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INTRODUCTION 
 

Design of contemporary gas turbine engines and providing of its reliability is very 

complex problem. Calculation of static and dynamic strength of engine details, its resonance 

frequencies, low-cycle and high-cycle fatigue, processes of plasticity, creep, fractures, corrosion 

etc is very important for its solution. Many engineer calculations now use Finite Element Method 

and other numerical methods, which are more precise than analytical ones; however it is 

necessary to know analytical methods for understanding of processes and parameters which have 

influence on it.  

 A present textbook is developed for master students; however it is possible to use it for 

bachelor students after reduction of some parts with too complex mathematical background. 
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I. STATIC STRENGTH 

 
1. CALCULATION OF A BLADE ON STATIC STRENGTH  

 

 Let a blade is a rod with a variable section. In the coordinate system Y axis coincides 

with an axis of engine, r axis is on radius and across the center of gravity of a root section. Axis 

line is a line with centers of gravity of all sections. In a common case it is a curve which doesn’t 

coincide with r axis. A load for the blade are gas dynamic force and centrifugal force. 

 

1.1. Determination of gas dynamic force 

 Two surfaces with radiuses r and r+dr  give infinitely little gas stream with a mass dm, 

around one blade (Fig. 1.1).  

 
Fig. 1.1. Infinitely little gas stream 

 

 Let z is number of blades, 1P  and 1 , 2P  and 2  are pressure and density of stream 

before and after the blade respectively; 1C


, aC1  and uC1 , 2C


, aC2  and uC2  - full, axial and 

tangential stream velocity before and after the blade respectively; Nd


, adN  and udN  - full, axial 

and tangential forces of blade action on the infinitely little gas stream; Qd


, adQ  and udQ  - full, 

axial and tangential forces of the infinitely little gas stream action on the blade (Fig. 1.2).  
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Fig. 1.2. The stream before and after the blade 

Of interaction with the blade during a time t  the infinitely little gas stream changes its 

velocity and impulse. On an impulse low conservation 

)( 12 CCdmtNd


  . 

If an expenditure in the  infinitely little gas stream is dG, 

tdGdm  . 

Thus 

)( 12 CCdGNd


 , 

or for two coordinate axis 

)( 12 aaa CCdGdN  , 

)( 12 uuu CCdGdN  . 

Gas expenditure is 

2211
22 

aa rdrC
z

rdrC
z

dG  . 

For axial direction: 

aa dQPPrdr
z

dN  )(2
21

 , 

therefore 

 )(2)()(2
12

2
22211221 aaaaaa CCCPPrdr

z
CCdGPPrdr

z
dQ    .  (1.1) 

For tangential direction: 

)(2
1222 uuauu CCrdrC

z
dNdQ    (1.2) 
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 Equations (1.1) and (1.2) determine a gas dynamic load. However it is infinitely little, and 

for calculation by Finite Element Method it is more convenient to use intensity of load for axial 

direction   

 
dr

dQ
P a

ra  )(2
12

2
2221 aaa CCCPPr

z
                     (1.3) 

and for tangential direction 

 )(2
1222 uua

u
ru CCrC

zdr
dQP    .                                 (1.4) 

 Dimension of intensity is N/m. Its direction is usually along the stream for turbine and 

opposite the stream for compressor. For a first approach one can let that a distribution of gas 

dynamic load on a pressure side of blade is uniform, thus if wideness of blade is b, one can apply 

the gas dynamic load as a pressure 
b

Pp ra
sa   and 

b
Pp ru

su  . 

 

1.2. Determination of centrifugal force 

 The centrifugal force on an infinitely little part of the blade with mass dm is 

 RFdrRdmdQc
22   ,  

here   is density of blade material, F is section area of the blade, R is a distance to axis of 

engine Y,   is angular velocity of rotation. Projections of this force on r and X axis are.  

 cos2 RFdrdQcr  , 

 sin2 RFdrdQcx  . 

Because rR cos , xR sin , therefore  

rFdrdQcr
2 , 

xFdrdQcx
2 . 

Analogously for plane ОrY  

yFdrdQcy
2 . 

For FEM calculation the centrifugal force load applied as a volume load. Intensity of this 

load is 

r
Fdr
dQP cr

vr
2 ,  x

Fdr
dQP cx

vx
2 ; y

Fdr
dQP cx

vy
2 .                      (1.5) 
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1.3. Blade tension 

A reason of a blade tension is the centrifugal force action. If nr , kr  and br  are gravity 

center radiuses of peripheral and root sections and airfoil shroud platform respectively,  and bm  

is a mass of the airfoil shroud platform, the centrifugal force in a section with coordinate r is  

222  bb

r

r
bb

r

r
crcr rmrdrFrmdQQ

nn

  .                                    (1.6) 

This integral one should take numerically only, because section area is variable on radius. Stress 

of tension under the centrifugal force in a section with area rF  is 

r

cr
r F

Q
 . 

 

1.4. Bending of the blade 

 Let one takes an infinitely little part of the blade by two cylindrical surfaces with 

radiuses r and r+dr. Its center of gravity is in a point ),,( ryxB  (Fig.1.3). Moments in it of forces 

in another infinitely little part of the blade with a center of gravity in a point  ),,( 111 ryxA  are 

 
Fig. 1.3. Bending of the blade 

 

)()()( 111 rrdQrrdQyydQdM cyacrx   ,                              (1.7) 

 )()()( 111 rrdQrrdQxxdQdM cxucry   .                                 (1.8) 

Full moments in the section with radius r is 

 
nr

r
xx dMM

1

,    
nr

r
yy dMM

1

.                                                               (1.9) 
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 Moment value and sign are depend on the blade axial line position. If this line coincides 

with radial axis, 01  xx , 01  yy , 0cxdQ  и 0cydQ . The bending of the blade is of gas 

load only. 

 Let  and  are main central axis of coordinate system with a center in a section center of 

gravity (Fig. 1.4),   is an angle between axis of this system and system OXY. Then 

 
Fig. 1.4. Main central axis 

 

 sincos yx MMM  , 

     cossin yx MMM   . 

Stress of bending b  is sum of stress from both of these moments. Stress of moment M is: 










J
M

W
M

b 1 , 

here W  and J  are resisting bending moment and inertia moment relatively  axis. Stress of 

moment M is: 










J
M

W
M

b 2 , 

here W  and J  are resisting bending moment and inertia moment relatively  axis. Full 

bending stress is  










J
M

J
M

b  .                                                                                           (1.10) 

 On the neutral line bending stress equals 0: 0 








J
M

J
M

,  

thus neutral line equation is 
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






 a
J
M

M
J

 . 

It is an equation of straight line. Moment values are usually near to each other, but 

 JJ 05.0...01.0 , therefore  a is little and neutral line is near to  axis.  

 Maximal bending stress is in points with a maximal distance from neutral line. There are А 

on a leading edge of a blade, В on a trailing edge of a blade and С on a blade back. To calculate 

stress in these points is enough usually. 

 

1.5. Unload of blade from bending stress by centrifugal force 

      Sign of moment of centrifugal force depends on position of blade axial line. It is possible to 

use it against moment of gas dynamic load. To obtain it one should change a position of axial 

line relatively r axis. This changing is named a shift of gravity centers of sections. It takes place 

both in axial and tangential directions (Fig. 1.5). 

 
Fig. 1.5. Shift of gravity centers of sections in y axis direction 

 

 Value of the shift depends on relationship of gas dynamic and centrifugal force. They 

change differently on different engine modes: )( 2fPс  , ),,( cPfPг  . Therefore a 

compensation of bending moment isn’t full (to the zero) but partial on one of modes, usually 

maximal one.  

0 гxcx MM  ,                                                                                                  (1.11) 

0 гycy MM  ,                                                                                                  (1.12) 

here a compensation coefficient 7.0...5.0 . 

 For compensation in all blade sections, axial line of the blade should be a complex spatial 

curve. Let we consider more simple case of linear axial line:  

xx brax  ,  yy bray  . 
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Because in the root section kr  the shift of gravity center is absent, kxx rab   , 

kyy rab   . Thus  )( kx rrax  ,  )( ky rray   . 

If we neglect a moment of cydQ  force, because crcy dQdQ  , we will obtain:  

0)()( 11

11

  drrrPdryyP a

r

r
cr

r

r

nn

  .                                                        (1.13) 

From equation for the shift of gravity centers  

)()()( 111 rrarrarrayy ykyky  .  

If one inserts it into (3.13), it will be 

0)()( 11

11

  drrrPdrrrPa a

r

r
cr

r

r
y

nn

 . 

It is possible to find ya  coefficient of this equation. xa  coefficient is found by analogous way. 

Integrals are calculated numerically. 

 Under gas and centrifugal load the sections of blade has elastic displacements which is 

comparable with the shift of gravity centers. These displacements change bending moments and 

stress. Therefore for an exact determination of the shift of gravity centers it is necessary to take 

these elastic displacements into account. Iteration method allows it.  

 

1.6. Calculation of assurance coefficient for blade 

 An assurance coefficient for a load ability is 
r

bK

 lim . 

An assurance coefficient for a local strength is 
max

lim




mK . 

Here r  is the tension stress of centrifugal force, br  max  is maximal stress of tension 

and bending together, lim  is stress limit. For compressor blade в lim  (limit of instant 

strength), for turbine blade t
в lim  (limit of high-temperature or long-term strength). 

 The standard of strength gives 8.1bK ,  65.1mK  . 
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2. CALCULATION OF DISK ON STATIC STRENGTH 

 

2.1. System of differential equations  

The main admissions are: 

1) the disk is symmetrical relatively its middle surface; 

2) a temperature is constant on the disk thickness; 

3) stresses are constant on the disk thickness; 

4) stresses are constant on the disk circumference; 

5) tangential stresses are absent for the disk sections obtained by radial surfaces and 

cylindrical surfaces coaxial with disk axis. 

An infinitely little element is obtained by two radial surfaces with angle d  and two 

cylindrical surfaces with radiuses r and dr, Let we consider conditions of its equilibrium (Fig. 

2.1).  

 
Fig. 2.1. Infinitely little element of disk 

 

Thickness of the disk is h on a radius r and h+dh on a radius r+dr. A density of disk 

material is . The radial stress in the element are r and r + dr, hoopential stress is  , 

centrifugal force is 2 rdrhrddQc  . 

For projections of all forces on a r axis: 

)())(( dhhddrrd rr   -  rhdr - )2/sin(2   ddrh + 2 rdrhrd = 0      (2.1) 

If one takes into account 

)())(( hdhdhdhddhhdhhd rrrrrrrr   ,  

equation (2.1) will be  
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 ddrrhdh rr )))(((  -  rhdr - )2/sin(2   ddrh + 2 rdrhrd = 0 . 

If to take into account 2sin(d/2)   d  and divide by d, the equation will be as 

0)( 2  drrrhdrhrhdhdr rr   . 

Because the stress is distributed uniformly on the disk thickness, it is possible to use a force on a 

unit on a length (linear load):  

hN rr  r , hN   .  

Thus  

drrrhdrNdrNrNd rr
2)(   . 

To divide by rdr, one can obtain 

rh
r

N
r

N
dr

dN rr 2   .                                             (2.2) 

 Equations of Cauchy and Hooke for cylindrical coordinate system are.  

r
u

r 


 ;    


 




v
rr

u 1   . Because stress is symmetric, 0



v  и 

r
u

  . 

r = Е
1   (r -  ) + T , 

 = Е
1  ( - r) + T . 

If to multiply and divide by h and to take into account equations of  Cauchy it is possible to use a 

linear load for Hooke equations:  

r
uTNN

Eh rr 


   )(1  ,                        (2.3) 

r
uTNN

Eh r    )(1 .                         (2.4) 

From (2.4)  

r
uNTEhEhN r   . 

If to insert it into (2.3) и (2.2) one can obtain: 

TN
Eh

u
rdr

du
r 


 

 )1(1 2

  ; 

hr
r
TEhN

r
u

r
Eh

dr
dN

r
r 2

2

)1( 






    . 
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     It is a system of first order differential equations system for variables u and Nr. It is possible 

to solve it by numerical method, Runge – Kutta, for example. 

 

2.2. Boundary conditions 

     It is necessary to have boundary conditions for solution of the system. Its quantity should be 

equal to number of variables. It is possible to take one boundary condition on inner and outer 

radiuses of disk. 

 It is possible on the inner radius (r = r0): 

1. The disk has free inner aperture. In this case 0)( 0 rr , and respectively 0)( 0 rN r . 

2. An inner surface of the disk has stiff fixation. In this case 0)( 0 ru  . 

3. The disk is built-up on a shaft with a pressure p. In this case prr )( 0  , 

and respectively 00 )( phrN r  .  

4. The disk is built-up on a shaft with a tightness  . In this case )( 0ru  . 

 It is possible on the outer radius ( err  ): 

1. The disk is free (for example, it is a flywheel without blades). In this case 0)( er r , and 

respectively, 0)( er rN . 

2. Disk has z blades. Outer radius is a radius of blade foot groove bottom. A stress on this radius 

is provided by centrifugal forces on blades ( cbP ), blade foots ( clP ) and ledges between grooves 

( cpP ).                                               

ee

cpclcb
er hr

PPzzP
r




2
)(

)(


  .  

It is possible to find a second item as a centrifugal force of ring between radius of blade root 

section kr  and radius er . 

ee

ek
eekcb

er hr

rrhrrzP
r






2
2

)(
)(

222 


  . 

To calculate the centrifugal force of blade it is necessary to know its mass. If areas of root 

section kF , peripheral section nF , and of i intermediate sections of blade with length l, are 

known, the mass of blade is  

)
2

...
2

(
1 21

k
i

n
b

FFFFF
i

m 



   . 

Thus the centrifugal force on one blade is 
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2
2 nk

bcb
rrmP 

  , 

here kr  and nr  are radiuses of root and peripheral sections of blade.  

 If the disk has no central aperture, in the center of disk )0()0(  r  . Because  r0 = 0, 

some difficultness with dividing by 0 appear. For approximate method it is possible to begin an 

integration from err 001.00   and take into account )()( 00 rrr   . 

 

2.3. Stress distribution in non-uniformly heated disk 

 Let the disk has two rings only: inner 1 and outer 2. Let its temperature are Т1 and T2, 

(Т1<T2), as it is usually for disk of turbine. Ring 1 in free condition would enlarge less than ring 

2 (because Т1<T2), however it is attached to ring 2. Therefore ring 1 has stress of tension. Ring 2 

in free condition would enlarge more than ring 1, however it is attached to ring 1. Therefore ring 

2 has stress of pressing. Therefore the high pressure turbine disk usually has negative (pressing) 

hoopential stress on its periphery, the compressor disk usually has positive (tension) hoopential 

stress on its periphery, the low pressure turbine disk is between them. Maximal positive 

hoopential stress is in the central aperture of disk. 

 In the disk with free central aperture the radial stress begins from 0 and ends on 

k
ee

ek
eekcb

er hr

rrhrrzP
r 




 





2

2
)(

)(
222

, if the disk has blades and 0 if it has no blades. A 

radial and hoopential stress distribution in the disk with blades is shown on Fig.  2.2. 

 
Fig. 2.2. A radial and hoopential stress distribution in the disk with blades 

К – compressor, Т – turbine  

 

 If angular velocity increases 2 times, stresses will increase 4 times, because the 

centrifugal force is proportional to a second degree of angular velocity. 
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 If temperature of turbine disk central part increases, a difference of temperature between 

central part and periphery will decrease, therefore stress will decrease. Of this reason in some 

engines the central part of disk is heated. However in this case a limit of strength t
b  decreases 

too, and a final result should be calculated.  

 If disk thickness increases uniformly in all its sections, stress will change insignificantly. 

Area section will increase, however the centrifugal force form additional material will increase 

too. Of this reason to increase the disk thickness in a place where the assurance coefficient is not 

enough can be non-effective. It will be better to decrease the disk thickness in a place where the 

assurance coefficient is superfluous. It decreases the centrifugal force and a full disk mass too.  

 

2.4. Local strength of disk 

Because disk is under plain stress, it is necessary to use an equivalence stress to calculate 

the assurance coefficient. This equivalence stress is 

   rreq  22  . 

The assurance coefficient is 

eq

K

 lim .  

Standards of strength gives 6.1K . 

For compressor disk в lim  (limit of instant strength), for turbine disk Т
в lim  (limit of 

high-temperature or long-term strength). 

 

2.5. Assurance coefficient for wrecking speed 

A speed when a disk will be broken is a wrecking speed limn . It is possible to reach this 

speed of breakdown of speed regulator, sudden unload etc. Breaking of the disk is inadmissible 

kind of breakdown, because parts of disk weigh dozen of kilograms, have large velocity and 

destroy other structures.  

A basement for a calculation of wrecking speed is a theory of limit equilibrium. On this 

theory a stress in any disk section can’t be more than a limit because large plastic deformation 

takes place in this section. This plastic deformation gives stress redistribution, the stress 

increases in nearest sections. The disk will be broken when stress will reach its limit in all 

sections. This theory is acceptable for a disk without stress concentrators and which thickness 

changes gradually. 

Let we consider an equilibrium of a half of disk (Fig. 2.3). 
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A contour load, a stress from centrifugal force on blades, blade foots and ledges between 

grooves is limk . This stress provides on an infinitely little part of disk surface a force   

 dhrdQ eekk lim ,  

its projection on r axis is  

 dhrdQ eekr coslim  . 

Because the contour load depends on centrifugal force, it is proportional to a second degree 

of speed.  

kk n
n

 2
max

2
lim

lim  ,  

here maxn  is maximal possible speed of engine during take-off, k  is contour load on disk during 

take-off.  

Integral force of limit contour load is  

eekeekeekkr hr
n
ndhr

n
ndhr

n
nQ 2

max

2
lim

2

0
2
max

2
lim

2

0
2
max

2
lim 2cos2cos2 



                      (2.5). 

 

 
Fig. 2.3. A half of a disk under limit stress 

 

Centrifugal force on infinitely little part of disk is  
2

lim )2()( nrrhrdrddQc  . 

Integral of its projection on r axis is: 

  
ee r

r

r

r
cr drrrhndnrdrhrQ

00

22
lim

22
lim

2
2

0

)(8cos)2)((2 


 .                                 (2.6) 
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It is impossible to take last integral analytically because a dependency of disk thickness on radius 

is not analytic function. 

In the case of limit stress the hoopential stress is )(rt
b   . It depends on radius because 

temperature is different for different radius and long-term stress limit depends on temperature. 

Projection of force from this stress on  r axis is: 

drrhrQ t
b

r

r
r

e

)()(2
0

                                                                                                  (2.7) 

It is impossible to take this integral analytically too. 

 In accordance to the equilibrium of a half of disk  

0 rcrkr QQQ . 

 To insert in this equation equations (2.5), (2.6), (2.7) one can obtain an equation for limn : 

eek hr
n
n

2
max

2
lim2 + 

er

r

drrrhn
0

22
lim

2 )(8  - drrhrt
b

r

r

e

)()(2
0

 =0    . 

The assurance coefficient for wrecking speed is 6,1
max

lim 
n
nК в  
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3. BASEMENT OF THEORY OF PLASTICITY 

 

 If after unloading a body has exactly previous size, it is absolutely elastic body. If after 

unloading a body keeps all its deformation, it is absolutely plastic body. Usual structure material 

is elastic-plastic. If stress is more than any limit, a part of deformation remains after unloading. 

This part is plastic deformation (Fig. 3.1).  

 
Fig. 3.1. Loading and unloading of elastic-plastic body 

 

Let we take 
3

 zyx 
  as middle stress and 

3
 zyx 

  as middle strain. 

 Uniform all-side tension of pressing doesn’t provide a plastic deformation.  If we subtract 

the all-side tension with middle stress of real stress, we will obtain a deviant stress. Plastic 

deformation is result of this stress (Fig. 3.2). 

 
          real stress                              all-side tension                          deviant stress 

Fig. 3.2. Deviant stress 

  

A plasticity curve is used for calculation of plastic deformation. It is easy to obtain it 

experimentally for one-axial stress. 
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To use for real multi-axial stress the curve was obtained for one-axial stress we will use 

stress intensity i  and strain intensity i .  

 

222222
222

2
3 )()()( xzyzxyzyx     ,     (3.1) 


222222

2
1

2
1

2
1

3
2 )()()( zxyzxyi zyx     .          (3.2) 

For one-axial stress: 

              0 i ,                                                                                                   (3.3) 

              0)1(
3
2  i   .                                                                                    (3.4) 

Here   is Poisson ratio. These equation allow recalculate one-axial plastic curve to the 

generalized  plastic curve with i , i  coordinates. A calculation of plastic deformation and 

stress uses this curve and iteration method (Fig. 3.3).  

