_E &= 0,0410/0,002 = 20,50 \; \text{mm}; \\ & \mathsf{Q}_{EB}^n = 0,2650^2/0,785 = 0,0895 \; \text{m/c}^2; & \overline{bn}_{EB} = 0,0895/0,002 = 44,76 \; \text{mm}. \end{aligned}$$

Ускорения $extsf{Q}_{S_3}$, $extsf{Q}_{S_4}$ и $extsf{Q}_{S_5}$ центров масс звеньев 3, 4 и 5 находят по теореме подобия.

На рис. 3 показаны планы ускорений для положения 1.

Значения полных, относительных и угловых ускорений точек и звеньев определяют через отрезки плана ускорений:

$$\begin{split} & \boldsymbol{\Omega}_{F} = \overline{\pi f} \ \boldsymbol{\mu}_{\boldsymbol{\Omega}_{1}}; & \boldsymbol{\Omega}_{FO}^{\tau} = \overline{kf} \ \boldsymbol{\mu}_{\boldsymbol{\Omega}_{1}}; & \boldsymbol{\Omega}_{FA}^{\tau} = \overline{\pi f} \ \boldsymbol{\mu}_{\boldsymbol{\Omega}_{1}}; & \boldsymbol{\Omega}_{B} = \overline{\pi b} \ \boldsymbol{\mu}_{\boldsymbol{\Omega}_{2}}; \\ & \boldsymbol{\Omega}_{EB}^{\tau} = \overline{n_{EB}}^{e} \ \boldsymbol{\mu}_{\boldsymbol{\Omega}_{2}}; & \boldsymbol{\Omega}_{E} = \overline{\pi e} \ \boldsymbol{\mu}_{\boldsymbol{\Omega}_{2}}; & \boldsymbol{\Omega}_{ED}^{\tau} = \overline{n_{e}}^{e} \ \boldsymbol{\mu}_{\boldsymbol{\Omega}_{2}}; & \boldsymbol{\Omega}_{C} = \overline{\pi c} \ \boldsymbol{\mu}_{\boldsymbol{\Omega}_{2}}; \\ & \boldsymbol{\epsilon}_{2} = \frac{\boldsymbol{\Omega}_{FO}^{\tau}}{\ell_{FO}}; & \boldsymbol{\epsilon}_{3} = \frac{\boldsymbol{\Omega}_{FA}^{\tau}}{\ell_{FA}}; & \boldsymbol{\epsilon}_{4} = \frac{\boldsymbol{\Omega}_{EB}^{\tau}}{\ell_{EB}}; & \boldsymbol{\epsilon}_{5} = \frac{\boldsymbol{\Omega}_{ED}^{\tau}}{\ell_{ED}}. \end{split}$$

Направления угловых ускорений определяют тем же методом, что и угловые скорости (через вектор касательного ускорения относительного движения точек F, B и E).

Для положения 1:

$$\begin{split} & \textbf{Q}_{F} = 78,882 \cdot 0,001 = 0,0788 \text{ m/c}^{2}; \\ & \textbf{Q}_{FA}^{\tau} = 36,492 \cdot 0,001 = 0,0365 \text{ m/c}^{2}; \\ & \textbf{Q}_{EB}^{\tau} = 102,29 \cdot 0,002 = 0,2046 \text{ m/c}^{2}; \\ & \textbf{Q}_{ED}^{\tau} = 90,068 \cdot 0,002 = 0,1801 \text{ m/c}^{2}; \\ & \textbf{Q}_{S_{3}} = 49,476 \cdot 0,002 = 0,0990 \text{ m/c}^{2}; \\ & \textbf{Q}_{S_{5}} = 46,180 \cdot 0,002 = 0,0924 \text{ m/c}^{2}; \\ & \textbf{\epsilon}_{2} = 0,0583/1,4 = 0,0416 1/c^{2}; \\ & \textbf{\epsilon}_{4} = 0,2046/0,785 = 0,2606 1/c^{2}; \end{split}$$

$$\begin{split} & \textbf{G}_{FO}^{\tau} = 58,302 \cdot 0,001 = 0,0583 \text{ M/c}^2; \\ & \textbf{G}_B = 98,966 \cdot 0,002 = 0,1979 \text{ M/c}^2; \\ & \textbf{G}_E = 92,374 \cdot 0,002 = 0,1847 \text{ M/c}^2; \\ & \textbf{G}_C = 122,62 \cdot 0,002 = 0,2452 \text{ M/c}^2; \\ & \textbf{G}_{S_4} = 79,352 \cdot 0,002 = 0,1587 \text{ M/c}^2; \\ & \boldsymbol{\epsilon}_3 = 0,0365/0,45 = 0,0811 \text{ 1/c}^2; \\ & \boldsymbol{\epsilon}_5 = 0,1801/1,8 = 0,1001 \text{ 1/c}^2. \end{split}$$

Результаты вычислений заносят в таблицу 2.

Таблица 2. Линейные и угловые ускорения точек и звеньев

№	$C_{\rm C},$	а _{s3} ,	а _{s4} ,	а _{s5} ,	$\epsilon_2,$	$\epsilon_3,$	$\epsilon_4,$	$\epsilon_5,$
пол.	M/c ²	м/c ²	м/c ²	м/c ²	$1/c^2$	$1/c^2$	$1/c^2$	$1/c^2$
1	0,2452	0,0990	0,1587	0,0924	0,0416	0,0811	0,2606	0,1001

1.5. Кинематические диаграммы

Кинематические диаграммы строят по результатам расчета с использованием пакета прикладных программ КДАМ (кинематический и динамический анализ механизма) кафедры ОКМ. Векторная модель механизма шасси показана на рис. 4.

Результаты расчета сводят в таблицу 3.

Таблица 3. Угол пово	рота, угловые скорости и	ускорения звеньев 3, 5
1		

№ пол.	Ф ₃ , град	ω ₃ , 1/c	ϵ_3 , $1/c^2$	φ ₅ , град	ω ₅ , 1/c	$\epsilon_5,$ $1/c^2$
0	0	-0,4751	0,1802	43,762	0	-0,4786
1	16,395	-0,3940	0,0811	40,145	-0,1509	-0,1001
2	30,614	-0,3549	0,0406	33,470	-0,1919	-0,1509
3	43,769	-0,3367	0,0153	25,745	-0,2112	-0,0376
4	56,534	-0,3344	-0,0091	17,359	-0,2283	-0,0290
5	69,559	-0,3518	-0,0479	8,197	-0,2539	-0,0525
6	83,936	-0,4129	-0,1615	-2,421	-0,3115	-0,1429

Векторная модель механизма

Параметрическая формула модели

$$\begin{array}{c|c} m_1 = 4 & m_2 = 5 \\ (1, 2, 3, 4) & \phi_5 = \phi_1 + \Delta \phi_{1.5} \\ \Pi \pi. \ 4 \ (\phi_1, \phi_2) & \phi_7 = \phi_6 + \Delta \phi_{6.7} \\ V_1 = 1 & V_2 = 2 \end{array} \begin{array}{c} m_2 = 5 \\ (5, 6, 7, 8, 9) \\ \Pi \pi. \ 4 \ (\phi_6, \phi_8) \\ V_2 = 2 \end{array}$$

Рисунок 4

Кинематические диаграммы для звеньев 3 и 5 показаны на рис. 5. Масштаб по времени уборки шасси

$$\mu_{t} = \frac{t_{y\delta}}{\overline{x}} = \frac{4}{200} = 0.02 \frac{c}{_{MM}},$$

где x – отрезок в мм на диаграммах, соответствующий времени полной уборки шасси.

1.6. Сравнительный анализ результатов

Отличие результатов графоаналитического метода (метода планов скоростей и ускорений) и аналитического метода оценивают погрешностью

$$\Delta_{\omega} = \frac{\left|\omega_{\Gamma p} - \omega_{aH}\right|}{0.5 \left|\omega_{\Gamma p} + \omega_{aH}\right|} 100 \% \quad \text{и} \quad \Delta_{\varepsilon} = \frac{\left|\varepsilon_{\Gamma p} - \varepsilon_{aH}\right|}{0.5 \left|\varepsilon_{\Gamma p} + \varepsilon_{aH}\right|} 100 \% .$$

Сравнение результатов сводят в таблицу 4.