 
Fig. 3.3. A calculation of plastic deformation and stress 

 

In the beginning of calculation a material is consider as absolutely elastic with elastic 

modulus 0  and Poisson ratio  0
 from reference book of materials. Any calculation method 

(perhaps, Finite Element Method) allows to obtain strain and stress of first approximation 

 )1()1()1()1( ;.....; yxyx . These values allow to calculate stress intensity *
)1(i  and strain intensity 

)1(i . Point 1 (Fig. 5.3) should be on continuation of elastic line, because the calculation was by 

linear theory.  If material under this stress has plastic deformation, really possible stress intensity 

is )1(i , obtained by generalized plastic curve. By this really possible stress intensity first 

approximation of elastic modulus is calculated.    
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The Poisson ratio should be changed too: 
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2
1 c                                                  

The calculation of strain and stress repeats with new values of elastic modulus and Poisson 

ratio. It allows to find point 2 with coordinates )2(i  , *
)2(i  (Fig. 5.3). If material under this stress 

has plastic deformation, really possible stress intensity is )2(i , obtained by generalized plastic 

curve.  New values of  elastic modulus and Poisson ratio will be calculated etc.  

 The calculation will continue till two inequalities will fulfill. First one provides a required 

preciseness of calculation: 




1)(

)()1(








n

nn

 , 

Second one provides a proximity to the generalized plastic curve:  
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II. FATIGUE AND LIFE-TIME 
 

4. CHARACTERISTICS OF STRENGTH 

 

Large life-time and large reliability of aircraft gas turbine engines (GTE) beside main task of 

flight safety solve many other problems: economy from reducing of required number of engines, 

reducing of number and cost of engine repairs, reducing of aircraft stand idles. 

To provide the reliability of engines it is necessary to solve not only usual problems of 

strength, but some especial problems connected with time of work. The main of these problems 

are: 

- long-term strength, creep and stress relaxation in details during long work in steady-state 

conditions; 

- repeatedly-static fatigue and thermo-cyclic strength connected with large number of starts, 

stops and changing of engine operation mode during engine life-time; 

- high-cycle fatigue, especially for high-temperature-resistant and non-ferrous alloys, for which it 

reduces continuously during its work; 

- changing of surface from corrosion and erosion; 

- wear and fretting-wear in contact pairs. 

Now total life-time of engines NK-8 (NK-8-4, NK-8-2u) is about 18000...20000 hours. Life-

time before a first major repair is about 6000...9000 hours. Exploitation on technical condition 

(ETC) allows high increasing of engine life-time. Life-time of contemporary engines such as 

СFM-56, PW2037, PW4000, RB211-524E4 with ETC system is more than 30000 hours.  

It is required now from new engines that life-time of engine should be equal to life-time of 

aircraft, that is life-time of engine should be about 40000...60000 hours and 20000…30000 

flights. In the same time the requirements of reliability and high efficiency parameters grows up 

too. 

The main strength defects are: 

- fatigue fractures and destructions - about 30% of all defects; 

- fatigue wearing, contact corrosion – about 12%; 

- static fractures and destructions - about 2%; 

- fractures and burnouts of heating - about 4...5%; 

- wearing and jamming in contacts - about 3...4% (beside of it, wearing can be a reason of high 

variable stress and fatigue fractures); 

- non-admissible deformation - about 6...7%; 

- damages of surfaces of media action - about 1%; 
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- high vibration of units - about 1.%. 

All defects of strength are about 60...65% of all defects. 

The main loads and damages in engine details of it are presented in Table 4.1.  

 

Table 4.1. 

Load Damage % of 

defects 

Details 

Static long-

term 

Static fractures and destructi-

ons: ductile failure,   brittle 

failure.  

Large deformation, torque 

retention loss, buckling 

failure. 

2...5% 

 

 

10...15%

Turbine blades, supports, cases. 

Disks of turbine and compressor, 

bolt connections, band shelves of 

turbine blades. 

Shock Dints, non-admissible 

deformation,  brittle failure. 

2% Shock destruction and deformation 

of blades from outer objects.  

Low-cycle: 

repeatedly-

static, thermo-

cyclic 

Low-cycle fractures and 

destructions, thermo-fatigue 

fractures and destructions. 

10% Disks of turbine and compressor. 

Air-cooled turbine rotor and stator 

blades.  

Dynamic, 

high-

frequency. 

Fatigue fractures and 

destructions. 

Damage of contact surfaces 

(micro-chipping, contact 

corrosion, wearing, 

jamming).  

40...50%

 

20...25%

Blades and disks of turbine and 

compressor.  

Bearings, gearings, blade foots, 

flanges. 

Thermal Hogging. 2...5% Thin-wall cases. 

Action of 

media 

Corrosion, erosion, wearing.  3...7% Burning of turbine blades, erosion 

of compressor blades. 

 

 Mechanical properties of materials are obtained experimentally from plasticity curve 

(diagram of tension) (Fig. 4.1) 
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Fig. 4.1. Plasticity curve (diagram of tension) 

 

To describe this deformation curve dependencies as  

=А1/m, 

are used (here А and m are constants of material depends on temperature, m=5 … 15) or 

=/Е + r(/0,01)n, 

here r and n are coefficients depends on material and temperature. 

It is possible to find by diagram of tension: 

1. Limit of strength of material (limit of instant resistance to rupture, tensile strength): b is 

stress under maximal force Р leads to rupture.  

This limit shows abilities of material to bear short-time load or long-time load under low 

temperature.  

If detail works under shear or torsion (blade foots, shafts, springs etc) a shear limit of 

strength b should be used. Approximately   

b = (0.4... 0.6) b. 

2. Limit of yield (yield stress): 0.2  is the stress under which a specimen has residual deformation 

=0.2% .  

Ratio of limit of strength and limit of yield for different materials approximately is: 

0.2=0.5b – for steels and allows without thermal treatment, 

0.2=0.8b - for steels and allows with thermal treatment, 

0.2=0.9b – for titanium alloys. 

3. Limit of elasticity: e  (0.01) is a stress in a range of elastic deformation; under this stress a 

specimen has residual deformation =0.01%.  

4. Limit of proportionality: pr (0.001) is a maximal stress till which a dependency of stress on 

strain is about linear; under this stress a specimen has residual deformation =0.001%. 

5. Poisson ratio:  is ratio of relative transversal narrowing deformation to relative longitudinal 
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lengthening. For elastic deformation it is  = 0.3 for all metals, for plastic deformation 0.3 <  < 

0.5. 

6. Elastic modulus (Young modulus): Е = /pr is coefficient of proportionality in dependency  

= Е  which describe the deformation in a range 0 <  < 0.001. 

7. Shear modulus: G is ratio of tangential stress to angle of shear in a range of proportional 

dependency  = G  (Fig. 4.2). Е and G are connected by equation 

G=E/2(1+). 

 
Fig. 4.2. Shear deformation 

 

Monocrystals have large anisotropy of elastic modulus for different crystal axis directions. 

For example for monocryctalic cast high-temperature-resistant alloys, used for manufacturing of 

turbine blades, value of elastic modulus for different crystal axis directions (Fig. 4.3) is 

[001] - (1.2 ... 1.3)105 МPа 

[011] - (2.2 ... 2.5)105 МPа 

[111] - (2.7...  3.2)105 МPа 

 
Fig. 4.3. Monocrystal axis direction 

 

To obtain approximately the dependency of elastic modulus on axis direction it is possible to 

use equation: 

Ehkl = E001/f(Ahkl), 

here h, k, l are indexes of crystal axis; 

       
)( 222

222222

lkh
lhlkkhA




 ;   f(Ahkl)=1-DAhkl;     001
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00122 G

ED    
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Value of elastic modulus depends on temperature. If it increases, elastic modulus 

decreases. 

8. Relative lengthening for rupture is 

%100
0

0

l
ll k 

 , 

here lo is initial length of specimen;  

lk is length of specimen at rupture. 

Value of relative lengthening for rupture  depends on the length of specimen lo, because  

for little length of specimen parts of specimen between working and fastened parts take part in a 

deformation. On this reason a standard specimen is used for test with length of working part as 5 

or 10 diameters. Because testing specimen has different length, it is necessary to differ the value 

of relative lengthening for rupture: 5 if the length of specimen is lo=5d, and 10 if lo=10d (here d 

is diameter of specimen). Usually round specimens are used for tests. If the specimen is not 

round, to make the testing results comparable it is necessary to use the length of non-raund 

specimen with the same ratio lo/F (here lo is length, F is cross-section area). It is possible to 

obtain the length of non-round specimen from equation:  

.13,1
4

4 2

Fkdkkdd
d
ll 










 

9. Relative transversal narrowing deformation for rupture is %,100
0

0

F
FF k

  

here F0 is initial cross-section area, Fk  is cross-section area in a place of rupture (a neck of 

specimen). 

If the rupture takes place with neck appearance, the cross-section area of specimen reduces. 

Therefore a true resistance to rupture is used often: Sk=P/Fk.  

It is possible to find connection between Sk and b from condition P= bF0 = Sk Fk. From 

here b=Sk (Fk/F0)= Sk(1-) or  Sk=b/(1-). 

Because in the case of neck appearance the residual deformation is distributed on the 

specimen length non-uniformly, a true relative lengthening for rupture is obtained as 

),1ln(
0

 
l

l l
dle   

here =l/l0 is middle residual deformation. 

Because 1+ = 1/(1-), it is possible to obtain the true relative lengthening for rupture from 

equation 



1

1lne . 
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True characteristic of resistance to rupture Sk and relative lengthening for rupture e are 

important for estimation of reliability and strength. Value of Sk allows estimating of ability of 

material to elastic slow failure. Value of e allows estimating of material resistance to low-cycle, 

repeatedly-static load. 

Values of Sk , b, 0.2, , , e depends on loading velocity, testing temperature, material 

structure, thermal treatment. If temperature increases, values of Sk , b, 0.2 decrease and values 

of , , e usually increase. Respectively if temperature decreases, values of Sk , в, , 0.2 increase 

and values , , e decreases, it meant that strength of material increases but its plasticity 

decreases. 

Analogous process of strength increasing takes place for deformation velocity increasing. 

Therefore standard tests for tension usually takes places for little deformation velocity about 

V=3...100 mm/min, in this range the strength is approximately independent on deformation 

velocity. If loading is quick, for example, when a snapped blade shocks an engine case with 

velocity about V=450... 500 m/s, limit of strength increases to (b)dyn 1.3(b)stat. 

During hardening of material its strengthening takes place, thus characteristics of strength 

Sk, в,, 0.2 increase, characteristics of plasticity , , e reduce. During annealing of material this 

process goes back way. Thus characteristics of material depends on it thermal treatment. If detail 

is manufactured by cast, its plasticity is less than for detail manufactured by punching. 

For poly-crystal materials with isotropic structure the plasticity characteristics increases 

when size of crystals decreases.  Therefore it is necessary to obtain uniform little-crystal 

structure of material during thermal treatment. 

For the most important details of engine, such as turbine rotor and stator blades, disks of 

turbine and compressor, shafts etc, values of strength characteristics в, 0.2, ,  are controlled 

for each original product. It is provided by direct measurement on specimens-witnesses, which 

are casted together with detail or cut in special place of original product.  

For other details (not so important or with good routine practice of manufacturing) 

nondestructive control methods are used. It is control of hardness of material by indentation into 

material of steel ball (method of Brinell) or diamond cone (method of Rockwell). 

10. Brinell hardness  is used for control relatively soft materials such as magnesium, 

aluminum, copper, titanium and nickel alloys and steels without thermal hardening or surface 

strengthening. Brinell hardness is ,
(

2
22 dDDD

P
F
PHB

й 



 

here Р is force of indentation;  

D is diameter of ball;  
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d is diameter of imprint;  

Fb is an area of ball surface of imprint. 

Dimension of Brinell hardness НВ is kilogram-force/mm2 or kilogram-force/sm2. For test on 

Brinell hardness steel balls with diameter 2.5 mm, 5 mm or 10 mm are used usually, force 

of indentation is 700, 1500 and 3000 kilogram-force respectively  

For usual steel without thermal hardening or surface strengthening there is a connection 

between Brinell hardness and limit of strength: b = (0.33 - 0.36) НВ. For other materials any 

reliable correlation between Brinell hardness and limit of strength is not found experimentally. 

11. Rockwell hardness is used for control of stiff materials such as hardened steel or steel 

with surface strengthening or cemented surface. 

 Rockwell hardness is obtained on special standard equipment by indentation of diamond 

cone into a surface of detail. The cone has standard size.  Rockwell hardness is measured by 

abstract number  

i
hHkHRc


 , 

here index С  shows the scale of equipment; 

h is depth of  indentation of diamond cone under preliminary load 10 kilogram-force; 

Н is final depth of indentation under load 150 kilogramm-force; 

к is coefficient, for the scale “С” value of к = 100;  

i  is scale division value, for the scale “С” value of i = 0.002.    

Plasticity of material determines significantly a load-carrying ability of detail under bending 

and torsion. Let consider a bending of beam with rectangular cross-section (Fig. 4.4). 

 
Fig. 4.4. Stress distribution during bending. Above – brittle failure, 

below – ductile failure 

 

For brittle failure the limit bending moment is  

Mу=(hb2)/6. 

For ductile materials, after the stress reaches the limit of yield, there is stress redistribution. 

After full plastic stress redistribution the limit bending moment is  

Md=(hb2)/4 =1,5Му. 
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If in this case limits of strength for pressure and for tension are different in k=(b)pres/(b)tens 

times, the limit bending moment is  

).
1
3(

4

2

k
khbM bd 

  

It is obtained experimentally that maximal ratio of limits of strength for pressure and for 

tension is К=3. In this case for rectangular section Мd=2.25Му. The experiment shows that for 

bending of square cross-section 55 mm with different plasticity (Table 4.2) almost full stress 

redistribution takes place near =5%.  

 

Table 4.2. Ratio of plastic and elastic moments 

Material , % Мd/Му 

AL4-Т6 3,5 2,04 

AL4-Т6 0,5 1,2 

ZhS6 5 2,2 

ZhS6 0,5 1,02 

 

 If load contains tension force and bending moment in the same time (turbine and 

compressor rotor blades and many other details of engine work under this type of load) it is 

possible to find the load-carrying ability for full plastic stress redistribution as    

М/Мd+(N/Nd)2=1, 

here Мd is limit bending moment for full plastic stress redistribution; 

        Nd is limit axial load for full plastic stress redistribution. 

For brittle failure the limit load-carrying ability for combined tension force and bending 

moment is  

М/Мd+N/Nd=1. 

Therefore the residual relative lengthening for rupture   5% is necessary for reliable work 

of structure under high load. If a size of detail increases, requirements to plasticity of its material 

increase too. 

Vibration load in details of engine is inevitable condition of its work. It is possible to 

estimate a danger of it by assurance factor for fatigue 







  

t
b

m

v
vK

,

1 1




            

here -1 is limit of fatigue (this value will be considered below); 

m is static stress; 
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b
,t is limit of high-temperature strength or limit of long-term strength (this value will be 

considered below too) ; 

v is vibration load. 

 A very important factor is a stress concentration. A radius between a blade and a shelf of 

blade foot should be more than rmin =1.6 mm for blade made of titanium alloy or rmin=1.3 mm for 

blade made of steel or nickel alloy. If this radius reduces to r  0.6 …0.8 mm, the limit of fatigue 

reduces  in 1.5...2 times. 

An additional stress concentrator for air-cooled blade is holes on its front edge. Without 

these holes the limit of fatigue is -1  200 MPa. If edges of these holes are sharp, the limit of 

fatigue reduces to -1= 140 MPa. If to make a fillet of sharp edges of holes, the limit of fatigue 

increases to 180 MPa.  

A minimal radius of blade front edge, providing a long-time work of compressor, is r  

0.15...0.18 mm, for blade tail edge the minimal radius is  r  0.10...0.15 mm.  

Chamfer nicks on blade edge from outer objects significantly reduce the limit of fatigue 

from  -1  400...500 MPa to -1  100...200 MPa.  It leads to fractures and possibility of fatigue 

destruction of blade. 

For disks of turbine and compressor it is necessary to avoid, if it is possible, any holes in the 

disk.  Holes for connection with other details should be placed on flanges (Fig. 4.5). 

 
Fig. 4.5. Non-optimal and optimal (with holes for bolts on flanges) structures of turbine disk  

 

Structure of turbine disk with holes for fastening bolts on flanges has durability 8 times 

more and weight on 20 % less. To avoid an influence of stress in disk on stress in fastening 

flange, this flange should be moved off disk by shell on a distance l, on which the stress in flange 

is approximately independent on stress in disk. This condition is fulfilled for  

l 3, 



32 
 

here 
rh

4 2 )1(3 



 ;      

 r is middle radius of shell; 

 h is thickness of shell; 

 is Poisson ratio.  

For =0.3 it will be  
rh

285,1
  or    l >2,4 rh . 
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5. DESTRUCTION OF MATERIAL UNDER STATIC LOAD  

 

Destruction under static load can be with large plastic deformation and without it. Therefore 

two types of destruction should be differing: ductile failure and brittle failure. 

Ductile failure takes place slowly after large plastic deformation. Therefore it is possible to 

discover it on early stage and prevent it. Brittle failure takes place very quickly (velocity of 

fracture growth for brittle failure is about 0.4...0.5 of sound velocity in material) without plastic 

deformation. Most of real materials have composite type of destruction, ductile and brittle in the 

same time. However one of these two types prevails in different cases. 

It is important for engine reliability to use materials and structures with low velocity of 

destruction. It would be possible to discover the beginning of this destruction during inspections 

of engine and prevent its consequence.  

The main difference of brittle and ductile failure is source of energy. Fracture of ductile 

failure grows up from large energy from external source. Fracture of brittle failure grows up 

from internal energy of deformed material, it needs not external energy. 

Therefore it is necessary to use for reliable structure the material without brittle failure.  

It is possible the ductile failure and brittle failure of the same material. It depends on 

deformation velocity, temperature, type of stress condition. For multi-axial load a characteristics 

of possibility of ductile failure is “stiffness” of stress condition. Material with plastic 

deformation under simple one-axial tension can provide brittle failure if conditions of load 

(“stiffness” of stress conditions) prevent to shear plastic deformations. 

It is possible to find the “stiffness” of stress conditions from ratio   

 
i

p 
 1 , 

here 1 is maximal main stress; 

2
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2
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2
1  i . 

 Limit of yield for multi-axial stress is connected with “stiffness” of stress conditions and 

usual limit of yield by equation: 

02=р [02]tens,      (5.1) 

here [02]tens  is limit of yield for simple tension of specimen. 

For  р =[b]tens/[02]tens from (5.1) it is possible to obtain 

       02=[b]tens.                             (5.2) 

In accordance to (5.2), for stress condition with “stiffness” р=[b]tens/[02]tens the brittle 

failure will take place without large plastic deformations. For uniform three-axial stress 
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condition 1=2=3 it will be р=, therefore every material has brittle failure.  

Reasons of 3-dimensional or 2-dimensional stress conditions in structure are not only 

working stress but results of stress concentration, residual stress in material after manufacturing 

of detail after cutting, welding, punching etc. To reduce these technology stresses it is necessary 

to use tempering of material. 

It is possible to explain the different type of destruction (brittle or ductile) for the same 

material by ratio of two parameters: resistance to rupture (it determines the brittle failure) and 

resistance to shear (it determines the ductile failure).  Resistance to rupture is approximately 

independent on deformation velocity, temperature and type of stress conditions, resistance to 

shear depends on these parameters.  

During brittle failure the fracture develops perpendicularly to normal stress, for ductile 

failure the fracture develops on a surface with maximal tangential stress, with any angle to 

normal stress.  

Process of destruction has some stages: 

- appearance of micro-fracture; 

- slow development of micro-fracture to a fracture with significant length; 

- quick development of fracture to the destruction. 

Some models of micro-fractures appearance is developed in a present time. Reason of 

micro-fractures is interaction of dislocations. Dislocation is defect of crystal structure, a line with 

irregular placement of atoms. Plastic deformation of crystal is movement of dislocations. 

Stress in a peak of dislocation accumulation can be some hundreds times more than external 

stress. Therefore some dislocations unify. This way the micro-fracture appeared. After it the 

micro-fracture increases by accumulation of other dislocations. This development of fracture 

needs energy. 

The basis of contemporary theory of fracture development is energy theory of Griffits. In 

accordance to this theory for development a fracture in absolutely elastic body it is necessary to 

spend energy equal to necessary for providing of integrity of material in front of the peak of 

fracture:   

 dU=Gds,  

here dU is energy of destruction necessary for appearance of new surface of fracture 

development with area ds; G is power flow for development of fracture divided by fracture area.  

Energy for appearance and development of fracture is determined by parameters of shock 

viscosity КSТ и КSU (KSV). 

Parameter of shock viscosity КSU (KSV) is obtained on standard specimen with stress 

concentrator. It is equal to ratio of energy of destruction during shock bending of specimen with 
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concentrator to an area of minimal section of specimen. Difference of КSU and KSV is in a shape 

of stress concentrator on the specimen. Drafts of specimens for shock viscosity test and scheme 

of test (in accordance to Russian standard GOST 9454-78) is presented on Fig. 5.1. 

a)  b) c)    

d)   

Fig. 5.1. Specimens (а – overview, b – U type concentrator, c – V type concentrator) and scheme 

of testing on shock viscosity (d) 

 

Shock test of specimen with fracture is especially important for estimation of possibility of 

brittle failure in the material. It is КSТ parameter. Specimens are about the same like in previous 

case however the fracture of required length is made in these specimens by variable loading 

(Fig. 5.2).  

 

Fig. 5.2. Т type stress concentrator (fatigue fracture) for determination of KST 

 

Parameter КSU (КSV) shows an energy for appearance and development of fracture. 
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Parameter KST shows only energy for development of fracture, it allows to estimate an ability of 

material to delay the destruction if it began. 

To prevent the brittle failure the structure material should have plasticity parameters ,   

large enough. Parameters of shock viscosity КSТ and КSU (KSV) are descriptive, they are not 

used in calculation but allow to compare different materials. 

If material has value of КSТ  0, it means that after the fracture appearance the process of 

destruction goes approximately without external energy. It means that this material is too fragile 

and unreliable. The large value of КSТ means high level of reliability of material.  

Values of КSU and КSТ significantly depends on temperature and on structure of material 

and thermal treatment. 

Temperature when destruction changes from ductile to brittle is a critical temperature of 

brittleness tcf or a threshold of cold brittleness. 

Dependency of КSТ on temperature is presented on Fig. 5.3. 

 
Fig. 5.3. Dependency of КSТ on temperature 

 

If temperature is less than critical one, values of КSТ reduces significantly and ductile 

failure changes to brittle failure.  

Ratio Кm=КSТ/ КSU shows the ability of material to brittle failure. 

Characteristics of shock viscosity of titanium alloys VT-8 and VT-9 and its dependency on 

thermal treatment are presented in Table 5.1.  

 

Table 5.1 

Material b, MPa КSU, KJ/m2 КSТ, KJ/m2 Кm=КSТ/ КSU 

VT-9 1050 39.2 28.9 0.74 

VT-8 1050 77.1 24.4 0.29 

 

From table 5.1 it is seen that for the same limit of strength material VT-8 is more inclined to 

brittle failure than VT-9. 
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Changing of ductile failure to brittle failure depends on type of stress condition. For 3-

dimensional or 2-dimensional stress a possibility of brittle failure is more than for linear stress. 

Because fractures and defects in material lead to stress concentration and multi-axial stress 

condition, it is possible to consider the condition of changing to brittle failure on a basis of 

fracture development theory and linear mechanics of destruction by works of D.R. Irvin. On this 

theory it is possible to determine a concentration of normal stress in fracture as 

    
22 rlr

rl
fe




 ,      (5.3)  

here l is a half of length of fracture;  

r is distance from a peak of fracture,  

 is nominal stress. 

As D.R. Irvin shows, in spite of unlimited increasing of stress near the peak of fracture (for  

r  0, from equation 5.3), value of К=fe r2  is going to  

К= l .       (5.4) 

Value К is “stress intensity coefficient” (SIC). When value of nominal stress  reaches its 

critical value, the “stress intensity coefficient” shows a limit, destructive stress distribution near 

the fracture. On this reason it is possible to consider the “stress intensity coefficient” as a force 

criterion of brittle failure. 

Critical value of SIC is Кс. It is important characteristics of material in mechanics of 

destruction. Кс connects value of stress during destruction and critical size of fracture. If value of 

Кс is more, the resistance of material to brittle failure and the reliability of material are more too. 

Value of Кс is obtained experimentally by testing of specimens with incision and with fatigue 

fracture prepared on a bottom of this incision. Because value of Kc for experimental obtaining 

depends significantly on a shape of specimen, size and shape of specimen are standard. 

Specimen for obtaining value of Кc for static load is presented on Fig. 5.4. 

 
Fig. 5.4. Specimen for obtaining value of Кc 
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There are three types of crack opening (Fig. 5.5): with tearing off, when tension stress is 

perpendicular to a plane of fracture (type I); with shear in a plane which is perpendicular to 

surface of fracture (type II) and with  chip, when shear stress is in a plane of fracture (type III). 

The “stress intensity coefficient” for these types and for endless plate is  

КCI= l for type I crack opening. 

КCII= l  for type II crack opening. 

КCIII= l  for type III crack opening. 

 

 
Type I                              Type II                          Type III 

Fig. 5.5. Types of crack opening 

 

Type I is the most often. Type II is possible for punching and drawing out. Type III takes 

place for reservoirs with high inner pressure. 

The development of fracture connects with plastic deformation near the peak of fracture, 

therefore equations of Irvin (5.3) and (5.4) are correct for plastic materials only if a size of 

plastic region near the peak of fracture is little in comparison to fracture length and size of detail. 

For large plastic deformation the condition of fracture development are obtained by “criterion of 

critical crack opening”, J –integral etc. 

Thus it is possible to consider the destruction as brittle if the fracture in structure begins to 

increase under external load, and as ductile if the fracture doesn’t increase quickly during the 

load. 

The “stress intensity coefficient” Кс depends on limit of strength b, limit of yield 02, 

material plasticity  and . Viscosity of destruction reduces if strength increases, it increases if 

plasticity increases. 

For titanium alloys and high-strength steels value of Кс reduces significantly if temperature 

decreases. Aluminum alloys keep high viscosity of destruction till a temperature near to absolute 

zero. Martensite steels have high viscosity of destruction.  

Corrosion media usually reduces forces of atom connection near the peak of fracture, 

therefore stress of destruction in some media will be less than in normal conditions. For example, 
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development of fractures in hydrogen takes place much more quickly and if stress intensity 

coefficient is much less than in air. 

Reducing of size of crystal for poly-crystal material allows increasing strength of material 

and its viscosity in the same time. Influence of alloying elements connects with its influence on 

the size of crystal. Elements which reduce this size, increase the viscosity of destruction, 

elements which strengthen a solid solution, reduce one. Viscosity of destruction depends on 

number and distribution of non-metal inclusions. If percent of carbon and sulfur, phosphor etc is 

less, viscosity of destruction is more. 

There are many researches on connection of viscosity of destruction and other mechanical 

properties of material such as b, 02, , , КSТ, КSU etc. Unfortunately the common equation of 

connection isn’t obtained. Some proposed equations can be with large error.  

One of proposed correlations of viscosity of destruction and mechanical properties of 

material is 

enEKc 2
2.03/2  ,      (5.5) 

here Е is elastic modulus, 

n is coefficient of deformation strengthening, 

e is true strain for destruction of smooth specimen. 

This equation allows obtaining the value of Кс with error to 30% for 11 different titanium 

and aluminum alloys. However because reliable correlation equations are absent, it is necessary 

to obtain the viscosity of destruction by special tests. 

Some steels, especially high-strength one, have ability to slow destruction under constant 

stress (another name for it is “static fatigue”). For example, specimens made of steel 

23Х13НВМФА (EI-961F) (b 1500 MPa, 02 1050 MPa,  110%,  35%, КSU  22.5 

KJ/m2) destructs under a temperature 20 ОС after 2...100 hours under stress  = 1000 MPa only. 

It is possible to explain it by influence of media. Some surface active agents (for example, water 

from an air, oil) adsorb on a surface of micro-fractures and split it. This process leads to brittle 

failure. Tension stress makes this effect more, pressure stress less. 

Brittleness of materials increases of hydrogen-charging. It is a serious problem of reliability 

for engine with hydrogen as fuel.  During hydrogen-charging of material ions of hydrogen 

absorb on its surface, introduce into crystal lattice. It makes difficultness for movement of 

dislocations, that is for plastic deformation too. When ions go from crystal lattice to inner surface 

of fracture or cavity, molecular hydrogen appears in it. It makes high pressure and stress in inner 

cavities. 

Examples of “static fatigue” appear often in practice (destruction of tightened bolt 
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connections, springs, weld connections, tanks under high pressure), especially for load with high 

potential elastic energy, when appearance of micro-fracture and plastic deformation doesn’t lead 

to significant reducing of the external load. 

It is possible to prevent the “static fatigue” by using of plastic materials, limitation of stress 

(for example, the tightening of bolt connections with calibration), tempering of steel, creation of 

surface pressure stress etc. 

Using of materials, non-sensitive to initial fractures and not inclined to brittle failure is 

important for common reliability of structure too.  

For many details, especially shells, standards of wearing allow appearance of fractures with 

any determined length during any determined time of work. These fractures can appear during 

detail manufacturing or of external variable and thermo-cyclic loads. These fractures are 

detecting during prophylactic inspections. If it is possible to localize these fractures or to reduce 

a velocity of its development, it is possible to continue the exploitation of detail. However it is 

important for determination of terms for prophylactic inspections, that velocity of development 

of fracture would be less than admissible one, and the fracture would not develop during the term 

of prophylactic inspection to critical size. If material isn’t inclined to brittle failure, term of 

prophylactic inspection can be more. 

Using of materials not inclined to brittle failure is important for limitation of consequences 

of any detail destruction. For example, if one turbine blade is tearing off, neighbor blades will be 

destroyed too. All broken fragments take part in a breakdown of engine case. If blades made of 

material with high plasticity, number of these fragments will be much less and protection of 

structure will be more reliable.  
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6. CREEP, STRESS RELAXATION, LONG-TERM STRENGTH 

 

Work of high-loaded details of hot part of aircraft engine (rotor blades and disks of turbine, 

disks of last stages of compressors, connection rings of stator blades, bolt connections, details of 

combustion chamber etc) is allowed by possibility of admissible displacement and deformation. 

It connects with little value of gaps between rotor and stator details (touching of rotor and stator 

can lead to damage of engine), changing of fit in mating details, reducing of force in bolt 

connection, non-admissible hogging of shells etc. 

Under high temperature and high stress (but low than limit of high-temperature stress b
t or 

limit of yield 0.2
t) plastic irreversible deformation accumulates in material. It is creep.   Thus 

creep is continuous increasing of plastic deformation under constant stress. Because this process 

goes much more quickly for high temperature, the main details with deformation of creep are 

turbine rotor blades and disks and details of combustion chamber.  

Stress relaxation is connected with creep. Stress relaxation is reducing of stress in detail 

during any time under constant initial deformation. Reason of stress relaxation in a deformed 

detail is appearance of creep deformation in this detail.  

Principal difference of creep and stress relaxation is unlimited increasing of deformation 

during creep. Detail can destruct of this large deformation. For stress relaxation a maximal 

deformation of creep is not exceed a deformation from initial load. Thus a stress relaxation 

doesn’t lead to destruction of detail immediately, however it can change a working condition of 

unit, and other defects can appear.  

The most usual unit depends on stress relaxation is bolt connection. For high temperature the 

stress relaxation in a body of bolt for a tightening bolt connection leads to reducing of tightening 

force. On this reason fatigue destruction of bolts and opening of joint is possible. For bolt 

connections in rotor this reducing of tightening force leads to displacement of rotor parts 

relatively each other. It increases imbalance and leads to large vibration of rotor. 

Creep and stress relaxation are parts of the same process of accumulation of plastic 

irreversible deformation under stress which is low than limit of stress and limit of yield. On this 

reason it will be considered together. 

The main characteristics of creep are curves of creep obtained experimentally by tension of 

specimens under constant temperature (t=Const) and constant stress (=Const). These curves 

show dependency of accumulated plastic deformation (deformation of creep) on time. These 

curves are presented on Fig. 6.1. 
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 

Fig. 6.1. Curves of creep 

 

There are three stages on the curve of creep.  

I is initial stage of non-stabile creep; 

II is a stage of stabile creep (velocity of accumulation of deformation is constant on this part); 

III is a stage of quick creep preceding to destruction. 

Value 0=/E+p is instant elastic and plastic deformation during initial loading.  

First stage of non-stabile creep usually occupies a short time. It realize during control and 

delivery trials of engine. Therefore the most practice interest for design and calculation of 

strength and life-time of engine is for the second stage of stabile creep. It is the longest and 

determines a value of accumulated deformation.  

The life-time of details of engine is less than duration of first and second stages together.  

In accordance to Standard of Aircraft Engines Strength the life-time of details is determined 

with assurance factor as  

[] = p/K, 

here p is durability before destruction;  

       K is assurance factor for durability.  

Velocity of creep depends on temperature and value of stress. Two curves on Fig. 6.1 are 

corresponding to different temperature and stress. If temperature and stress increases, velocity of 

creep increases too. For t=Const - 1<2 , respectively for =Const - t1<t2 (Fig. 6.1). 

There are many methods of description of curves of creep. The most wide spread method 

supposes that for coordinates “time – deformation of creep” ( - с) curves of creep for different 

temperature and stress are geometrically similar. In this case it is possible to describe curves of 

creep as  

с=() f(t) (),   (6.1) 

here () is function depends only on stress ; 

 f(t) is function depends only on temperature t; 
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 () is function depends only on time . 

Function of stress is presented as   

  ()=Аm,    (6.2) 

here А,  m are empirically determined coefficients. 

Function of temperature is presented as  

f(t)=exp(-U/RT), 

here R is gas constant;  

      T is absolute temperature, K;  

      U is energy of activation of creep.  

Energy of activation of creep depends on stress and value of accumulated deformation. 

Common equation for this energy is  

   U=U0 - c - rc,  

here U0, с, r are constants depends on material, 

        U0 is constant part of energy of activation;  

      с, r are coefficient for stress and accumulated deformation. 

Thus for the stage of stabile creep with this admissions it is possible to describe the curve of 

creep as   

с= Аm  exp(-U/RT)    . 

One of method of calculation of deformation of creep uses curves of creep obtained for 

different stress and constant temperature (Fig. 6.2).  

 
Fig. 6.2. Curves of creep for different stress 

 

 For any time t1 it is possible to find deformations of creep under different stress and 

obtain isochronous curves of creep for time t1, in ( ,  ) coordinates (Fig. 6.3). These curves 

are analogous to the curve of plasticity, and it is possible to use it for calculation of plastic 
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deformation of creep during life-time of detail. It is necessary to take the isochronous curve for 

time equal to life-time of detail under the same temperature. 

 

Fig. 6.3. Isochronous curves of creep 

 

It is possible to use this method only if stress is constant. In other case in accordance to Fig. 

6.2 during a changing of stress a point should go from one curve to another one instantly, in 

reality this process takes any time. If stress changes, method based on intensity of creep velocity 

should be used.  

 If stress and temperature change, creep is complex. As a first approximation it is possible 

to take admission that for every time the velocity of creep for changing temperature and stress is 

the same as the velocity of creep for constant temperature and stress. In this case it is possible to 

find the accumulated deformation of creep as a sum of accumulated deformation on each 

operation mode of engine. It is possible to obtain its value as 
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here I is number of operation modes, each of them has its own stress i, temperature ti and 

duration. 

If there is vibration load in the same time as static load, velocity of creep increases 

significantly. In this case it is possible to present the velocity of creep as multiplication of two 

independent functions  
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d  is obtained by characteristics of creep under static load and function 
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d  depends only on value of vibration load.  

For alloys ZhS6u and ZhS30 it is possible to present function )(


vd
d  as  
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)(


vd
d =exp(v/L), 

here L is a coefficient depending on temperature. For temperature t=900ОС value of L=7...9, for 

temperature t=1000ОС value of L=5...6. 

To compare the characteristics of creep for different materials a limit of creep  
t

/,20  is 

using. It is a stress under which during time  for temperature t a residual deformation of creep is 

0.2%. 

Admissible residual deformation of compressor and turbine disks should not exceed 0.08%. 

In other case disk is considering as disabled. 

It is impossible to repair a detail after deformation of creep to recovery its original size 

directly. Its inner crystal structure isn’t in the original condition. Thus one need in its grain 

recovery by high temperature, the most important details (such as disks) is impossible to repair at 

all, it should be smelt. 

Stress relaxation in deformed material connects with appearance of deformation of creep.  

It is possible to present a total deformation of material as a sum of elastic deformation and 

deformation of creep: 

=е+с=/E+c     (6.3). 

If to differentiate (6.3), it is possible to obtain 01
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here ),(
.

Tc    is deformation of creep. 

If to integrate (6.4) from initial time =0 to current time  =, consequently from initial 

stress (0) to current value of stress (), it is possible to obtain an equation for dependency of  

stress on time during stress relaxation  as  
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.               (6.5) 

For dependency of creep as ()=Аm  it is possible to present (6.5) as  
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 .     (6.6). 

Equation (6.6) connects time and current stress () with initial stress (0). Curve of stress 

relaxation is presented on Fig. 6.4. 
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Fig. 6.4. Curve of stress relaxation 

 

As an example of relaxation a changing of tightening force in bolt connection of turbine disk 

is presented in Table 3.1. Working temperature is t=650ОС. Material of bolt is steel EI598.  

 

Table 6.1. Changing of tightening force in bolt connection of turbine disk 

Time of work,  hours 0 100 500 1000 

Stress in bolt, MPa 250 240 214 190 

 

Reducing of tightening force in bolt connection leads to large vibration of rotor, leakage in 

flanges, and destruction of bolts. If detail has surface residual stress for its strengthening, 

relaxation of this surface stress reduces a resistance of detail to fatigue. However sometimes 

stress relaxation is useful, when relaxation of surface tension stress after a manufacturing of 

detail or relaxation of volumetric stress after punching takes place. 

End point of curve of creep is a point of destruction of specimen. Therefore these points 

determine the long-term strength of material. Limit of long-term strength (or limit of high-

temperature strength) t
b/ is a constant stress under which a specimen of material with constant 

temperature t will be destroyed during time .  

The long-term strength t
b/ is the main characteristic of material determines a possibility of 

its application for engine details working under high temperature (blades and disks of turbine, 

details of combustion chamber, nozzle, rotor supports, shafts etc.). The long-term strength 

determines a life-time of these “hot” details and consequently a life-time of engine as the whole. 

For the same life-time of details, materials with high long-term strength allow increasing of 

thermodynamic efficiency of engine, because “hot” details are able to work under more high 

temperature and it is possible to reduce an air necessary for its cooling. 

The main characteristics of long-term strength are curves of long-term strength. These 

curves connect stress and time till destruction for constant temperature. Curves of long-term 
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strength are obtained by final points of curves of creep for constant temperature. Because long-

term strength is a final characteristic of creep, some dependencies for creep are the same for 

long-term strength. 

Thus a time till destruction for constant temperature is connected with stress by power or 

exponential dependency as  

 m=Const              [ lg +mlg=P1]   (6.7a) 

 exp(q)=Const     [lg +q=P2]        (6.7b) 

here m, q, P1, P2 are empirically determined coefficients. 

By equations (6.7а) or (6.7b) it is possible to estimate a limit of long-term strength for long 

time by results of little numbers of experiments with little duration. 

Curves of long-term strength depend on temperature. If temperature increases, long-term 

strength reduces (Fig. 6.5). 

 
Fig. 6.5. Curves of long-term strength 

 

High-temperature coats reduce the long-term strength. However these coats are necessary 

against gas corrosion and erosion for details made of nickel alloys and work in hot gas after fuel 

burning (rotor and stator turbine blades, details of combustion chamber etc). Long-term strength 

is approximately independent on stress concentration.  

For the most important details of engine, works under high temperature (turbine rotor and 

stator blades, disks of turbine and compressor, shafts, turbine supports, details of combustion 

chamber and nozzle, details of engine case which transmit force) a obligatory control of  long-

term strength during manufacturing should be provided. If detail is manufactured by cast (for 

example, turbine blades), together with detail a specimen-witness is casted. If detail is 

manufactured by punching, a special place in original product is provided to cut the specimen-

witness. Control specimen is manufactured on the same technology as detail and tested on long-

term strength. A time till destruction under determine stress and temperature is controlled. 

Testing stress and temperature are more than for maximal engine operation mode, it corresponds 

a time till destruction about 40...100 hours. Number and periodicity of long-term strength test 
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depends on stability of manufacturing and appearance of defects in exploitation. If 

manufacturing is stabile and defects don’t appear, it is possible to reduce number of controlled 

specimens.  

Because working conditions of details in engine are different, it is necessary to know 

characteristics of long-term strength for all working range of temperature. 

The time till destruction р during continuous work on the same engine operation mode 

depends on stress and temperature. For constant temperature it is possible to present the 

dependency of time till destruction р  and stress  as    

  m=P,   (m=Const),                                                         (6.8а) 

or as exponential equation   

                                         =Аexp()+L                                              (6.8b) 

here m, А, Р and L are empirically determined coefficients, depends on material and temperature.  