№ пол.	Метод	ω ₃ , 1/c	$\epsilon_3, 1/c^2$	ω ₅ , 1/c	ϵ_5 , $1/c^2$
	графоаналитический	0,3940	0,0811	0,1510	0,1001
1	аналитический	0,3940	0,0811	0,1509	0,1001
	погрешность, %	0	0	0	0

Таблица 4. Оценка погрешностей методов кинематического анализа

Погрешность во всех случаях ниже предельно допустимой (≤ 5 %).

Кинематические диаграммы

Рисунок 5

2. КИНЕТОСТАТИЧЕСКИЙ РАСЧЕТ МЕХАНИЗМА

2.1. Определение нагрузок механизма

Для механизма шасси (рис. 6) даны: $m_1 = 0, m_2 = 0, m_3 = q \ell_{AB}$, $m_4 = q \, \ell_4$, $m_5 = q \, \ell_5$ – массы звеньев 3 – 5; $q = 60 \,$ кг/м – масса погонного метра; m_к = 80 кг – масса колеса; F = 5000 H – сила сопротивления; $J_{S_3} = J_{S_4} = J_{S_5} = m \ell^2 / 12$ – момент инерции звеньев 3 – 5; $R_{\kappa} = 0,40$ м – радиус колеса.

Рисунок б

Определяют:

 $m_3 = q \ell_{AB} = 60 \cdot 1,13 = 67,80$ кг; $m_4 = q \ell_4 = 60 \cdot 1,1 = 66$ кг; $m_5 = q \ell_5 = 60 \cdot 1, 8 = 108$ кг;

$$\begin{split} J_{\mathrm{S}_3} &= \mathrm{m}_3\,\ell_{\mathrm{AB}}^2/12 = 67,8\cdot 1,13^2/12 = 7,2145\,\mathrm{kf}\,\mathrm{m}^2;\\ J_{\mathrm{S}_4} &= \mathrm{m}_4\,\ell_4^2/12 = 66\cdot 1,1^2/12 = 6,655\,\mathrm{kf}\,\mathrm{m}^2;\\ J_{\mathrm{S}_5} &= \mathrm{m}_5\,\ell_5^2/12 = 108\cdot 1,8^2/12 = 29,16\,\mathrm{kf}\,\mathrm{m}^2. \end{split}$$

Для звена 4 вместе с колесом ($m'_4 = m_4 + m_\kappa$) определяют положение общего центра масс S'_4 (рис. 6).

По правилам механики

$$\begin{aligned} \mathbf{a} &= \frac{\mathbf{m}_{\mathrm{K}}\,\ell\,\mathbf{S}_{4}\mathbf{C}}{\mathbf{m}_{\mathrm{K}}+\mathbf{m}_{4}} = \frac{80\cdot0.55}{80+66} = 0,3014\,\mathrm{m}; \quad \mathbf{b} = \frac{\mathbf{m}_{4}\,\ell\,\mathbf{S}_{4}\mathbf{C}}{\mathbf{m}_{\mathrm{K}}+\mathbf{m}_{4}} = \frac{66\cdot0.55}{80+66} = 0,2486\,\mathrm{m}; \\ J'_{\mathbf{S}_{4}} &= J_{\mathbf{S}_{4}} + \mathbf{m}_{4}\,\mathbf{a}^{2} + \frac{\mathbf{m}_{\mathrm{K}}\,\mathbf{R}_{\mathrm{K}}^{2}}{2} + \mathbf{m}_{\mathrm{K}}\,\mathbf{b}^{2} = \\ &= 6,655+66\cdot0.3014^{2} + \frac{80\cdot0.4^{2}}{2} + 80\cdot0.2486^{2} = 23,995\,\mathrm{kg\,m}^{2}. \end{aligned}$$

2.2. Кинетостатика структурных групп

Кинетостатический расчет механизма начинают с группы Ассура, наиболее удаленной от входного звена, т. е. группы 2₂₁ (звенья 4, 5).

Рассматривают равновесие сил группы, прикладывая к ней: $\overline{G}_4, \overline{G}_5, \overline{G}_{\kappa}$ – силы тяжести, $\overline{F}, \overline{F}_{u_4}, \overline{F}_{u_5}$ – силы инерции, T_{u_4}, T_{u_5} – моменты сил инерции, $\overline{R}_{34}, \overline{R}_{05}$ – реакции в кинематических парах.