The testing for all working temperatures is too long and expensive process. Therefore it is 

necessary to have methods of interpolation and extrapolation of experimental data about long-

term strength for all working temperatures. 

There are some equations connecting the time till destruction р with stress  and 

temperature T by dependency as f()=(p,T). The most wide-spread is dependency of Larson 

and Miller. In accordance to it for constant stress ( = Const) takes place  

Т(С + lgр) = Const,    (6.9) 

here T is temperature;  

       р is time till destruction;  

      C is constant. 

For many steels and heat-resisting alloys value of C is about C16...24). For calculation a 

middle value C=20 is using usually. 

Dependency of Larson and Miller allows for the same stress by testing results on one 

temperature to estimate the time till destruction for other temperature. Because Т1(С+ lg1) = 

Т2(С + lg2), equation for recalculation of time till destruction for other temperature and the 

same stress is: 

C)(C+ τT
Tτ  1

2

1
2 lglg     (for condition 1 = 2),  

here 1 is time till destruction obtained experimentally for temperature  Т1  and stress  1; 

2 is supposed time before destruction for temperature Т2 and stress  2. 
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Aircraft engine changes its operation mode many times during a flight. Thus working time 

on all operation modes should be taken into account for the life-time calculation. Methods of 

life-time calculation use different hypotheses of summation of damages. Damage here is a part of 

life-time depletion from working time on one operation mode. 

First calculation method for life-time during many operation modes was developed by 

Palmgren for bearings. After it some works of A. Miner and C.V. Serensen developed some 

methods for calculation of life-time for high-frequency fatigue. Basis of these methods is a 

hypothesis of linear summation of damages. 

In accordance to this hypothesis a condition of destruction is          

    1
1


I

i= pi

i

τ
τ ,    (6.10) 

here i is number of engine operation mode; 

     I is quantity of operation modes; 

    i  is total working time of operation mode number i; 

pi is time till destruction for continuous work only on operation mode number i, it is 

obtained by curves of long-term strength for stress and temperature of this operation mode.  

The hypothesis of linear summation doesn’t take into account an influence of transfer from 

one level of load to another one. Thus it gives any error. 

If parts of working time for different operation modes are Сi=i  / [] (it should be 

1
1




I

i
iC ), here [] is life-time of engine, in accordance to the hypothesis of linear summation 

of damages, a total time till destruction р is  




 I

i=
pii

p

τC
τ

1

1  .  (6.11) 

It is necessary to take into account an assurance factor К , therefore it is possible to obtain 

the life-time of detail or engine [] as 

   .Kτ
τ

pτ       (6.12)  

It is possible to use equations (6.11, 6.12) to obtain the life-time of details for loading with 

many operation modes and to obtain conditions of trials equivalence to work of engine.  

Long-term strength depends of number of cycles of loading. Long-term strength for repeated 

loading and unloading with Z cycles is less than for continuous loading. Coefficient of repeated 

loading is using for this dependency on cycle number. This coefficient is a ratio of limit of long-
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term strength for repeated loading to the usual limit of long-term strength for the same durability.     

σ
σK t

τb

zt

τb
z

)(
 . 

As experiments show, value of Кz is approximately independent on temperature and 

duration of work under maximal stress of cycle. It depends only on number of cycles.    

Vibration load increases the velocity of creep, therefore it reduced the long-term strength. It 

is possible to calculate the long-term strength for combination of long static and high-frequency 

vibration load by hypothesis of linear summation of damages:       

 1
11

 


J

j pj

j
I

i= pi

i

N
N

τ
τ , 

here Nj is number of cycles of loading for engine operation mode  number j,  

Npj is number of cycles till destruction for continuous work of engine as on operation mode 

number j. Values pi and Npj are obtained by curves of long-term strength and vibration strength 

(curve of fatigue, will be considered below) for stress and temperature of this operation mode.   

As a first approximation it is possible to calculate the long-term strength for combination of 

long static and high-frequency vibration by equivalence stress  

eq=s+v, 

here s is static part of the load,  

      v is vibration part of load. 
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7. LOW-CYCLE AND REPEATED-STATIC DURABILITY 

 

Work of aircraft engine connects with many starts, stops, changing of engine operation 

mode during one flight. Engine of aircraft for middle distance of flight with middle duration of 

flight 2 hours has 10000 flight cycles during its life-time (20000 hours). In addition for every 

flight the operation mode of engine changes 15...30 times. This cyclic recurrence of load is large 

problem for life-time of disks of turbine and compressor, air-cooled turbine blades, supports, 

loaded engine cases etc. Low-cycle defects are about 10% of total defects of aircraft engine. The 

most negative influence of low-cycle loading is for details with stress concentrators. 

Every cycle of load (changing of engine operation mode) has its own maximal and minimal 

stress and temperature, duration and value of high-frequency vibration stress during the cycle. 

Because number of types of cycles is very large, it is necessary to have method for estimation of 

low-cycle durability for any type of cycle of load by results of standard tests. These standard 

tests usually use a cycle with triangle shape and from zero stress to maximal. 

Characteristics of low-cycle durability depends on: 

- temperature; 

- duration of working time under a maximal load inside of cycle; 

- maximal and minimal stress of cycle; 

- value of high-frequency vibration stress. 

The most wide-spread descriptions of curves of low-cycle durability are as “deformation” 

dependency and “force” dependency. 

The “deformation” dependency connects a difference of deformation for load cycle  and 

number of cycles till destruction z.  

Usual description of this type is equation of Manson – Coffin: 

m
m

nb zz
E












 )
1

1lg(5,3



 ,   (7.1) 

here b is limit of strength of material; 

Е is modulus of elasticity; 

 is relative transversal narrowing deformation for rupture; 

n, m are empirically determined coefficients, for a first approximation n = - 0,12, m = 0,6 

for all materials and all temperatures of testing; 

          is difference of elastic-plastic deformation for load cycle. 

The “force” dependency connects stress  and number of cycles till destruction. The most 

convenient shape for description of curves of low-cycle durability is: 
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 m z =Const.    (7.2) 

Let consider an influence of different exploitation factors on low-cycle durability. It is more 

convenient to use for it the coefficient of repeated loading Kz. It shows a ratio of limit of strength 

for repeated load to limit of strength for constant load and for the same time till destruction        

    





t

b,

0zK ,    (7.3) 

here t
b,  is limit of long-term strength; 

        0 is limit of strength under repeated load for temperature t and time  . 

From many experiments it is possible to obtain the dependency of Kz
 on number of load 

cycles as 

lgz=mlgKz+p     or      pmlg=lgz t
b,

0 











 ,    (7.4) 

here m, p are empirically determined coefficients. 

The limit of long-term strength t
b, for (7.4) is obtained by curves of long-term strength for 

a time equal to total time of maximal stress in cycles. As experiments show, value of Kz
  isn’t 

sensitive to temperature.  

It is possible to obtain an influence of working time under static load   by coefficient Kz 

too. In accordance to hypothesis of linear summation of damages it is possible to obtain a 

condition of destruction for composition of low-cycle and long static loads as  

1z

zрр




  

Here  is total time of static load, p  is time till destruction under static load only, pZ  is 

number of cycles till destruction for low-cycle load only, z is number of cycles of low-cycle 

load.  

From here it is possible to obtain a value of  Кz=t
0/t

b,  as: 

,z1
m

pz 












zK  

here m is degree in equation of curve of long-term strength m=Const. 

Load cycles, connected with changing of engine operation modes, have large asymmetry 

(coefficient of asymmetry of cycle r=min/max  =  0.3...0.9,  here min , max are minimal and 

maximal stress of cycle respectively).  

It is possible to obtain an influence of cycle asymmetry on low-cycle durability from 

assumption that diagram of asymmetric cycles is linear  (Fig. 7.1, a), that is:  
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













b

mz

1-a
1 , 

here z
-1 is limit of low-cycle strength for z cycles and coefficient of asymmetry of cycle r = -1.  

a) b)  

Fig. 7.1. Diagram of limiting state for asymmetric low-cycle load. a – linear approximation; 

b – obtained experimentally 

 

It is possible to obtain from diagram of asymmetric cycles    

         *0 - а = (m - *0) ,                                        (7.5) 

Because *
0=0/2, and Kz=0/b  ,  value of  is 

=z
-1/b=*0/(b-*0) =Kz /(2- Kz ).        (7.6) 

Because middle stress of asymmetric cycle is m= (min + max)/2, amplitude stress is 

a=(max - min)/2, and r=min/max  , it is possible to transform equation (7.5) to: 










 







221
1 minmaxminmax

0
 


 =  )1(1max zKr  .    (7.7) 

For extreme values of coefficient of asymmetry of cycle it will be as: 

for      r = 0   result is max=0,  for    r = 1 result is  max=b. 

As experiments show (Fig. 7.1, b), the diagram of asymmetric cycles is more near to broken 

line. If for non-dimensional coordinates a tangent of inclination angle of left part of the diagram 

is *left=, of right part it is *right=, it is possible to obtain for m - a coordinates 2left
zK   

for the left part and 2
z

right

K   for the right part. Therefore it is possible to transform (7.6) to: 

    z
z

z

aKr
K

K

r 

























 







 

 11

2
1

2
1

1
maxmax0  



    (7.8) 
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for the left part and  0=max[1-r(1-bKz)]  for the right part. 

Experiments show that value of ''а'' coefficient in the equation (7.8) non-significantly 

depends on material and temperature and depends mostly on stress concentration coefficient .  

If a specimen has no stress concentration, value of "а'' is near to 1, if stress concentration 

coefficient increases to =4.5, value of ”а’ reduces to а = 0.3. 

 Dependency of coefficient “а” on stress concentration coefficient is presented on Fig. 7.2. 

 
Fig. 7.2. Dependency of coefficient “а” in equation (4.8) 

on stress concentration coefficient 

 

For practice it is necessary to know not only ratio of maximal stress for zero-to-tension 

stress cycle and asymmetric cycle with the same number of cycles till destruction, but a ratio of 

durability for the same maximal stress of these cycles. If for range 0 …max the curve of low-

cycle durability for zero-to-tension stress cycle is described by equation mz=Const , it is 

possible to obtain this ratio as:  m
r z

z )(
max

0

max

0




  . Because 0=max[1-r(1-aKz)] , finally it 

will be as: 

z
z

r
r

0  = [1-r(1-aKz)] m,                       (7.9) 

Coefficients ''m'' and “а” for some materials are: 

VТ-9: for  =1:  m = 12,  а = 1; for =2,8:  m =3,5; а=0,33. 

EI-698VD: for  =1:  m = 6;  а=1; for =2,8: m=4,5;  а=0,33. 

 

Influence of high-frequency vibration load on low-cycle durability  

Most of details in aircraft engine work under combined high-frequency vibration load and 

repeated static load. Vibration load is from working processes of engine, repeated static load is 

from starts, stops, changing the engine operation modes. Vibration load significantly reduces the 
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durability under repeated static load. Vibration load about 1% from value of repeated static load 

reduces durability about 10%.  

It is possible to estimate the influence of vibration stress on low-cycle durability on a basis 

of curve of limit condition for combined high-frequency vibration load and repeated static load 

and the same time till destruction: 

     
































l

z
m

ha S
S 1 ,         (7.10) 

here а is amplitude of  high-frequency vibration load; 

 z
m. is maximal stress of low-cycle repeated static load; 

 Sh is limit of fatigue stress under high-frequency vibration load till destruction; 

 Sl is limit of stress for low-cycle durability by maximal stress of cycles;  

  is empirically obtained coefficient, it is possible to assume that for low temperature  =1, for 

high temperature  =2. 

Common shape of equation for fatigue curve is        

                              Sh=А(N),                              (7.11), 

an equation of curve of low-cycle durability is  

          Sl=В (Z);                       (7.12), 

here N, Z are durability of high-frequency and low-cycle load respectively (number of cycles).  

Because high-frequency and low-cycle loads work during the same time, it is a ratio between  

N and Z:   

                           N= (fh /fl )Z,    (7.13)  

Here fh is a frequency of vibration load,  fl is a frequency of low-cycle load. 

If to insert equations (7.11), (7.12) into (7.10) it is possible to obtain an equation for limit 

condition under two-frequency load: 

 
























)(
1)(

zB
NA

z
m

a . (7.14) 

If curve of low-cycle durability is   

                                          mZ=В              ,                                     (7.15)         

 and curve of high-frequency fatigue is:  

                                                kN=А,                                               (7.16).  

it is possible to obtain functions А(N) и В(Z). If to take into account equation (7.13), equation  

(7.14) is transformed to: 
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1 ,     (7.17) 

In calculation usually a limit of fatigue for steel and nickel details is used obtained for 2х106 

load cycles, or a limit of fatigue for nonferrous metals and titanium alloys is used obtained for 

10х106 cycles. 

In this case А(N) = -1,  (-1 is a limit of fatigue), and equation (7.14) transforms to: 

  
















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


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
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m

m
z

a

z
B 11 1 , from here the durability of detail (measured in cycles of 

low-cycle load) combined high-frequency vibration load and repeated static load it is possible to 

obtain from equation:  

                         





m

m
z

aBz 















1

1 .    ( 7.18 ) 

Value of  for the first approximation is =1. If value of  changes from =1 to =2 for 

usual level of vibration stress about 10% from repeated static stress, difference of calculation 

depends on coefficient "m". For m=3 changing of result is 17%, for m=10 it is 69%.  

Ratio of durability for low-cycle repeated static load z0 and low-cycle repeated static load 

together with vibration load zv (for the same stress of repeated static load) is  


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
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


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
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z .                            (7.19) 

If to assume  = 1, it is possible to obtain from (7.19) coefficient  v
as  

                                            
m

v
v 









 








1

1 ,                            (7.20) 

here m is coefficient of curve of low-cycle load (4.2). 

 

Estimation of equivalence engine operating time during the term of exploitation 

It is possible to obtain a value of accumulated damage during one exploitation cycle of 

aircraft engine on a basis of schematization of complex exploitation cycle as a system of 

elementary load cycles (Fig. 7.3). Elementary load cycle usually is considered as changing of 

load from minimum to the maximum following to this minimum. Every elementary cycle has its 

own temperature, minimal and maximal stress, duration of work under the maximal stress, level 

of combined high-frequency vibration stress. 
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Fig. 7.3. Schematization of complex exploitation cycle of aircraft engine as a system of 

elementary load cycles 

 

Value of accumulated damage during exploitation on a criterion of depletion of low-cycle 

durability is obtained in accordance to hypothesis on linear summation of damages as     

         



I

i p

i
z

i
z
zп

1
, 

here zi  is number of load cycles of i type;  

 zрi is number of load cycles till destruction of i type. 

Number of load cycles till destruction of i type, which takes into account the main factors 

(temperature, minimal and maximal stress, duration of work under the maximal stress, level of 

combined high-frequency vibration stress) it is possible to obtain by coefficients of influence and 

description of curve of low-cycle durability as Kz = Kz(Z). This way it is possible to obtain the 

number of cycles till destruction by results of standard tests with zero-to-tension stress cycle as  

Zpi=Z0/(rv), 

here Zо is number of cycles till destruction for the same coefficient of repeated loading Kz, this 

number is obtained from  curve of low-cycle durability as (Kz )mZ = Const; 

       r = [1-r(1-aKz)] m is coefficient of influence of minimal stress of cycle, it is obtained from 

equation  (7.9);  
m

v
v 









 








1

1 is a coefficient of influence of high-frequency vibration stress, it is 

obtained from equation (7.20). 

 Life-time of aircraft engine is presented in hours of work and in numbers of load cycles. 

Therefore it is necessary to estimate an engine operating time (in cycles) during engine 

exploitation in any common units – equivalence load cycles. As the equivalence load cycle it is 

possible to take the heaviest loaded cycle – start and increasing of engine speed to the maximal 

for standard atmosphere conditions  (th=15ОС, Р=1.033 kg/sm2).  

+ + + +  
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In accordance to hypothesis on linear summation of damages, it is possible to obtain the 

equivalence number of cycles during exploitation as 

                      vizz rii

I

i
iэкв 




1

 (7.21) 

here i = (Kz i /Kz equ)m is coefficient which takes into account the difference of stress, 

temperature and working time under maximal stress for cycle i type and the equivalence load 

cycle. 

 Calculation algorithm for equivalence engine operating time during engine exploitation is 

presented on Fig. 7.4. 

 

Obtaining of parameters of cycle i type:     Kz i=max i/b i , ri==min i/max i, a i 

 

Obtaining of coefficients for bringing of cycle i type to equivalence load cycle  

r = [1-r(1-aKz)] m 
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 

Summation of equivalence engine operating time (in cycles):       zequ=ziequ 

 
Fig. 7.4. Calculation algorithm for equivalence engine operating time (in cycles) during 

engine exploitation 
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8. THERMO-MECHANIC FATIGUE. INFLUENCE OF DIFFERENT STRUCTURE 

AND TECHNOLOGY FACTORS ON LOW-CYCLE DURABILITY 

 

Changing of engine operation modes provides a changing of temperature of details.  On this 

reason non-uniform temperature distribution and temperature stress appear in details. Therefore 

stress in details is determined by sum of mechanic and temperature stress. On this reason low-

cycle thermo-mechanic fatigue can appears. Especially it is so for air-cooled details of turbine 

and combustion chamber. 

A specific problem of thermo-mechanic fatigue is resistance of structure to quick changing 

of temperature.  Large thermal gradient in thin surface layer of detail leads to surface fractures.  

For cycle loading if deformation during first load cycle was elastic, deformation for other 

cycles will be elastic too. If deformation during first load cycle was elastic-plastic, two cases for 

other load cycles are possible. 

In a first case a structure adapts itself to variable load by appearance of convenient 

distribution of residual stress after first load cycle. For next load cycles deformation will be 

elastic, because stress from external load interacts with residual stress after first load cycle. In a 

second case deformation remains elastic-plastic for all next load cycles (it can be connect with 

increasing of external load). Low-cycle durability in this case is significantly less. 

Because residual stress appears of yield, condition of this adaptation for thermo-mechanic 

stress t
equ of next load cycles connects with limit of yield as 

    t
equ02 . 

Ability of structure to bear necessary number of changing of temperature during changing of 

engine operation modes (starts, changing of engine speed, stops) is heat resistance. 

Especially danger is an appearance of surface fractures from non-sufficient heat resistance 

on structures under high vibration load (turbine rotor blades, case of combustion chamber). It 

significantly reduces its limit of fatigue. It is possible to increase the heat resistance of detail by 

special protection coating on its surface. This protection coating can increase to 6 times a 

number of temperature changing till appearance of fractures Nf.  

The main structure factor of influence on low-cycle durability is stress concentration 

coefficient . If stress concentration increases, the low-cycle durability significantly decreases. 

Some examples of its influence (equations of curves of low-cycle durability) are presented in 

Table 8.1 for different materials. 
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Table 8.1 

Stress 

concentration 

coefficient 

Material 

VT-9 EI698 EP693 

= 1 lgZ=-20Kz+22 lgZ=-6.06Kz+9.5 lgZ=-8.05Kz+12 

= 2.1 lgZ=-3.17Kz+6.2   

= 2.8 lgZ=-3.36Kz+6.0 lgZ=-4.08Kz+7.1 lgZ=-3.39Kz+6.5 

= 4.5 lgZ=-3.03Kz+5.3 lgZ=-3.74Kz+7.0 lgZ=-2.99Kz+5.8 

 

Welding can reduce several times the low-cycle durability. Thermal treatment for reducing 

of residual stress increases the low-cycle durability. Electro-polishing increases the low-cycle 

durability too. Surface strengthening increases the low-cycle durability, because it delays an 

appearance of fatigue fracture and development of this fracture under cycle load.  

There are two stages of low-cycle destruction of material: 

- appearance of fatigue fracture; 

- development of fracture.  

Low-cycle destruction takes place as a result of development of the fracture to its critical 

size. The stage of development of fracture can occupy to 50% of total durability. Some defects 

always take place in material of its manufacturing. These defects under external load give an 

origin of fracture. Standard of wearing allows a presence of fractures with any length in some 

details. These fractures are discovered during inspections of engine. 

A fact of appearance of fracture doesn’t reduce a working ability of engine. It is important to 

control the development of fracture. Necessary condition of working ability is that velocity of 

growth of fracture should not exceed an admissible one, and fracture should not reach a critical 

size during time between inspections.  

An example of exploitation of aircraft engine with inspections of turbine disks chosen from 

velocity of growth of fracture, is exploitation of engine ТF-4 on aircrafts of US Air Force. 

Control apparatuses and correct choice of period of inspections allowed increasing life-time six 

times, in spite of fractures in turbine discs without reducing a safety of flights.  