Величины сил:

$$\begin{split} & G'_4 = m'_4 g = \left(m_4 + m_{\rm K}\right)g = \left(66 + 80\right)9,8067 = 1431,8\,{\rm H};\\ & G_5 = m_5 \,g = 108\cdot9,8067 = 1059,1\,\,{\rm H};\\ & F_{\rm H_4} = \left(m_4 + m_{\rm K}\right)\,{\rm Q}_{{\rm S}'_4} = \left(66 + 80\right)0,\!1956 = 28,561\,{\rm H};\\ & F_{\rm H_5} = m_5\,{\rm Q}_{{\rm S}_5} = 108\cdot0,\!0924 = 9,\!9781\,\,{\rm H};\\ & T_{\rm H_4} = J'_{{\rm S}_4}\epsilon_4 = 23,\!995\cdot0,\!2606 = 6,\!2541\,{\rm H}\,{\rm M};\\ & T_{\rm H_5} = J_{{\rm S}_5}\epsilon_5 = 29,16\cdot0,1001 = 2,\!9189\,\,{\rm H}\,{\rm M}. \end{split}$$

Величину ускорения О_{S'4} находят по теореме подобия (рис. 3), величины остальных ускорений взяты из таблицы 2.

Силы инерции F_{u_i} и моменты сил инерции T_{u_i} направлены противоположно соответственно векторам $O_{S'_4}$, O_{S_5} и ϵ_4 , ϵ_5 .

Силу инерции \overline{F}_{u_i} и момент сил инерции T_{u_i} приводят к одной результирующей силе. Заменяют момент сил инерции T_{u_i} парой сил:

 $T_{{\rm I}\!{}_4} = F_{{\rm I}\!{}_4} \, h_4 \; , \qquad T_{{\rm I}\!{}_5} = F_{{\rm I}\!{}_5} \, h_5 \; . \label{eq:tau}$

Плечо силы:

$$\begin{split} \mathbf{h}_4 &= \frac{\mathbf{T}_{_{\mathbf{H}_4}}}{\mathbf{F}_{_{\mathbf{H}_4}}} = \frac{6,2541}{28,561} = 0,2190 \text{ m}; \quad \overline{\mathbf{h}}_4 = \frac{\mathbf{h}_4}{\mu_\ell} = \frac{0,2190}{0,01} = 21,90 \text{ mm.} \\ \mathbf{h}_5 &= \frac{\mathbf{T}_{_{\mathbf{H}_5}}}{\mathbf{F}_{_{\mathbf{H}_5}}} = \frac{2,9189}{9,9781} = 0,2925 \text{ m}; \quad \overline{\mathbf{h}}_5 = \frac{\mathbf{h}_5}{\mu_\ell} = \frac{0,2989}{0,01} = 29,25 \text{ mm.} \end{split}$$

Силу \overline{F}_{u_i} следует переносить так, чтобы она создавала момент относительно точки S_i , направленный в ту же сторону, что и T_{u_i} . Точку пересечения линии действия силы \overline{F}_{u_i} со звеном ED (EB) обозначают через k_i (центр качания).

Схема нагружения группы Ассура 2_{21} (4, 5) показана на рис. 7.

Неизвестные силы: \overline{R}_{34}^{τ} , \overline{R}_{34}^{n} , \overline{R}_{05}^{τ} , \overline{R}_{05}^{n} . Реакцию \overline{R}_{05}^{τ} находят из условия равновесия звена 5 ($\Sigma M_{E} = 0$), полагая что $\overline{R}_{05}^{\tau} \perp ED$.

$$R_{05}^{\tau} = \frac{G_5 \bar{h}_{G5} + F_{\mu_5} \bar{h}_{\mu_5}}{\overline{ED}} = \frac{1059, 1 \cdot 0,688 + 9,9781 \cdot 0,585}{1,8} = 408,06 \text{ H}.$$

При $\overline{R}_{05}^{\tau} < 0$ необходимо сменить знак действия силы.