Equation of Paris connects a velocity of growth for fracture with length l and stress intensity 

coefficient: 

nKC
dZ
dl )( ,   (8.1) 

here С and n are empirically obtained coefficients, 

К is stress intensity coefficient (obtained by maximal stress of tension half-cycles). 
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From this equation a number of cycles for development of fracture from its initial length l0 

to final one lк is: 





kl

l
nKC

dlZ
0

,
)(

    (8.2) 

Equations for stress intensity coefficient for equations (8.1) and (8.2) for usual fractures of 

compressor and turbine disks are presented in Table 8.2. В is thickness of disk in a place of 

fracture.  

 

Table 8.2. Equations for stress intensity coefficient for usual fractures of compressor and turbine 

disks 

Fracture Value of  Value of К 

Centre of disk 

 

 

 

 

=В/(В-l) n 

 

K=1.12   

 

Flat part =В/(В-l) n 

 

 

K=1.12   

 

Flat part 

 

 

 

=В/(В-l) n 

 

K=1.12 
2
1  

 

Velocity of development of fracture can increase after its operation time in exploitation. 

Velocities of development of fracture from specimens made of material EI698VD for its original 

condition and after long operation time are presented in Table 8.3.  

 

Table 8.3. Velocity of development of fracture (10-3 mm/cycle) 

Condition Length of development of fracture, mm 

 4 5.5 7.5 

Original 0.86...1.0 0.82...1.26 1.51...10.0 

After operating time 5.0 10.0 33.0 

Strengthening   1.11...1.43 1.11...1.61 1.43 

 

Corrosion media increases the velocity of development of fracture.  

l 

l 

l/2 
l 
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The main problems of calculation of low-cycle durability of details now are:  

- an obtaining of experimental data on low-cycle durability of specimens and details, includes on 

a stage of development of fracture; 

- development of method of summation of damages and calculation of low-cycle durability in 

real conditions of exploitation, with combination of different types of load;  

- research of influence of detail manufacturing (inner structure of material, condition of surface 

etc) on its low-cycle durability; 

- development of methods for calculation of development of fractures and prediction of remain 

life-time;  

- development of non-destructive control methods allowing a reliable control of development of 

fractures during exploitation of engine. 
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9. HIGH-CYCLE FATIGUE 

 

Destruction from high-cycle fatigue is more than 40% of total defects of gas turbine engines. 

Resistance to fatigue determines a working ability of details under large variable stress (blades of 

turbine and compressor, shafts, pipelines, supports etc). Fatigue destruction appears as a result of 

gradual development of fracture. Therefore it is possible to discover it during inspections of 

engine.  

Main characteristics of vibration load (Fig. 9.1) are: 

- amplitude of variable stress а; 

- middle stress of cycle m; 

- coefficient of asymmetry of cycle r=min/max.  

In accordance to the coefficient of asymmetry of cycle some types of variable load are 

determined as: 

- -1 is symmetric load (r=-1); 

- 0 is - отнулевое нагружение (r=0); 

- r is asymmetric load  with coefficient of asymmetry of cycle r= min / max. 

 
Fig. 9.1. Main characteristics of vibration load 

 

The main characteristic of resistance to fatigue is curve of fatigue. This curve connects 

variable stress in material till destruction (limit of fatigue) and number of cycles till destruction. 

Because first large researches of resistance to fatigue took place in Germany in 1860...1870 years 

under leadership of O. Woehler, curve of fatigue is named as diagram of Woehler. 

It is possible to describe the fatigue curve as: 

mN = Const                      (9.1a)  

 or     Nexp(q) = Const,             (9.1b) 

here  is amplitude of variable stress; 

       N is number of cycles till destruction; 

      m, q are empirically obtained coefficients. 
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Common outlook of fatigue curve is presented on Fig. 9.2. 

 
Fig. 9.2. Fatigue curve 

 

Limit of fatigue is maximal amplitude value of stress а, which a specimen or detail can 

bear without destruction during basis number of cycles of load Nbasis. Low-alloy steels can have 

constant limit of fatigue,  for many other alloys limit of fatigue reduces when number of loading 

cycles increases. Therefore in accordance to Standard of Strength of Aircraft Gas Turbine 

Engines the limit of fatigue for steel and nickel alloys is obtained on the basis  N=2107 cycles, 

for titanium and non-ferrous alloys on the basis N=108 cycles. 

Resistance to fatigue depends mostly on: 

- asymmetry of cycles; 

- temperature; 

- load frequency. 

Fatigue testing of specimens and details usually take place for symmetric cycle of load. It is 

possible to estimate an influence of asymmetry of load cycles by curves of limiting stage for 

combine action of variable and static load (diagrams of asymmetric cycles). An example of this 

diagram of asymmetric cycles for steel is presented on Fig. 9.3. 

 

 
Fig. 9.3. Diagram of asymmetric cycles for steel 
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It is possible to describe the diagram of asymmetric cycles as  





























  t

/b

m
1a 1 ,   (9.2) 

here  and   are empirically obtained coefficients, 

t
b/ is limit of long-term strength for temperature t and for total time of testing. 

As a first approximation it is possible to take coefficients in equation (9.2) as ==1. In this 

case equation (9.2) transforms to:  

a=-1(1-m/t
b/)   (9.3) 

Sometimes the diagram of asymmetric cycles is schematized as broken line.  It this case it is 

possible to present the fatigue limit for asymmetric load as:  

a = -1 - m,      (9.4) 

here  is empirically obtained coefficient for influence of middle stress of cycle. Value of   

0,2...0,25 for steel and nickel alloys,   0,4 for titanium alloys. 

It is possible to calculate value of assurance factor for resistance to fatigue by diagram of 

asymmetric cycles. It depends on load changing during limiting stage (Fig. 9.4). 

 
Fig. 9.4. Calculation of assurance factor by line of limiting stage 

 

Value of assurance factor by resistance to fatigue for constant values of middle stress m and 

variable a  is obtained by equation: 

)11(

1
1

1

ma

aa

a

k

K






 







     ;      (9.5a) 

- for constant middle stress m  and increasing variable stress a  by equation:  

)11(1

maa

m
a

v k
K  





 ;    (9.5b) 

- for variable middle stress m and constant amplitude of variable stress a  by equation: 
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)1(
1



 a

m
a
m kK ,  (9.5c) 

here km is  assurance factor for static strength km=t
b//m or km=b/m. 

For linear schematization of diagram of asymmetric cycles (Fig. 9.4) these equations 

transform to: 

,1

ma

K



 
    (9.6a) 

,1

a

m
vK


 

      (9.6b) 

.1

m

aa
mK


 

     (9.6c) 

Here value of  =-1 /t
b/ . 

Vibration stress in many details is very irregular and depends on engine operation mode. 

Therefore for many details, especially for blades of fans made of aluminum alloys, it is necessary 

to calculate the assurance factor by resistance to fatigue for variable or random load. 

An equivalent value of harmonic high-frequency load cycles equal by accumulated damages 

to variable load is possible to obtain in accordance to hypothesis of linear summation of damages 

as:  

        a
N
nI

i i

i 
 1

, 

here ni is number of cycles of work under variable stress i, Ni is number of cycles of work under 

this variable stress till destruction.  

If to take a description of fatigue curve as (9.1a) in accordance to hypothesis of linear 

summation of damages it is possible to obtain: 

m
I

i i

im
im N

n
a 




1

var
1      .     (9.7) 

  For random load with given function of density distribution for probabilities of 

amplitudes of variable load  F(i) this equation transforms to 

m ii
m
im

dF
a 

max

min

)(1
var





 .     (9.8) 

Values of assurance factor of resistance to fatigue for this variable or random load are 

possible to obtain by equations (6.5) or (6.6). Instead of amplitude of vibration stress  a  it is 

necessary to use value of var, calculated from equations (9.7) or (9.8) . 
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Limit of fatigue depends on load frequency. Till frequency 10000Г Hz if load frequency 

increases, the limit of fatigue increases too. It is possible to explain it by little time of working of 

material under maximal amplitude stress, and frequency of micro-plastic deformation remains 

behind of velocity of loading. For turbine blades made of mono-crystal alloy the limit of fatigue 

for load frequency  600 Hz is -1= 180 MPa, for load frequency 5400 Hz value of -1= 

360...400 MPa.  

Some researches use for estimation of influence of load frequency f on the limit of fatigue an 

empirically obtained dependency: 

LgN = lgA - C lgf, 

here А and С are coefficients independent of load frequency.  

It is discover experimentally for some heat-resisting alloys, that for high temperature the 

limit of fatigue is the same for the same time till destruction and independent on load frequency, 

however number of cycles till destruction is different. 

 

The limit of fatigue depends significantly on type of stress condition. If normal and 

tangential stress а and а exists together, it is possible to take an equivalence stress by von 

Mises:  

.3 22
aaequ     

For complex stress condition and asymmetric cycles it is possible to take an equivalence 

stress as:   

  22 )]1([3)]1([
a

m
a

a

m
aequ 



  . 

During fatigue testing for one-axial stress there is a difference of limits of fatigue for 

bending (а
b) and tension - pressure (а

tp). Its ratio is about а b/а
tp=1.50.5. Possible 

explanation of it connects with statistics nature of fatigue strength. During the bending not so 

large volume of material (and therefore not so many micro-defects) takes part in the deformation 

process. 

 

Stress concentrators significantly reduce the resistance to fatigue. An effective coefficient of 

stress concentration is  

К=(-1)/(-1)c ,   (9.9) 

here -1 is limit of fatigue for smooth specimen;  

     (-1)c is limit of stress for specimen with stress concentrator. 
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Value of effective coefficient of stress concentration usually less than theoretical (elastic) 

coefficient of stress concentration . Its difference is a coefficient of material sensitivity to 

stress concentration.  

q=(К-1)/(-1).         (9.10) 

This value is about q=0,5...0,9. If limit of strength increases and plasticity reduces, the value 

of q increases. If stress gradient in a place of stress concentration increases, value of q reduces. 

Details manufactured by cast are not so sensitive to stress concentration as details made of 

punching. An example of influence of stress concentrator on the limit of fatigue data for limit of 

fatigue of compressor and turbine blades with stress concentrators (fractures and nicks) are 

presented in Table 9.1.  

Table 9.1 

material 

Limit of fatigue, MPa 

Without 

damages 

With 

nicks 

With 

fracture 

With evening-out 

of nicks 

With fractures 

from nicks 

VT-6 320   0,9 -1 90 

VT-8 540 204 240 0,9 -1 40...90 

ZhS6u 200   0,9 -1 70 

 

Because appearance of nicks has very large influence on limit of fatigue, there is a standard 

for admissible size of nicks during exploitation. Nicks with fractures are not allowed. Periodical 

inspection of engine includes an inspection of nicks on compressor and turbine blades. 

If size of detail is larger, the limit of fatigue is less. Coefficient of influence of absolute size 

of cross-section is using to estimate this influence of size.  

= К=(-1)d/(-1)d0, 

here (-1)d is limit of fatigue for specimen with diameter d;  

(-1)d0 is limit of fatigue for specimen with little diameter d = 5...7 mm.  

 
Fig.  9.5. Dependency of coefficient of influence of absolute size of cross-section on size for bolt 

connection 
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  A dependency of coefficient of influence of absolute size of cross-section on size for 

bolt connection is presented on Fig. 9.5. 

Possible explanations of this fact are: 

- growing of size leads to number of inner and surface defects and non-uniformity of material on 

section increasing, it reduces the limit of fatigue;  

- growing of size reduces uniformity of its structure after thermal treatment (non-uniform 

distribution of temperature in large detail) and after punching or forging (non-uniform 

distribution of stress in large detail); 

- non-uniformity and anisotropy in original product for detail are more if this original product is 

large. 

Vacuum and centrifugal cast significantly reduce this non-uniformity of properties.  

 

Limit of fatigue depends very significantly on quality of surface, because fatigue fracture 

usually appears on a surface.   

The main parameters of quality of surface are quality of treatment, surface smoothness and 

characteristics of surface micro-geometry. One of the main reasons of reducing of limit of 

fatigue is stress concentration from micro-imperfections of surface. It is possible to obtain 

dependency of stress concentration coefficient of parameters of surface micro-geometry as: 

c

z

r
R

 21 , 

here  is coefficient depends on ratio of micro-imperfections step to its height  =(t/Rz), for 

mechanical treatment   1;  

     Rz is height of micro-imperfections; 

      rc is radius of curvature on a bottom of cavity (Fig. 9.6). 

 
Fig. 9.6. Parameters of micro-geometry of surface 

 

Reducing of limit of fatigue as a result of quality of surface is: 
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1
1




 





qc

.   
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An example of influence of quality of surface on the limit of fatigue for titanium alloy VT-

3-1 is presented in Table 9.2. 

 

Table 9.2. Influence of quality of surface on the limit of fatigue 

Condition of surface 11 /)(   c  

Rough treatment 0.40 

Grinding 0.50 

Milling + polishing 1.0 

Electro-polishing 0.98 

 

A strengthening treatment significantly increases the limit of fatigue. Defects of 

manufacturing on the surface (for example, local burns during grinding) significantly reduce 

the limit of fatigue.  

 

Corrosion and erosion have large influence on limit of fatigue. An influence of corrosion 

damage depth corh  on limit of fatigue of compressor blades made of high-alloy steel is 

presented on Fig. 9.7.  cor)( 1  is limit of fatigue for material damaged by corrosion, 

new)( 1 is limit of fatigue for material of new blades. 

 
Fig. 9.7.  Influence of corrosion on limit of fatigue 

 

Limit of fatigue of material of turbine blades can decreases of damage of its surface by flow 

of fuel burning products. Special coatings are using to increase a resistance of blades to 

corrosion and erosion. However these coatings can reduce the limit of fatigue. Special testing is 

necessary to check it. 
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Limit of fatigue depends significantly of method for obtaining of original product: punching 

or cast. Strengthening of original product can reduce plasticity of material. Of this reason a 

material will be more sensitive to stress concentration. 

Structure of material has large influence on the limit of fatigue too. For deformed poly-

crystal materials if size of crystals reduces, limit of fatigue increases. For cast alloys with 

isotropic structure of little crystals an appearance of large crystals from non-uniform 

crystallization leads to reducing of limit of fatigue. 
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10. WEARING, CONTACT FATIGUE, EROSION, CORROSION, HEAT-RESISTANCE 

 

Wearing and contact fatigue of material determine a reliability of gearings, bearings, spline 

connections, valves, flanges, bolt connections, hinges, labyrinth seals, contact edges of anti-

vibration and band shelves of compressor and turbine blades and other contacting details. 

Wearing is a process of gradual changing of size for detains in contact of friction. Wearing 

depends on processes during contact interaction of surfaces. The main of these processes are 

mechanical and molecular interaction depending on deformation and temperature in contact, 

chemical interaction, diffusion etc.  

It is possible to estimate the wearing by loss of weight U (absolute of from a unit of surface) 

or by changing of size of detail.  

One of process of wearing is rumpling. Rumpling is changing of size without weight loss, of 

flattering of surfaces of details. 

By intensity of wearing in time dU/d  it is possible to determine three stage of wearing:  

I – initial wearing, burn-in, intensity of wearing reduces;  

II – stabile wearing with constant intensity;  

III – quick catastrophic wearing, intensity of wearing quickly increases. 

Wearing depends on media, temperature, type of friction, velocity of relative displacement, 

contact pressure, materials.  

It is possible to classify different damages of surface during contact interaction as fretting-

corrosion, contact fatigue, jamming, mechanical wear, oxidative wear and abrasive wear. 

Fretting-corrosion (or contact corrosion, corrosion of friction) is destruction of material on 

surfaces with close contact of repeated tangential micro-displacements. Displacement with 

amplitude 0.25 micrometers is enough for appearance of fretting-corrosion. Destruction takes 

place as appearance on the contact surfaces many dimples and products of corrosion as a dust 

and spots. An oxidation of contact surface makes fretting-corrosion more intensive, therefore it is 

more on an air than in vacuum.  

Dimples and products of fretting-corrosion appear on contact surfaces of shafts with built-up 

disks, muffs, rings of bearings, on dowels and grooves, on centering surfaces of splines, on 

flanges, fitter bolts, blade foots and other approximately motionless connections. Fretting-

corrosion can appears without work of engine, during transportation of engine or from external 

vibration from other equipment. Place on the surface damaged by fretting-corrosion is stress 

concentrator which significantly reduce the durability of material. Fatigue fracture often 

develops from the place of fretting-corrosion.  
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During fretting-corrosion a friction force damages crystal structure on the surface. Small 

parts oxidize quickly and destroy. Intensity of wear increases when contact pressure, amplitude 

and frequency of contact displacement increase.  To reduce the fretting-corrosion it is necessary 

to reduce relative micro-displacements of surfaces (to increase a tightness of contact surfaces). 

Other ways are reducing of friction force by solid lubricant (for example, MoS2), removing of 

friction to intermediate coating (coating by copper, tin, cadmium, silver), increasing of surface 

hardness (hardening, nitration).  

Jamming is firm connection of surfaces of its friction or joint deformation. In these places a 

border between bodies disappears. Absence of surface film is necessary for it. This film can be 

destroyed during plastic deformation under stress normal to surface.  

Mechanical wear takes place of surface deformation and physical-chemical changing in 

surface as a result of friction. On contact surface in thin layer after repeated elastic and plastic 

deformation some places becomes friable and destroy. Little pieces of wearing product separate 

from detail. Inner stress can appear. This stress together with working stress leads to fractures in 

the surface layer. Wearing products fall into the contact and significantly increase a wearing 

intensity. It is necessary to use hard alloys against mechanical wear. 

Oxidative wear takes place if on contact surfaces oxide films appear. These films under 

cyclic normal stress destroy and appear again. Products of wearing are oxides. This process can 

take place for normal and high temperature. Plastic deformation makes this oxidative process 

more active.  

Oxidative wear takes place for hinge and bolt connections, levers of control mechanisms etc. 

Increasing of temperature provides the growth of oxide films, vibration load break these films.  

To prevent the oxidative wear it is necessary to improve lubrication, to reduce temperature, 

to increase hardness of material, to reduce vibration load.  

 

Resistance to wear depends mostly on hardness of surface, contact pressure, conditions of 

heat conduction, friction coefficient, vibration load, possibility of chemical reaction for materials 

in contact. 

It is difficult to estimate contact pressure (because contact takes place only on a part of 

contact surface) and relative displacement in contact.  

One of the first calculation model of wear is model of G.G. Ulig. In accordance to it 

equation for mass lost during wear is  

W=Wox+Wmech=(К0+Р0,5 – К1Р)N/f + К2LРN ,  (10.1) 

here Р is contact pressure; 

       L is amplitude of relative displacement; 
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       f is frequency; 

      N is number of cycles; 

       К0, К1, К2 are empirically obtained coefficients. 

In (7.1) an oxidative wear Wox = (К0+Р0,5 – К1Р)N/f is predominate for low frequencies of 

load. For high frequency mechanical wear Wmech= К2LРN becomes predominate. This wear 

depends of relative displacement. 

Contact fatigue (surface microchipping) is a process of fatigue for surfaces of details which 

roll on each other. The contact fatigue takes place for teeth of gearings, race-tracks, balls and 

rollers of bearings. 

To reduce the contact fatigue it is necessary to reduce contact pressure, to increase a 

hardness of surface, to improve lubrication. An effective way of increasing of resistance to 

contact fatigue is strengthening of surface. 

Equation of curve of contact fatigue is analogous to usual curve of fatigue:  

,CNm
k   

here к is limit of contact fatigue for zero-to-tension stress cycle; 

N is number of cycles; 

С are m empirically obtained coefficients. 

For rolling with slip (in teeth of gearings) forward surface of leading gearing has limit of 

contact fatigue 1.3...2 times more than lagging surface. Reason of it is wedging action of oil in 

closed volume of fracture. Appearance of burning during grinding of rolling surfaces 

significantly reduce the limit of contact fatigue. 

It is possible to obtain durability of gearings by equation: 
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durability of gearings by equation  
33.3

1










Q
C

n
 , hours, 

here к is contact stress obtained by equation of Herz  


 PE

k 418.0 ; 

      n is speed (rpm); 

Р is load per unit; 

Q is load in kilogram-force; 

Е is elastic modulus;  



75 
 

 is radius of curvature; 

С is coefficient of working ability. 

Damage of surface can appears of outer media.  

Corrosion is destruction of surface from chemical of electro-chemical action of outer media. 

The most often case of corrosion is oxidation of surface under high temperature. Gas corrosion 

takes place already at  200...300ОС. If temperature increases, velocity of corrosion increases too. 

Corrosion leads to reducing of mechanical properties and resistance to fatigue. Quantity of 

carbon in the surface reduces. 