Реакцию \overline{R}_{34}^{τ} находят из условия равновесия звена 4 ($\Sigma M_E = 0$), полагая что $\overline{R}_{34}^{\tau} \perp EB$.

$$R_{34}^{\tau} = \frac{F\bar{h}_{F} + G_{4}'\bar{h}_{4\kappa} - F_{\mu_{4}}\bar{h}_{\mu_{4}}}{\overline{ED}} = \frac{5000 \cdot 0.2235 + 1431.8 \cdot 0.0206 - 28,561 \cdot 0.235}{0.785} = 1452.6 \text{ H}.$$

При $\overline{R}_{34}^{\tau} < 0$ необходимо сменить знак действия силы. Составляют векторное уравнение

$$\frac{\overline{R}_{05}^{n}}{\overline{R}_{05}} + \underline{\overline{R}_{05}}{\overline{F}_{15}} + \underline{\overline{G}_{5}}{\overline{G}_{5}} + \underline{\overline{G}_{4}}{\overline{G}_{\kappa}} + \underline{\overline{F}}{\overline{F}} + \underline{\overline{F}}_{14} + \underline{\overline{R}}_{34}^{\tau} + \underline{\overline{R}}_{34}^{n} = 0.$$

$$\|BE \qquad \qquad \|ED$$

План сил для группы Ассура 2₂₁ (4, 5) показан на рис. 7.

Масштаб плана сил $\mu_F = 50$ H/мм выбирают исходя из максимальной силы в группе.

Построением плана сил определяют $\overline{R}_{05}^n, \overline{R}_{05}, \overline{R}_{34}^n, \overline{R}_{34}, \overline{R}_{45}$.

$$\overline{\overline{R}}_{05} = \overline{\overline{R}}_{05}^{n} + \overline{\overline{R}}_{05}^{\tau}, \quad \overline{\overline{R}}_{34} = \overline{\overline{R}}_{34}^{n} + \overline{\overline{R}}_{34}^{\tau}, \\ \overline{\overline{R}}_{05} + \overline{\overline{G}}_{5} + \overline{\overline{F}}_{\overline{H}_{5}} + \overline{\overline{R}}_{45} = 0.$$

Значения сил определяют через отрезки плана сил:

 $R_{34} = \overline{ef} \ \mu_F = 95,449 \cdot 50 = 4772,5 \text{ H};$ $R_{05} = \overline{ge} \ \mu_F = 52,132 \cdot 50 = 2606,6 \text{ H};$

 $R_{45} = \overline{pe} \mu_F = 65,713 \cdot 50 = 3285,7 \text{ H}.$

Рассматривают группу Ассура 2₂₂ (2, 3) и прикладывают к ней: \overline{G}_3 – силу тяжести, \overline{F}_{μ_3} – силу инерции, T_{μ_3} – момент сил инерции, \overline{F}_{μ_3} – \overline{F}

 $\overline{F}_{1}, \overline{R}_{03}, \overline{R}_{43}$ – реакции в кинематических парах.

Определяют:

$$\begin{split} G_3 &= m_3\,g = 67,80\cdot9,8067 = 664,89 \text{ H}; \\ F_{\text{H}_3} &= m_3\,\text{C}_{\text{S}_3} = 67,80\cdot0,099 = 6,7122 \text{ H}; \end{split}$$

$$T_{\mu_3} = J_{s_3} \varepsilon_3 = 7,2145 \cdot 0,0811 = 0,5851 \text{ H M};$$

$$h_3 = \frac{T_{\mu_3}}{F_{\mu_3}} = \frac{0,5851}{6,7122} = 0,08717 \text{ m};$$

$$h_3 = \frac{h_3}{\mu_\ell} = \frac{0,08717}{0,01} = 87,17 \text{ mM}.$$
Cxema harpywehun rpynni Accypa 2₂₂ (2, 3) показана на рис. 8.
Неизвестные силы: $\overline{R}_{03}, \overline{F}_1$. Силу от действия поршня на рабочую
жидкость \overline{F}_1 определяют из условия равновесия rpynni 2-3 ($\Sigma M_A = 0$):

$$-F_1 h_1 + G_3 h_{G_3} + R_{43} h_{43} - F_{\mu_3} h_{\mu_3} = 0,$$

$$F_1 = \frac{G_3 \overline{h}G_3 + R_{43} h_{43} - F_{\mu_3} h_{\mu_3}}{h_1} =$$

$$= \frac{664,89 \cdot 0,1596 + 4772,5 \cdot 0,8922 - 6,7122 \cdot 0,3488}{0,3807} = 11457,3 \text{ H}.$$
Cxema нагружения группы Accypa 2₂₂ (2, 3)

$$\mu_{\mathcal{C}} = 0,01 \text{ м/м}.$$

$$\overline{F_{\mu_1}} = \frac{\overline{F_{\mu_1}}}{\overline{F_{\mu_2}}} = \frac{\overline{F_{\mu_1}}}{\overline{F_{\mu_2}}} = \frac{\overline{F_{\mu_1}}}{\overline{F_{\mu_2}}} = \frac{\overline{F_{\mu_2}}}{\overline{F_{\mu_2}}} = \frac{\overline{F_{\mu_1}}}{\overline{F_{\mu_2}}} = \frac{\overline{F_{\mu_2}}}{\overline{F_{\mu_2}}} = \frac{\overline{$$

Рисунок 8

Составляют векторное уравнение $\underline{\overline{F}_1} + \underline{\overline{G}_3} + \underline{\overline{F}_{H_3}} + \underline{\overline{R}_{43}} + \underline{\overline{R}_{03}} = 0.$

Реакция R₀₃ является замыкающим вектором.

План сил для группы Ассура 2₂₂ (2, 3) показан на рис. 8.

Масштаб плана сил $\mu_F = 50$ H/мм выбирают исходя из максимальной силы в группе.

Значение силы определяют через отрезок плана сил

 $R_{03} = \overline{sn} \cdot \mu_F = 134,79 \cdot 50 = 6739,6 \text{ H}.$

Реакцию \overline{R}_{03} определяют из условия равновесия звена 2: $\overline{F}_1 + \overline{R}_{32} = 0$.

2.3. Кинетостатика входного звена

Рассматривают равновесие входного звена и прикладывают к нему реакцию $\overline{F}_{yp} = -\overline{F}_{1}$, по условию $\overline{G}_{1} = 0$. Схема нагружения входного звена показана на рис. 9.

Уравновешивающую силу рассчитывают с использованием пакета прикладных программ КДАМ.

Результаты расчета сводят в таблицу 5.

Таблица 5. Уравновешивающая сила

№ пол.	F _{yp} , H	№ пол.	F _{yp} , H
0	5200,1	4	10861,3
1	11456,5	5	9774,0
2	12204,2	6	8566,2
3	11745,3		

Диаграмма уравновешивающей силы на входном звене показана на рис. 10.

2.4. Сравнительный анализ результатов

Отличие результатов графоаналитического метода (метода планов сил) и аналитического метода оценивают погрешностью

$$\Delta = \frac{\left| \mathbf{F}_{yp}^{aH} - \mathbf{F}_{yp}^{rp} \right|}{0.5 \left| \mathbf{F}_{yp}^{aH} + \mathbf{F}_{yp}^{rp} \right|} 100 \% = \frac{11457, 3 - 11456, 5}{0.5 \left(11457, 3 + 11456, 5 \right)} 100 \% = 0.007 \%.$$

Погрешность ниже предельно допустимой (≤ 5 %).

В заключение необходимо подчеркнуть, что в работе выполнено исследование кинематики и динамики рычажного механизма на примере механизма шасси.

Графоаналитическим способом определены скорости, ускорения точек и звеньев, определены реакции в кинематических парах и уравновешивающая сила на входном звене шасси.

Высокая точность графических построений с помощью графического редактора "Компас" позволила провести тщательное сравнение графоаналитического способа исследования с аналитическим способом на основе метода векторных модульных моделей.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Сборник заданий на курсовой проект по ТММ / Куйбышев. авиац. ин-т. Куйбышев, 1987.
- 2. Тукмаков В.П. Курсовой проект по ТММ. Правила оформления текстовой и графической документации: Метод. указания. Самар. аэрокосм. ун-т, Самара, 2005. 28 с.
- 3. Чертежно-конструкторский редактор КОМПАС–ГРАФИК: Руководство пользователя. – Санкт–Петербург: АО АСКОН, 2006. – 330 с.
- 4. Семенов Б.П., Тихонов А.Н., Косенок Б.Б. Модульное моделирование механизмов: Учебное пособие. Самар. аэрокосм. ун-т. Самара, 1996. 88 с.
- 5. Ястребов В.М., Кричевер М.Ф., Савинов А.П. ТММ в авиастроении: Учеб. пособие / Самар. аэрокосм. ун-т. Самара, 1993. 78 с.
- 6. Теория механизмов и механика машин / Под ред. Фролова К.В. М.: Высшая школа, 2003. 496 с.