Characteristic of material and structure resistance to corrosion is heat-resistance. The heat-

resistance determines a working ability of turbine and combustion chamber. Temperature of 

details in these places can be more than 850ОС. About 3...7% of total defects are connected with 

action of media. Characteristic of heat-resistance is velocity of corrosion, that is increasing of 

mass from unit of area during unit of time. If products of corrosion are moved by gas flow or a 

weight of detail without products of corrosion is determined, the characteristic will be as mass 

loss from unit of area during unit of time.  

 Oxidation and sulphide corrosion are the most intensive for high-temperature-resistant 

materials of turbine blades. An increasing of heat-resistance of these alloys by increasing of 

containing of chromium and other alloying elements leads to reducing of high-temperature 

strength. The most effective way of increasing its working ability under high temperature is 

protection of surface. Therefore these alloys under temperature 800 ...1100С even for low-

aggressive media (air) never used without heat-resistance protective coating. If this coating 

destroyed, the turbine blades of contemporary engine, working under temperature Т>1500К, lose 

its working ability of intensive high-temperature corrosion and erosion. 

 In a place of coating destruction the corrosion appears as a result of action of burning 

products. This place is a stress concentrator and beginning of thermo-fatigue fracture. Surface of 

fracture oxidizes, it makes its development more quick.   

 Same dates on characteristics of heat-resistance in corrosion media for alloys used for 

manufacturing of details of turbines and combustion chambers are presented in Tables 10.1 and 

10.2. 

Table 10.1. 

Mass lost g of alloys after 150 hours under t= 850С in products of fuel burning  

Material ХН55ВМТЮК ЭП539 ВХ6 ВХ2И ХН60ВТ ЭП99 18,65%Cr ЭП99  22%Cr 

g, micro-

gram/mm2 

7,3 6,6 2,95 1,7 1,6 3,77 1,0 
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Table 10.2. 

Depth of corrosion (oxidation) hс, mm for thin plates made of heat-resistance alloys after  

1000 hours in air 

Material ЭП126 ВЖ85 ХН78Т ХН75МВТЮ ХН60ВТ ЭП99 

900С 0,0043 0,0046 0,0030 0,0035 0,0042 0,0035 

1000С 0.098 0.012 0.0083 0.011 0.021 0.022 

 

As it is seen from Tables 10.1 and 10.2, an intensity of oxidation increases when 

temperature increases. 

Heat-resisting coating allows increasing of thermo-cycling durability to 6 times (because it 

prevents an appearing of places with corrosion). It depends on thickness of coating and 

technology of its plating. 

The heat-resisting coatings reduce the oxidative mass lost to 6…7 times. There are two types 

of heat-resisting coatings:  

- metal heat-resisting coatings for protection of surface of details against  corrosion and erosion 

action of media (these heat-resisting coatings can be with one and many layers, each layer can 

has its own chemistry and thickness); 

- complex thermal-protecting coatings  with thermo-barrier layer made of ceramics (these 

coatings not only protect the surface against corrosion but reduce heat flow too).  

The most wide-spread heat-resistance coatings are aluminizing, silica-aluminizing, chrome-

calorizing and multi-components such as Ni-Cr-Al-Y or Ni-Co-Cr-Al-Y. 

Heat-resistance coatings has more (than main material of detail) elements provide stabile 

oxide films (such as aluminum or chromium). These coatings provide heat resistance by 

continuous appearance (by diffusion of aluminum and chromium) on a surface of detail oxide 

films Al2O3 and Cr2O3 or spinel NiO Сr2O3, NiO Al2O3 with good protection properties under 

high temperature. High heat-resistance of sub-layers of complex thermal-protecting coatings is 

provided by large containing of aluminum and chromium too. 

Thermal-protecting coatings increase load ability and high-temperature durability of details 

because they reduce a temperature of main material and increase duration of heating and cooling 

during changing of engine operation mode. It increases the resistance of detail to high-

temperature oxidation because temperature of surface and its contact with oxygen and products 

of fuel burning decrease. (Ceramic layer is porous; therefore it can’t completely isolate the 

surface of detail from action of media). 

It is possible to present a dependency between thickness of oxide film h, temperature Т and 

time of oxidation  as: 
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,
RT
Q-expKh o

0
m 



  (10.2) 

 here m and К0 are constant depends on material and corrosion media; 

 Q0 is energy of activation;  

   R is gas constant. 

For many engine operation modes it is possible to estimate the thickness of oxidation by 

hypothesis of linear summation of damages as:    

 



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


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


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

I

1=i

m
1

i
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o
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I

1=i
i RT

Q-expKh h    (10.3), 

here i is number of engine operation mode. 

Intensity of oxidation processes increases if gas pressure on detail increases. It is possible to 

transform (10.2) as: 

,
RT
Q-expKh 1

o
0

m nPK 



   (10.4) 

here К1 and n are empirically obtained coefficients; 

         P is gas pressure. 

Respectively equation (10.3) transforms to: 

 

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m
1

1i
i

o
0

I

1=i
i RT

Q-expKh h mPK , (10.5) 

Pratt & Whitney company data as a first approximation give values of constants of 

equations (7.2 …7.5) as m=2, Q0= 66.43 calorie/mol. 

Erosion and abrasive wear. Erosion is destruction of surface by mechanical action of flow 

with high velocity. As a result of friction micro-volumes of material separate from detail. If the 

flow has small parts of sand, water, dust etc, erosion combines with abrasive wearing. Erosion-

abrasive wear depends on type of abrasive parts, mechanical properties of worn surface, 

temperature of surface, aggressiveness of media. Wear in this case is mechanical. 

The main abrasive wear takes place in flow part of engine, especially for details made of 

aluminum alloys. Limit of fatigue reduces of erosion twice. The main method to prevent erosion 

of compressor blade is hard erosion-proof coating on a basis of carbide or nitride of titanium, 

vanadium or zirconium. These erosion-proof coatings can reduce the limit of fatigue of blades. 

For high temperatures erosion can be combined with corrosion.  
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11. PLURAL-COMPONENT LOAD  

 

Most of details of gas turbine engine work under plural-component loading. This loading 

includes static load from centrifugal and gas forces on stabile engine operation modes, vibration 

load with different frequencies, temperature stress, low-cycle fatigue of starts, stops and 

changing engine operation modes. Different types of load during its combined action influence 

on each other. Low-cycle fatigue reduces the static strength of materials and life-time; vibration 

load reduces durability for high-temperature strength and low-cycle fatigue etc. 

Condition of destruction for plural-component loading is determined by limiting state of 

material. Hypothesis of summation of damage supposes that for combined action of loads each 

of them makes its own part of damages independently on others.  In this case it is possible to 

present a condition of destruction as: 

  i i
i

I

П

 

1
1 ,     (11.1) 

here  i is number of type of load;  

       I is quantity of different types of load;  

i(Пi) is function depends on value and type of load i-type;  

 Пi  is value of damage from load of i-type. 

Function i(Пi) and value of damage Пi can be obtained from empirical or physical models.  

The most wide-spread in practice is presentation of equation (11.1) as: 

(П) + (Пz) + (Пv)  = 1,    (11.2)    

here , ,   are empirically obtained coefficients; 

      



I

i pi

iП
1 


  is damage from static load; 

       i is time of work on i –type engine operation mode; 

       рi is time till destruction for continuous of work on i –type engine operation mode; 

      



J

j pj

j
z Z

z
П

1
 is damage from low-cycle load; 

       zj is number of cycles of low-cycle load j-type; 

      Zpj is number of cycles till destruction for low-cycle load j-type; 

     



M

m pm

m
v N

nП
1

is damage from high-frequency vibration load; 

      nm is number of cycles of high-frequency load  m-type; 

     Npm is number of cycles till destruction for high-frequency load  m-type. 
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As a first approximation it is assumed often for calculation that  =  =  = 1. 

The main disadvantage of criterion (11.2) is that for estimation of high-frequency vibration 

loading part of damages (Пv) it is necessary to extrapolate curves of fatigue for very large 

number of cycles N >1012…1014 . Real testing results for so long testing usually absent.  

As other method of estimation of equivalency of exploitation and testing it is possible to use 

condition: 

    
l

equafz
test
equ zKz exp ,     (11.3) 

here Кafz is assurance factor for low-cycle durability. 

      In this case values of equivalence cycle durability for testing 
test
equz  and for exploitation l

equzexp  

are obtained in the same equivalence load cycles which take into account long work on stabile 

engine operation modes by coefficient of repeated loading Кz, influence of high-frequency 

vibration load by coefficient v and changing of engine operation modes by coefficients r   and 

  as: 

irv

I

i
iequ zz )(

1




 .  (11.4) 

It is possible to obtain assurance factors for plural-component load in dependency on 

changing of load during reaching of limiting state as:  

- for proportional changing of repeated-static load (m)z and high-frequency vibration load a: 

)11(

1
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1
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

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





 ; 

- for constant repeated-static load (m)z and changing vibration stress a,: 

)11(1

maa

m
a

v k
K  







; 

- for changing repeated-static load (m)z and constant vibration stress a,: 

)1(
1



 a

m
a
m kK ; 

here km is assurance factor on static strength km=(t
b/)z/m или km=(b)z/m. 

(t
b/)z

  and (b)z
 are limit of long-term (high-temperature) strength and limit of strength 

which take into account repeated loading.  

It is possible to obtain values of (t
b/)z

 and (b)z by coefficient of repeated loading Kz
 =Kz 

(z) , as it described in a part about low-cycle fatigue. 
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Thus for some details the working ability determines plural-component loading, for other 

details the most important are any separate types of load. The most important types of loads for 

different details are presented in Table 11.1. 

 

Table 11.1 

Factors determine the life-time of detail 

Detail Long-term 

strength 

Fatigue Repeated  load 

(low-cycle fatigue) 

Wear 

Turbine blades + + + + 

Foot of turbine blades + + + + 

Compressor blades – + – + 

Disks, shafts + + + – 

Cases + + + + 

Gearings, bearings – + + – 

Supports + + – – 

Pipelines, control 

systems 

– + – – 

Contact seals – – + + 

Labyrinth seals – + – + 

 

Software for strength calculation usually doesn’t make any conclusions about destruction 

of detail, it calculates stress only. These conclusions can make designer only, when he compares 

calculated stress and limit of stress. Limit of stress is determined by working conditions of detail.  

It is necessary to take into account that the same detail can have different limits of 

strength for different conditions. For example, piston ring of inner combustion engine provides 

sealing between piston and inner wall of cylinder. It works under constant pressure from walls of 

cylinder and under high temperature. Thus for its working condition the limit of stress for this 

ring is t
b/ (limit of high-temperature strength). However during assembling this ring is 

deformed for its placement into groove of piston. The ring should keep its original shape, thus in 

this case the strength limit is e  (limit of elasticity).  
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12. INFLUENCE OF PHYSIC PROPERTIES OF MATERIALS 

 

Beside mechanical characteristics such as limit of strength, limit of long-term strength, 

plasticity, heat resistance etc, some other “physic” properties are very important. 

1. Strength-to-weigth ratio is ratio of limit of high-temperature strength to its density: 

   


b
t
/ ,   (12.1).  

Strength-to-weigth ratio determine an expediency of application of material for maximal 

load ability and minimal weigth of structure. For comparison of materials it is necessary to take 

into account that for a loading by centrifugal force the load depends on density of material. In 

this case advantage of light material is more.  

Stress in revolving ring is:  

2r2  , (12.2), 

here  is angular velocity of ring (radian/sec);  

        r is radius of ring. 

Stress of tension in revolving rod (turbine or compressor blade) is:  

(m2r)/F = (V2r)/F  , (12.3), 

here V is volume of rod above the calculated cross-section;  

 F is area of calculated cross-section;  

 r is radius of center of mass for the part of rod above the calculated section. 

Assurance coefficient of structure is: 

Kb =b/ /p           (12.4), 

If to insert (12.2) or (12.3) into (12.4), it is possible to see that the assurance coefficient 

(thus a reliability of structure) for centrifugal load force depends on strength-to-weigth  ratio:  
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/ 





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b 
   

Strength-to-weigth ratio of material depends on temperature and duration of work 

(characteristics of long-term strength). Comparison of strength-to-weigth  ratio for some 

materials is presented in Table 12.1. 
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Table 12.1 

Material t=200С t=2000С t=5000С t=6000С t=8000С t=10000С 

VM-65 17.8      

ML-9(cast) 12.5 7.7     

VD-17 18.2 6.9     

VT-8 24.5 18.9 10 3.3   

EI437B 13.0  10.3 8.4 2.9  

ZhS6KP 15.8  13.3 12.7 5.6 1.2 

ZhS6K 11.1   10.5 6.3 1.9 

 

It is seen from Table 12.1 that advantage changes from one material to another one when 

temperature changes. It is more effective to use titanium alloys for low temperature and nickel 

alloys for high temperature. 

 

2. Thermal expansion coefficient  

010

01 1
ttl

ll



    ]1[ 0 C

, 

here l1 is length of specimen for temperature t1; 

         lo is initial  length of specimen for temperature to. 

Thus thermal expansion coefficient is relative changing of length for changing of a 

temperature on 10. 

Thermal expansion coefficient determines of working ability of to contacted details made of 

different materials under high temperature. These details are bolt connections in turbine and last 

stages of compressor, connection of steel and titanium details in compressor etc.  

For high temperature force of tightening of bolt can reduce from difference of thermal 

expansion coefficients of bolt and fastened details.  

Q3=Q30 - Qt , 

here   Qt=(b l b (t b -20oC)-i li(ti-20))E b Fb; 

 b , l b , t b  are thermal expansion coefficient, length and temperature of bolt; 

i,  li , ti are thermal expansion coefficient, length and temperature of fastened details (Fig. 12.1); 

E b and F b are elastic modulus and area of cross-section of bolt.  
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Fig. 12.1. Thermal expansion of bolt and fastened details 

 

If difference of thermal expansion coefficients is large and temperature is high, the bolt 

connection can open. It leads to fatigue destruction of bolts and leakage through connection. 

Thermal expansion coefficients for some structure materials are presented in Table 12.2. 

 

Table 12.2. 

Material t=20 … 2000С t=20 … 4000С t=20 … 6000С 

ML-15 26.9 28.8  

DT6Т 23.8 25.7  

AL4 22.2 23.4  

VT-8 8.6 8.8 9.5 

EI437B 12.9 13.8 14.6 

EI698 12.3 13.7 14.7 

EI742U 12.5 13.1 13.6 

EI598 12.9 14.1 15.1 

EP693 12.1 12.7 13.3 

EP435 13.5 15.0 16.1 

 

It is necessary to take into account different thermal expansion in a place of connection of 

details and to make this place reliable by any structure solutions.  

 

3. Coefficient of thermal diffusivity  

Q = /С is constant in equation of heat conductivity. It characterizes an ability of quick 

smoothing of temperature in different points of detail.  

Here  is coefficient of heat conductivity; 

       С is  specific heat. 

The coefficient of thermal diffusivity is very important in a case of touching of details (for 

example, rotor blade can touch stator). If heat conductivity is little, in the place of touching a 
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high local temperature appears. It can lead to local overheat and to burning of metal. Especially 

it is so for titanium alloys. Because they have little thermal diffusivity, during grinding of 

titanium details places with local overheat can appears. Structure of material in these places is 

broken and of this reason limit of fatigue reduces 2-3 times. If titanium blade touches titanium 

stator during engine work, titanium fire is possible.  

To exclude a possibility of titanium fire, a limitation for application of titanium alloys is 

established. For stator details this maximal temperature is 3300С, for rotor details  t  500 0C, if 

temperature is more, titanium alloys are non-admissible. Rotor made of steel excludes the 

possibility of titanium fire, because heat conductivity of steel more than for titanium alloys. If 

rotor blade touches stator, head has time to dissipate in steel stator and temperature in a place of 

contact low than it necessary for burning of titanium.  

The coefficient of thermal diffusivity is important for details of combustion chamber too, 

because local temperature changing in it can lead to local hogging and thermo-fatigue fractures. 

 

4. Welding ability is important especially for welded rotors and engine cases in recent time.  

Characteristics of welding ability are type of welding (arc, contact, electron-beam, laser, 

diffusion, in protect media, with flux etc), strength, plasticity and impermeability of welding 

places. 

It is possible to estimate a static strength of weld seam by coefficient of strength reducing:  

К=bw/b, 

где bw is limit of strength for weld seam;  

        b is  limit of strength for main material. 

Beside reducing of strength and possibility of fractures the weld seam can be more able to 

corrosion and oxidation. 
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III. VIBRATION AND SHOCK 

 

13. VIBRATION OF ROTORS 

 
13.1. Dynamic of the simplest rotor 

Let we consider a bending vibration of the simplest rotor. It consists of one disk with mass m 

and a shaft without weight. (Fig. 13.1). 

 
Fig. 13.1. The simplest rotor 

 

The shaft has two articulate supports. Let that supports are absolutely stiff and disk is in the 

middle of the shaft ( 21 ll  ). О2 is a point of connection between disk and shaft. Its displacement 

is a deformation of shaft in a point of the disk placement. Let a mass center of the disk is in a 

point О1. Distance between this point and point О2 is eccentricity e. Point O on non-deformed 

axis of supports is a point of origin of global coordinate system OXYZ. Z axis coincide with axis 

of supports, X and Y axis are in a middle surface of disk (X is horizontal axis, Y is vertical one). 

Deformation of shaft (displacement of point О2) is r  vector. Projections of this vector are xr~  

and yr~ . Sign “~” means that this variable depends on time. If supports are absolutely stiff, the 

displacement of point О2 – vector q  – is of deformation of shaft only. In this case r = q . 

Projections of vector q  are xq~  and yq~ . 

Displacement of disk mass center (точки О1) is R


 vector. Its projections are xR~  and yR~ . 

Because disk mass center isn’t coincide with rotation axis, the centrifugal force appears 

during rotation with angular velocity  . Under this force the shaft deforms and rotates not only 

around its own axis but around axis of supports too.  

Let in initial moment of time (t=0) point О1 is in horizontal plain (on X axis). In initial time t 

position of points О1 and О2  is such as on Fig. 13.2. 

From Fig. 13.2: 

,cos~cos~~ teqterR xxx    (13.1) 
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teqterR yyy  sin~sin~~  .   (13.2) 

 
Fig. 13.2. Rotor vibration in ОXY plain 

 

A condition of equilibrium of disk is: 

       ,0 IE QQ


  (6.3) 

here EQ


 is elastic force from deformation of shaft, IQ


 is inertia force.  

The elastic force depends on deformation of shaft and shaft stiffness c: 
rсQE


              (13.4) 
The inertia force in accordance to D’Alembert principle is  

RmamQI


 , (13.5) 
To incert (13.4) and (13.5) into (13.3) and to take into account (13.1) and (13.2), one can 

obtain: 

0~)cos~(2  xx qcteq
dt
dm             (13.6) 

0~)sin~(2  yy qcteq
dt
dm  .   (13.7) 

Let we divide all parts of (13.6) and (13.7) by mass m, designate 
m
cp 2  (it is own 

frequency of shaft) and differentiate by t. A result will be as: 




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teqpq
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


   (13.8) 

A solution of system (1.8) is: 








yyyy

xxxx

qqCqCq
qqCqCq
~~~~
~~~~

2413

2211  (13.9) 
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Here 1
~

xq , 2
~

xq , 1
~

yq , 2
~

yq  are any linearly independent partial solutions of uniform differential 

equations system  








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0~~
0~~

2

2

yy

xx

qpq

qpq



  ,   (13.10) 

С1…4 are unknown constants depend on initial conditions, xq~ , yq~  are any partial solutions of 

non-uniform system (13.8). 

 In accordance to this it is possible to perform a solution (13.9) as: 








tBptCptCq
tAptCptCq

y

x




sinsincos~
cossincos~

43

21       .   (13.11) 

First and second parts in every solution describe a shaft free vibration. It takes place with the 

shaft own frequency p. They disappear soon of friction. Therefore we will consider third part 

only, it is forced oscillation with frequency  .   

 





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sin~
cos~

         (13.12) 

 Let insert (6.12) into (6.8). Result will be: 
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From here 


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
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


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eB
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     ,        (13.14) 

and equations of vibration of rotor are: 

 t
p

eqx 


 cos~
22

2


 ; t

p
eqy 


 sin~

22

2


 .                (13.15) 

Let we will look at the rotor movement during one full turn of shaft around its axis. Let the 

initial time is t=0. During one full turn a value t  will change from 0 to 2 . A position of shaft 

section for different value of t  is presented on Fig. 13.3. It is possible to see that during one 

full turn around its axis the shaft makes one full turn around axis of supports too.  
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Fig. 13.3. Precession of rotor 

 

This rotation of shaft around the axis of supports is precession of rotor. Its frequency is   . 

In considered case the frequency of precession is equal to frequency of rotation of shaft around 

its own axis:  

  =     (13.16) 

In a common case   and   may be different by value and direction. If condition (13.16) 

takes place, the precession is synchronous; in other case it is asynchronous. If   and   have 

the same direction, precession is direct, in other case precession is retrograde. 

The deformation of shaft is length of r  vector:  

 22

2
22






p

eqqrr yx
 .  (13.17) 

It is constant and independent on time, thus the precession movement in this case is circle. If 

the precession has constant amplitude and constant speed, it is regular. 

If p  it will be r . Resonance amplification of amplitude will continue to all energy 

of vibration will be dissipated by friction or till the shaft destruction. This resonance frequency 

of rotor is its critical speed.  

Let we consider a position of mass center before and after resonance. In accordance to (131) 

and (13.2) 

t
p

eptet
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eRx 

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 coscoscos~
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t
p

epRy 
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sin~
22

2


 .  (13.19) 
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From (13.18) and (13.19) it is seen that ttg
R
R

x

y ~
~

;  from (13.15) it is seen that ttg
r
r

x

y ~
~

 

too. 

Thus points О1 and О2 are on the same straight line.  

If p , it will be r
p

epRRR yx 


 22

2
22 ~~


 (Fig. 13.4). 

 
Fig. 13.4. Vibration of rotor for p  

 

If p , it will be Rr   (Fig. 13.5). 

 
Fig. 13.5. Vibration of rotor for p  

 

If  , it will be 0R . It is self-centering of rotor. The self-centering is a very useful 

property, it allows designing long shaft of contemporary engine with two supports only.  

In considered the simplest case the shaft has only one degree of freedom, displacement in a 

disk place. Real rotor of gas turbine engine has infinitely many degrees of freedom. Therefore it 

has infinitely many critical speeds. The lowest one is first critical speed, next one will be second 

etc: ,...,. 21 kk   

Mode shape is a relative distribution of displacement on vibrating body. Each resonance 

frequency corresponds to one and only one mode shape (Fig. 13.6). If in any point the vibration 

amplitude equivalence to 0 it is node.  
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Fig. 13.6. Oscillation of rotor with absolutely stiff supports 

 

Amplitude of vibration depends on relationship of force which is a reason of vibration (in this 

case it is the centrifugal force depends on speed, rotor mass and eccentricity) and friction force. 

However relationship of amplitude in different points of rotor are the same for every mode shape 

(Fig. 13.7). 

 
Fig. 13.7. First of rotor oscillation for different amplitudes 

 

There are “stiff” and “flexible” rotors of gas turbine engines. Rotor is “stiff” if its maximal 

angular velocity max  less than 0,5…0,7 1k . Rotor is “flexible” if 1k < max . Advantage of 

“flexible” rotor is self-centering after critical speed. However before it the “flexible” rotor 

should pass resonance. It is its disadvantage. To avoid the rotor destruction a special damper 

should be used. These dampers will be considered below.  

 

13.2. Influence of support flexibility on rotor critical speed  

Own frequency of rotor (and critical speed) depends significantly on flexibility of supports.  

Cases of contemporary gas turbine engines are thin and flexible, it is necessary to take it into 

account. Let the stiffness of supports is Со. Let the disk will be in the middle of shaft for 

simplification (Fig. 13.8).  
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Fig. 13.8. Rotor with flexible supports 

 

The condition of rotor equilibrium is  

,0 IE QQ


                   (13.20) 

here an elastic force qcQ pE


  depends on stiffness cp which takes into account the 

flexibility of supports. To obtain this stiffness let to apply to the shaft in the point О2 any static 

force bQ


. Under this force the shaft and supports will be deformed. Displacement of point О2 is 

vector q . In this case it is a sum of two vectors 

rrq 
 0  .                     (13.21) 

Here r  is displacement of deformation of shaft, 0r
  is displacement of deformation of 

supports. Because force bQ


 is applied in the middle of shaft, a force on each of supports is 

2/bQ


. Condition of equilibrium is 

0E QQb


, 

here rcQE


  is elastic force. Thus  

c
QrrcQQ b

b



 E . 

Because force 2/bQ


 is applied to each of supports, 

0
000 22 С

QrQrС bb







 . 

If to insert this expressions for r and r0 to (13.21), result will be: 

b
bb Q

CcC
Q

c
Q

q















00 2
11

2
. 

From here: 
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1 .  (13.22) 

For projections of (6.20) on X and Y coordinate axis it will be 

.0~~
,0,~~





ypy

xpx

qcRm

qcRm




 (13.23) 

If to designate 
m
c

p p2  (it is own frequency of rotor which takes into account the flexibility 

of supports) and to take into account (13.1) and (13.2), it is possible to obtain  

teqpq

teqpq

yy

xx





sin~~
,cos~~

22

22







 (13.24) 

Solution of this system the same way as (13.8) allows obtaining an equation for own 

frequency of rotor with flexible supports: 

   )
21

1(

0C
cm

cp


   . (13.25) 

From this equation it is seen that the own frequency of rotor significantly depends on 

stiffness of support Со. If Со=0, it will be p=0. If oC , it will be 
m
сp  , to the own 

frequency of rotor with absolutely stiff supports. Dependency of critical speed of rotor on 

stiffness of supports is presented on Fig. 13.9: 

 
Fig. 13.9. Dependency of critical speed of rotor on stiffness of supports 

 

For real rotor with many degrees of freedom it is possible to obtain that for Со=0 only first 

critical speed will turn to zero, other critical speeds will reduce but not to the zero. 

Dependency of rotor critical speed on stiffness of supports allows changing of critical speed 

in a very wide limits by changing the stiffness of support. 
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13.3. Critical speed of rotor on anisotropic flexible supports 

It is possible that a case of gas turbine engine has different stiffness in horizontal and vertical 

directions. For example, if a case of compressor consists of two halves, the stiffness in the plane 

of flange will be more, in perpendicular direction it will be less.  Ribs of support can have 

different stiffness of different diameters of apertures for oil feed and oil taking aside. Let the 

stiffness of support is Cox in horizontal direction and Coy in the vertical one. As in previous case, 

let the disk is in the middle of shaft and its mass center has eccentricity e.  

  
Fig. 13.10. Rotor with anisotropic supports 

 

Because stiffness of support for Х and Y direction is different, the system has different 

stiffness in different directions too. Analogously to (13.22)  it is possible to obtain 

 .

2
1

;

2
1

oy

py

ox

px

C
c

cc

C
c

cc





  

In this case equations (13.3) will be as:  

.0~~
,0~~





ypyy

xpxx

qcRm

qcRm




 (13.26) 

Own frequency of rotor in horizontal direction will be: 

,2

m
c

p px
x   

in vertical direction: 

.2

m
c

p py
y   

If to take into account equations (13.1) and (13.2) for xR~  и yR~ , it is possible to obtain from 

(13.26): 
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.sin~~
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22

22
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yyy

xxx
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 (13.27) 

Solution of (13.27), as for (13.8), will be as: 

.sin~
,cos~

tqq
tqq

yy

xx







  (13.28) 

If to insert (13.28) to (13.27) it is possible to obtain equations for vibration amplitude: 
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Thus equations of rotor precession in this case are: 
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  (13.29) 

It is possible to obtain from (13.29): 

1. Rotor has two different resonance frequencies, two different critical speeds  

ykxk pp  21 ; . Let xy pp  .  

2. Amplitude of precession will be variable: 

.~~ 2
2

2
1 constqqq xx 

  

This precession is irregular, the shaft moves on ellipsis. 

Let we consider the movement of rotor during the full turn of shaft (  2...0t ) before and 

after critical speed.  

a) xp  (Fig. 13.11): 

 
Fig. 13.11. Oscillation of rotor for xp  

 

Positions of shaft section for different values of t  from 0 to 2 are presented on Fig. 13.11. 

Because 2222   yx pp , amplitude yx qq  , thus the ellipsis is elongated along Х axis. 
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Because   , precession is synchronous. Direction of precession is coincide with direction of 

shaft rotation around its axis, thus precession is direct.  

b) xp  (Fig. 13.12):  

 
Fig. 13.12. Oscillation of rotor for xp  

 

Elongation of ellipsis along Х axis becomes more and more. When xp  the movement 

will be almost in horizontal direction. 

c) yx pp  (Fig. 13.13):  

 

Fig. 13.13. Oscillation of rotor for yx pp   

 

It is possible to see that rotor has retrograde irregular synchronous precession.  

d) yp  (Fig. 13.14). Elongation of ellipsis along Y axis becomes more and more. When 

yp  the movement will be almost in vertical direction. 
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Рис. 13.14. Oscillation of rotor for yp  

 

e) yp  (Fig. 13.15): 

 
Рис. 13.15. Oscillation of rotor for yp  

 

Rotor has direct irregular synchronous precession. Amplitude in both directions reduces of 

self-centering. 

 

13.4. Dependency of critical speed on gyroscopic moment 

 Let the simplest rotor rotates on absolutely stiff supports with angular velocity ω and has 

precession movement with angular velocity Ω. Let in this case the disk with inertia moment J 

isn’t in the middle of shaft. During shaft deformation the disk turns on angle 


 (Fig. 13.16). 

This vector is always perpendicular to the plane of shaft deformation, and, consequently to 

vector r . 
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Fig. 13.16. Vibration of shaft with the disk is placed not on its middle.  

 

During precession the gyroscopic moment GM  acts on the disk. It is known from mechanics 

that  


JM G ;  ~~sin||  JJMG


, here   is the angle between vectors   and 




. A direction of gyroscopic moment vector is that from its arrow the shortest turn from vector 


  to vector 


 should be seen against clockwise. It is possible to see from Fig. 13.17 that for 

direct precession the gyroscopic moment tries to return the disk to its original position. Thus it 

makes a returning moment more; it is equivalent to increasing of shaft stiffness. Of this reason 

all shaft critical speeds increase. 

 
Fig. 13.17. A case of direct precession 

 

For a retrograde precession (Fig. 13.18) the gyroscopic moment reduces the returning 

moment; it is equivalent to decreasing of shaft stiffness. 

 
Fig. 13.18. A case of retrograde precession 

 

Dependency of rotor own frequency on precession frequency is presented on Fig. 13.19. 
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Fig. 13.19. Dependency of rotor own frequency on precession frequency 

 

For 
m
сp  . 

 

13.5. Critical speeds of anisotropic shaft 

It is possible that shaft has different stiffness xc  and yc  in Х and Y directions of different 

grooves and rabbets, of manufacturing mistakes. It is possible to obtain that in a frequency range  














m
c

m
c yx ;    (13.30) 

rotor will have buckling failure. Its amplitude will increase till all energy of vibration will be 

dissipated by friction or till the shaft destruction. All speeds in the range (13.30) are critical. 

 

13.6. Methods of reducing of rotor vibration  

There are three methods of reducing of vibration of any object: 

1) reducing of vibration excite force; 

2) tune-out of working frequencies; 

3) damping. 

 

Reducing of vibration exciting force  

The main source of rotor bending vibration is a rotor mass disbalance. To make the rotor 

balanced it is necessary to fulfill two conditions: 

1) 0 iFF


 The vector sum of all unbalanced forces should be equal to zero. 

2) 0 iMM


 The vector sum of all unbalanced moments should be equal to zero. 

Here iF


 is a force of unbalanced mass, iM


 is a moment of unbalanced force. 

It is possible to obtain it on special equipment for balance. In a turbine usually little masses 

add in necessary places. In a compressor little masses usually delete in necessary places (usually 

by grinding of compressor disk periphery). 
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Tune-out of frequency 

Tune-out of frequency is a removal of rotor critical speed out of rotor working range (Fig. 

13.20). 

 
Fig. 13.20. Tune-out of frequency 

 

If new critical speed is more than max , it is tune-out “up”, if it is less than min , it is tune-out 

“down”. Because critical speed of different shafts is a little bit different or technology reasons, 

and engine regulator doesn’t keep the values of min  and max  absolutely exactly, it is necessary 

any additional distance  . It should not be less than 10 %.  

For tune-out “up” the rotor doesn’t pass a resonance, however the tune-out “up” usually leads 

to increasing of mass. In this case the rotor is “stiff” and has no advantages of self-centering.  

For tune-out “down” the rotor pass a resonance, in this case it is necessary to use damper for 

resonance passing usually. 

It is better to change the critical speed not by changing of shaft thickness (if the shaft became 

thinner it can lose a static strength, if the shaft became thicker it weight can be too large), but by 

changing of supports stiffness. 

 

Damping 

Damper is a special unit which dissipates energy of vibration to a friction. There are 

hydrodynamic dampers which dissipate energy of vibration to a viscous friction in a liquid 

(usually it is oil) (Fig. 13.21), and dry friction (plate) dampers which dissipate energy of 

vibration to a dry friction of steel plates (Fig. 13.22). 
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Fig. 13.21. Hydrodynamic damper 

      
Fig. 13.22. Dry friction damper 

 

Using of damper in rotor support allows reducing of shaft deformation at the resonance.  

Amplitude-frequency characteristics of rotors with different damping coefficient are presented at 

Fig.  13.23. 

 
Fig. 13.23. An influence of damping on vibration amplitude 
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14. VIBRATION OF BLADES 
 

14.1. Bending vibration. System of differential equations 
The main admissions are:  
 - a blade is a twisted rod with variable section; 
 - bending vibration and torsion vibration are independent; 
 - blade axis passes all section gravity centers and can’t stretch; 
 - during vibration all sections are plane and perpendicular to blade axis (Kirhhoff – Love 
theory). 

Let the coordinate system is OXYZ. Its beginning O is placed in a gravity center of root 
section, X and Y axis are coincide with main central inertia axis of root section (let inertia 
moment of section xy JJ  ), Z axis is on engine radius. Auxiliary coordinate system 1111 ZYXO  

has axis parallel to main coordinate axis, its origin 1O  is placed in a gravity center of current 
section. Let take in the blade an infinitely little element with height dz (Fig. 14.1). 

 
Fig. 14.1. Infinitely little element of blade and forces on it during bending vibration  

 
Conditions of equilibrium of element are  

2

2

2

2 ~~~
t
qFdz

t
qmQ xxи

x 






   and  

2

2

2

2 ~~~
t
q

Fdz
t
q

mQ yyи
y 







   , 

here xq~  and yq~  are elastic displacements in X and Y axis directions. Sign “~” means that this 

variable depends on time. 
For 1X  axis direction  
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From condition of equilibrium in 1Y  axis direction it is possible to obtain analogously 
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Around 1X  axis: 
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Let simplify it and neglect infinitely little values of second infinitesimal order. Result will be as:  
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x Q
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Around 1Y  axis: 
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Analogously to the previous case it is possible to obtain 

x
y Q

z
M ~
~





  .                                                                                                                     (14.4) 

Let we find dependency of moment on section turn angles. For OXZ plane (Fig. 14.2): 

 
Fig. 14.2. The bending of blade in OXZ plane.  

1 – position of section before bending; 2 – position of bended axis of blade; 
3 – a tangent to the bended axis of blade in the place of the section. 

 
It is possible to see from Fig. 14.2 that  

 




z

qtg x
~

 

If to take into account signs of moment and section turn angle 

z
qx

y 



~~                                                                                                                      (14.5) 
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Fig. 14.3. The bending of blade in OYZ plane.  

1 – position of section before bending; 2 – position of bended axis of blade; 
3 – a tangent to the bended axis of blade in the place of the section. 

  
For plane OYZ from Fig. 14.3: 

z
q y

x 




~~
                                                                                                                                    

(14.6)  The section of blade turns around X and Y axis. It is seen from Fig. 1.4 that (if to take into 
account signs of section turn angles) displacement of any point of section ),( 11 YXA  in Z axis 
direction of the reason of section turn around X axis is 

xY  ~~
11    , 

 
Fig. 14.4. The turn of section in OXZ and OYZ planes 

 
of the reason of section turn around Y axis is Y 

yX 
~~

12    . 

There is displacement zq~  in Z axis direction too. It is displacement of all section of the reason of 
its center О1 point displacement. Full displacement of point ),( 11 YXA  in Z axis direction is 

21
~~~~   zqW   .  



104 
 

In accordance to Cauchy equations 
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Thus a stress around point ),( 11 YXA  is: 
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11 . 

This stress on an infinitely little area dF near point ),( 11 YXA  creates infinitely little moments 

around 1X  and 1Y  axis (Fig. 14.5). Its sign is positive if it turns around the axis against 
clockwise. 

 
Fig. 14.5. Sign of moments on an infinitely little area dF 
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Full moment around 1X  axis is 
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A first part includes a static moment around 1X  axis xS . Because 1X  is a main inertia axis, this 

moment is equal to zero. A second part includes inertia moment around 1X  axis xJ , a third part 

includes product of inertia xyJ . Thus  
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Analogously for 1Y  axis: 
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Because deformations of blade during its vibration are little, let take admission that axis of main 
and auxiliary coordinate systems are approximately parallel. Then  

xx MM ~~
1
 ; yy MM ~~

1
  , inertia moments are approximately equal too. 

Let present two last equations in a matrix form. 



105 
 


















































z

z
EJEJ
EJEJ

M
M

y

x

yxy

xyx

y

x





~

~

~
~

  .  

If designate the matrix as [A] , result will be as 
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Equations (1.1)…(1.8) forms a differential equations system of bending vibration of blade: 
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Variables of first four equations (qx ; βy ; My ; Qx) connects with OXZ plane, therefore 
first four equations describes vibration in this plane, and second four equations describe 
vibration in OYZ plane. Connection between vibration in both of these planes is by coefficient axy 
near Mx and My. If a blade is not too twisted, 1X  and 1Y  axis are coincide approximately with 
main inertia axis for all sections. In this case products of inertia xyJ are near to zero, coefficient  

0xya  and there is no connection between vibrations in OXZ and OYZ planes. In this case 
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y
y EJ

a 1
 ; 

x
x EJ

a 1
 . 

Let we consider the vibration in OXZ plane only which described by first four equations.  
Let we will find its solution as harmonic functions:  

ptqq xx cos~   

ptyy cos~
   

ptMM yy cos~
  

ptQQ xx cos~
  

Here p is own frequency of vibration. 
After substitution to differential equations it will be as: 

ptpt
z

q
y

x coscos 

  

ptM
EJ

pt
z y

y

y cos1cos 



 

ptQpt
z

M
x

y coscos 



 

ptqpFpt
z

Q
x

x coscos 2

  

Form the first equation 
z

qx
y 


 . If to insert it to the second equation, it will be  

2

2

z
qEJM x

yy 


 . If to insert this result to the third equation, one can obtain 3

3

z
qEJQ x

yx 


 . 

If to insert it to the fourth equation, the result will be as x
x

y qpF
z
qEJ 2

4

4





 . It is fourth 

order differential equation 

0
2

4

4





x
y

x q
EJ

pF
z
q   . 

If to designate 

yEJ
pF 2

4   , one can obtain  




F
EJ

p y2   , 

0q
z
q

x
4

4
x

4



    . 

A solution of fourth order differential equation is a sum of four linearly independent partial 
solutions:  

4x43x32x21x1x qCqCqCqCq   
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Partial solutions of this equation are zsin , zcos , and hyperbolic sine and cosine 

00sh
10ch

2
eezsh

2
eezch

zz

zz














)(
)(









 

It is more convenient to use in solution sums of all these four functions. Name of these 
sums are Krylov functions:  

)cos(2
1)( zzchzS    , 

)sin(2
1)( zzshzT    , 

)cos(2
1)( zzchzU    , 

)sin(2
1)( zzshzV    . 

Advantage of these functions is its turn to each other during differentiation: dS/dz = V ; 
dT/dz = S ; dU/dz = T; dV/dz = U.  
 Values of these functions for z=0 are S(0)=1; T(0) = U(0) = V(0) = 0. 
Let insert the solution )()()()()( 4321 zVCzUCzTCzSCzqx    to equations for other 
variables: 

))()()()(()( 4321 zUCzTCzSCzVCzy     , 

))()()()(()( 4321
2 zTCzSCzVCzUCEJzM yy     , 

))()()()(()( 4321
3 zSCzVCzUCzTCEJzQ yx      . 

 Unknown constants С1, С2, С3, С4 should be obtained of boundary conditions. 
 
14.2. Vibration of a blade with cantilever fastening 

A blade has two degrees of freedom (displacement and section turn angle) on each of 
boundaries. Therefore two boundary conditions are necessary on each boundary. 

For absolutely stiff fastening for z=0 it is qx=0; y=0 . 
Displacement )0()0()0()0(0 4321 VCUCTCSCqx  ; 

0*0*0*1*0 4321 CCCC  ; 
from here 

01 C . 

Section turn angle )0()0()0()0((0 4321 UCTCSCVCy    

0*0*1*0*0 4321 CCCC  , 
from here 

02 C . 
For z=l (it is free edge of blade) 0)( lM y ; 0)( lQx . To insert it to the solution, one 

can obtain 
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0))()(()( 43
2  lTClSCEJlM yy    

0))()(()( 43
3  lSClVСEJlQ yx    

or 
0)()( 43  lTClSC    

0)()( 43  lSClVС   . 
This uniform equations system has solution if its determinant is equal to zero.  

0)()()( 2  lSlVlT   
It takes place for iKl  , where  
K1=1,875  , 
K2=4,69  , 
K3=7,8  
etc. 
Because i=Ki/l , 

F
EJ

l
Kp yi

i 

2







  .                                                                                                       (14.9) 

This equation gives infinitely many of own frequencies each of them one and only one 
mode shape corresponding. Mode shape is distribution of relative displacement on the oscillated 
body.  First, second and third mode shape for bending are presented on Fig. 14.6. 

   
Fig. 14.6. First, second and third mode shape for bending 

 
14.3. Dependency of own frequency of blade on stiffness of cantilever fastening  

Let we consider a case when the fastening is absolutely stiff for linear displacement but 
has stiffness Cm for angular displacement. 

As in the previous case for z=0 takes place qx=0, from here C1=0. 
Fastening provides a moment ymCM 3 . 

Because 0)0( 3  MM y , 

 ))0()0()0(( 432
2 TCSCVCEJ y 0))0()0()0(( 432  UCTCSCСm   , 

it is possible to obtain  

032  CC
EJ
C

y

m  . 

For z=l (free edge of blade) it is My(l)=0; Qx(l)=0 . If insert it into solution result will be  
0))()(( 43

2  lTClSCEJ y    
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0))()(( 43
3  lSClVСEJ y   . 

To unify these two equation and previous one, it is possible to obtain a system for determination 
of constants С2;C3;C4. 

If Cm=0 (it is articulate blade foot), a frequency of first bending mode shape equal to 
zero, it means that first bending mode shape is absent. It is advantage of articulate blade foot 
(however it weight is more than usual blade foot). Other bending mode shapes remain, however 
their frequencies reduces (Fig. 14.7). 

    
Fig. 14.7. Dependency of own frequencies on fastening stiffness 

  
14.4. Torsion vibrations of blade 

Let we consider a blade as a twisted rod with constant section, and take admissions that 
center of stiffness and gravity center coincides in all sections. Let bending vibration and torsion 
vibration are independent. 
 A twisting moment around z axis is 

z
GJM z

Kz 



~~   , 

from here z
K

z M
GJz

~1~



  ,                                                                                            (14.10) 

here G is shear modulus. Inertia moment for twisting is  

    dxxfxfJ
b

K
3

1
0

2 )(
3
1

  ,  

here b is length of blade chord, function  xf1  describes a prominent side of blade, function 

 xf 2  describes a concave side of blade (Fig. 14.8). If section is very curve (near to circle), 

JJ K   (polar inertia moment). 

 
Fig. 14.8. Calculation of inertia moment for twisting 
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Moment of inertia force acts on an infinitely little element of blade too. It is  

2

2 ~~
t

dJMd z
m

i
z 




   , 

here inertia mass moment is 

 
FVV

m dzJdFrdzdFdzrdmrdJ  222 . 

From here dz
t

JMd zi
z 2

2 ~~






   

Let consider an equilibrium of infinitely little element of blade (Fig. 14.9):  

 
Fig. 14.9. Infinitely little element of blade and dynamic forces on it during torsion vibration of 

blade 
 

0
~~~~
2

2









 dz
t

JMdz
z

MM z
z

z
z


   , 

from here 

2

2 ~~

t
J

z
M Zz






 

                                                                                    (14.11) 

Equations (14.10) and (14.11) form a differential equation system describing the torsion 
vibration of blade. Its harmonic solution is 

ptzz cos~    , 

ptMM zz cos~   . 
To insert it into equations (14.10) and (14.11), differentiate it and divide by ptcos , one can 
obtain 

z
K

z M
GJdz

d 1


   , 

z
z pJ

dz
dM

 
2  . 
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To take zM  from first equation and insert it into the second one, it is possible to obtain 

0
2

2

2

 z
K

z

GJ
pJ

dz
d


   . 

Let designate 
KGJ
pJ 2

2 
  , from here  




J
GJp K , and 

02
2

2

 z
z

dz
d


  . 

It is second order uniform differential equation. Its solution is 
)sin()cos( 21 zCzCz    . 

Constants should be found from boundary conditions. 
The blade has one degree of freedom in each section, therefore we have one boundary 

condition on each boundary of blade.  
For cantilever absolutely stiff fastening of blade for z=0 it is 0z , from here 01 C  . 

 For z=l on the free edge of blade 0)( lM z  and 

0cos2  lCGJ
dz

dGJM K
z

Kz 
 .  

It is equivalent to condition 0cos l ,  nl  
2

 , here n=1,2,3… 

Value 
l21
   is correspond to frequency 




J
GJ

l
p K

21   and distribution of turn angles 

as )
2

sin(2 z
l

Cz
   (Fig. 14.10, up). It is first mode shape. Its net line is placed along the blade. 

 
Fig. 14.10. Mode shape for torsion vibration of blade  

 

Value 
l2

3
2

   is correspond to frequency 



J

GJ
l

p K

2
3

2   and distribution of turn 

angles as )
2
3sin(2 z

l
Cz

   (Fig. 14.10, down). It is second mode shape of torsion vibration. It 
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has another net line across the blade. Vibration takes place in opposite directions on different 
sides of this line. 
 
14.5. Classification of blade mode shapes 

A blade has infinitely many of own frequencies and mode shapes. Let use numbers 1n  and 

2n  to describe it. During a movement described by number 1n  all points of cross-section move to 
the same direction (Fig. 14.11 left). Number 2n  is characteristics of displacement distribution in 
the cross-section.  If 2n =1, all points of the section moves in the same direction. It is correspond 

to bending vibration. If 2n =2, part of points moves in one direction, other part in another one. It 
is torsion vibration (Fig. 14.11 center). If 2n =3, more complex mode shapes take place. Its name 
is “membranous vibration” (Fig. 14.11 right).  

 

 
Fig. 14.11. Bending, torsion and  и оболочечные колебания 

 
It is possible to present mode shapes as a table (Fig. 14.12). Frequencies increase to the 

right and down:  
....131211   fff   ;  ....312111   fff  

Exactly Fig. 14.12 is for rectangle plate. Real blade is twisted and has different thickness 
in different sections, thus its net lines can be not straight lines and non-parallel (non-
perpendicular) to its axis. 

 
Fig. 14.12. Table of mode shape of cantilever fastened rectangle plate 

 
14.6. Dependency of own frequency of blade on different factors 
 Let we consider bending vibration and use equation (14.9). 

1. An influence of material is in efficient 

E . For metal materials used in aircraft 

buildings (steel, aluminum, titanium, nickel-cobalt alloys) constE



 (about 3…5% 
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difference), and own frequency is independent on material. For composite materials it is not so, 
and for these materials it is necessary to take into account anisotropy (ExEy) too. 

2. A centrifugal force increases the own frequency of blade. If the blade is bended of 
vibration, an arm of centrifugal force appears, it gives a moment returning the blade to its 
equilibrium position (Fig. 14.13; the centrifugal force has a part which lead the blade out of its 
equilibrium position too, but cxcz PP  ). Therefore to lead a blade out of its equilibrium position 
it is necessary to overcame mot only a stiffness of blade but this additional moment too. It is 
equivalent to increasing of stiffness, thus the own will increase in this case.  

 
Fig. 14.13. Centrifugal force during bending of blade  

 
Static frequency 0f  is a frequency of blade on motionless rotor. Dynamic frequency df  

increases when rotor speed increases. For first mode shape  
22

0 Bnff d  , 

here n is rotor speed,  

37.0cos81.0 2  m
m

l
DB    , 

here mD  is middle diameter of blade, m  is middle angle of placement of blade. 

 Because 0f  is more and more for next mode shapes and 2Bn  is constant, an influence of 
centrifugal force is more if number of mode shape is less. Frequency of torsion vibration is 
independent on centrifugal force because the arm of force doesn’t appear during twisting. 
 3. An influence of temperature connects with reducing of elastic modulus Е during 
temperature increasing. Own frequency will change as 

0
0 E

E
ff t

t    , 

here tE  is elastic modulus of heated blade, 0E  is elastic modulus for normal temperature.  
Because during increase of rotor speed a temperature increase too, influence of 

temperature and centrifugal force add. A temperature of compressor blade change 
insignificantly, thus its own dynamic frequency increases only. In a high pressure turbine for 
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high speed influence of temperature is more. Therefore dynamic frequency of turbine blade 
increases on little speed and significantly decreases on high speed.  

4. To obtain an influence of geometrical parameters (Fig. 14.14) for their uniform 
changing on blade length we will use approximate equations for section area  

max7.0 bF   
and inertia moment of section 

)(41.0 2
max

2
maxmax lbJ y    

(here b  is chord of blade, max  is maximal thickness of section, maxl  is maximal rise of section 
middle line, Fig. 14.14). 

 
Fig. 14.14. Geometrical parameters of blade section 

 

max

2
max

2
maxmax

2

7.0
)(41.0




b
lEb

l
Kipi








  . 

It is possible to see from this equation that own frequency is independent on chord, decreases 
significantly if a length increase, increases if max  and maxl increases. 

5. If geometrical parameters changes on the length of blade non-uniformly, the stiffness 
of blade determines by parts with large strain and stress (near place of fastening or net lines), and 
inertia properties of blade determines by parts with large displacement and acceleration (far from 
place of fastening or net lines). For example, if thickness of blade increases in its root section, its 
stiffness increases too and first mode frequency increases (Fig. 14.15, first). A mass of blade will 
increase too, but because this part of blade almost doesn’t move, in this case it isn’t important. If 
thickness of blade increases on its periphery, its inertia properties will increase and first mode 
frequency decrease (Fig. 14.15, second).  

                                                                                 
Fig. 14.15. Changing of different part of blade          Fig. 14.16. Blade with cut angle 
 
If an angle of blade is cut (Fig. 14.16) inertia properties of periphery will reduce, 

therefore first mode frequency will increase. 
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15. VIBRATION OF DISK 
 

Let we consider a disk as a round plate with variable thickness (model of Timoshenko). For a 
plate in cylindrical coordinate system there is:  

)~
~~

(~
r

r
r rrr

DM 






  









   ,                                                                      (15.1) 
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r
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r r
qEhQ 
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



   ,                                                                                (15.2) 

)
~~1

~
)(1(

2
1~~







 
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rr   ,                                              (15.3) 

)
~~1

~
(~

rrr
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r 














    ,                                                                      (15.4) 

)~~
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)1(2
~

 









r
qEhQ r   ,                                                                               (15.5) 

here D is cylindrical stiffness.  

rM~  is a twisting moment from normal stress on an area with perpendicular r. rM~  is a 

twisting moment from tangential stress on an area with perpendicular r. rQ~  is a cutting linear 

load from tangential stress. It acts along Z axis on area with perpendicular r. M~  is a twisting 

moment from normal stress on an area with perpendicular  . rM
~  is a twisting moment from 

tangential stress on an area with perpendicular  . Q~  is a cutting linear load from tangential 

stress  z . It acts along Z axis on area with perpendicular  . 

Let take an infinitely little element of disk between two radial planes with angle d  and 
two cylindrical surfaces with radiuses r and dr (Fig. 15.1). 

Let we obtain a system of differential equations describing the disk vibration of equations 
(15.1) – (15.5) and equilibrium conditions of element of disk. 

From (15.1) (multiply and divide by r) it is possible to obtain 

)~(1~
~~

rM
Drrrr rr

r 















   .                                                                                      

(15.6) 
 From (15.3) it will be 

)1(
)~(2~1~~
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
 






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



r
rM

Drrr
rr                                                                                           

(15.7) 
 From (15.2) 

)~()1(2~~
rQ

Ehrr
q

rr
r  



                                                                                                     

(15.8) 
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Fig. 15.1. Infinitely little element of disk and dynamic forces on it  
 

Let transform (15.4), insert 
r

r


~  from (15.6): 
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(15.9) 
Inertia force is  

2

2 ~

t
qhrdrddQ ri

r 


                                                                                                    (15.10) 

Let consider an equilibrium of the element. Projections of forces on Z axis are: 

0
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r
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Let transform this equation. 
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If to take into account (15.12), (15.11) will be as  
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If to divide by drd , result will be 
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If to differentiate (15.5) by  , result will be: 
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If to insert it into (15.13), it is possible to obtain 
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Sum of moments relatively r axis is: 
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If to neglect infinitely little values of second order, to assume that 1
2

cos 
d  and 

22
sin  dd

 , 

it is possible to obtain 
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If to divide by drd  and to take into account rM~ = - rM
~ , and to multiply and divide by r, it is 

possible to obtain: 
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By insertion of M~  and Q~  from (15.9) and (15.5), it is possible to obtain 
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                 (15.15) 

Projections of moments on circular direction are: 
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Let transform it analogously to (15.12):  
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If to divide by drd , multiply and divide by r, it is possible to obtain: 
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If to insert M~  from (2.9), result will be 
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Equations (15.8), (15.6), (15.7), (15.14), (15.16), (15.15) forms a system (15.17) relatively 6 
variables:  

rq~ , r
~ , 

~ , )~( rQr , )~( rM , )~( rM r . 

)~()1(2~~
rQ

Ehrr
q

rr
r  



  

)~(1~
~~

rM
Drrrr rr

r 















   

)1(
)~(2~1~~





 















r
rM

Drrr
rr  

2

2

2

2 ~~

)1(2

~

)1(2
)~(

t
qrhEh

r
qEh

r
rQ rrr


























                                               (15.17) 

)~()~(~1
~

1)~(1)~( 22

rQrM
rr

D
r

D
rM

rr
rM

rrr
rr 















 




























~

)1(2

~

)1(2

)~(1)~(~1
~

1)~( 2

2

22





























EhrqEh

rM
r

rM
rr

D
r

D
rM

r

r
rrr

 

Because the disk is circularly symmetric, a solution of the system (15.17) should be 
periodical by  .  

),2,(),,(~ trqtrq rr    . 
Therefore we will search the solution as: 

)cos(cos)(),,(~   ptmrqtrq rr  

)cos(cos)(),,(~   ptmrtr rr  

)cos(sin)(),,(~
   ptmrtr                                                  (15.18) 
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)cos(cos))((),,)(~(   ptmrrQrtrQ rr  

)cos(cos))((),,)(~(   ptmrrMrtrM rr  

)cos(sin))((),,)(~(    ptmrrMrtrM rr  

Here p is own frequency, t is time,   is phase shift of oscillations. 
If to insert (15.18) into (15.17), to differentiate by   and divide by )cos( pt , a system of 

first order differential equations will be as result:  
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Its common solution is as:  
}{....}{},,,,,{ )6(

6
)1(

1 PCPCrMrMrQq T
rrrrr    , 

here }}....{{ )6()1( PP  are any linear independent partial solutions of (15.19). 
Let we will find partial solutions by numerical method. On the initial radius for integration let 
assume 

TP }0,0,0,0,0,1{}{ )1(   
TP }0,0,0,0,1,0{}{ )2(   

…………….. 
TP }1,0,0,0,0,0{}{ )6(   . 

Constants 61...CC  should be found from boundary conditions. 

 Let we consider a disk with variable thickness, fastened on inner radius 0r  and free on 

outer radius nr .  

 Boundary conditions on radius 0r  are:  

0)( 0 rqr , 0)( 0 rr , 0)( 0 r  .  

0...010)( 6210  CCCrqr   , from here 01 C .  

Analogously one can obtain 032  CC  . 

 Boundary conditions on radius nr  are: 
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0)( nnr rrQ  , 0)( nnr rrM  , 0)( nnr rrM   . It is possible to obtain a system of equations from 

here: 
nnr rrQC )()4(

4 nnr rrQC )()5(
5 0)()6(

6 nnr rrQC  

nnr rrMC )()4(
4 nnr rrMC )()5(

5 0)()6(
6 nnr rrMC                          (15.20) 

nnr rrMC )()4(
4  nnr rrMC )()5(

5  0)()6(
6 nnr rrMC   

 This system has solutions if its determinant equal to zero. 
Algorithm for calculation of own frequencies of the disk will be as: 
1. Preset m=0. 
2. Initial frequency of vibration 0p  is setted. 
3. The system (2.19) is integrated three times with initial values   

TP }0,0,1,0,0,0{}{ )4(   
TP }0,1,0,0,0,0{}{ )5(   
TP }1,0,0,0,0,0{}{ )6(   . 

4. Determinant of system (2.20) is calculated and compared with its value for previous step. If its 
sign changes, go to item 6. If its sign doesn’t change, go to item 5.   
5. Frequency increase by a step p . Go to item 3. 
6. Step is changed to 2/pp   . Go to item 5. 
7. The dividing of step by two continues till  p  (calculation mistake). 
8. An own frequency ip  is determined. 

9. Next initial frequency 20  ipp   is setted. Go to item 3. 
10. If all frequencies for given m (in the considered frequency range), then m= m+1. Go to item 
2. 
 After the calculation of own frequencies the mode shape of disk should be calculated. In 
equation )cos(cos)(),,(~   ptmrqtrq rr  first two efficient give amplitude distribution on 
the disk.  

If m=0 amplitudes in all points of circle are equal.  If m=1 , there are two lines on which 
amplitude equal to zero. These lines are net diameter (Fig. 15.2).  

 

 
Fig. 15.2. Oscillations of disk with net diameters and net circles  
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If m=2 there are two lines on which amplitude equal to zero. These lines form two net 

diameters, etc. It is mode shape with net diameters. 
Function )(rqr  can change its sign in different places of disk radius too. If n=0 all values of  

)(rqr  in the same time have the same sign. Vibration amplitude in the center of disk decreases if 
m increases. If  m is large, only disk periphery oscillates. 

If n=1, the sign of function )(rqr  changes one time on the disk radius. The net circle appears 
(Fig. 15.2). If n=2, the sign of function )(rqr  changes two times, two net circles appear, etc.  
Mode shapes with m=0 and different number of net circles are “umbrella” mode shapes.  

If m and n increase, own frequency increases too. There is only one exclusion:  

0010 ff   . 
It is possible to present the disk mode shapes as a table (Fig. 15.3). 
 

 
Fig. 15.3. Mode shapes of the disk with central fastening 

 
It is convenient to present the own frequencies on one picture as dependency on the number 

of net diameters m. This picture is a spectrum of disk vibration (Fig. 15.4). 

 
Fig. 15.4. Spectrum of disk vibration 
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  Because blades increase a mass on the disk periphery, own frequencies of disk with blade 
reduce. Net diameters of disk with blades cam be only between blades. Therefore its number is 
not infinite, it is limited by z/2, if number of blades z is even, and (z-1)/2, if number of blades is 
odd. Net circles of “umbrella” mode shapes of disk with blades can pass on blades (Fig. 15.5). 

 

 
Fig. 15.5. Possible “umbrella” mode shape of disk with blades 

 
All non-“umbrella” mode shapes (m>1) are paired. Beside the solution (15.18) there is 

solution  
)cos(sin)(),,(~   ptmrqtrq rr  

)cos(sin)(),,(~   ptmrtr rr  

)cos(cos)(),,(~
   ptmrtr                                                  (15.21) 

)cos(sin))((),,)(~(   ptmrrQrtrQ rr  

)cos(sin))((),,)(~(   ptmrrMrtrM rr  

)cos(cos))((),,)(~(    ptmrrMrtrM rr   

Its inserting to the system (15.17) gives a system analogous to (15.19). In this case frequencies 
will be the same but the distribution of amplitude will be shifted on 1/4 of wave, on an angle 

m2
 . Paired mode shapes are independent on each other. Let 

)cos(cos)(~ ***   ptmrqDq rr  , 

)cos(sin)(~ ******   ptmrqDq rr  , 

here *D , **D , * , **  are amplitude and phase shifts respectively (it depends on initial 

conditions), )(rqr  is distribution of amplitudes on disk radius ( )1)( max rqr . During disk 
vibration both of paired mode shapes take place, result is its superposition. Let we consider 
different cases. 
 1.   *** . Result will be  

)cos()sin)(cos)((~ ***   ptmrqDmrqDq rrr )cos()cos()(   ptmDrqr .  

Here *** DDD   , *

**

D
Darctg  .  

It is seen that disk has m net diameters. Its position is possible to obtain from  
0~ rq  for 0)cos( m . From here 
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km  
2

 ,  

m
k

mm
 

2
  . 

 In this case the position of net diameters is independent on time. It is oscillations with 
standing waves. 
 Position of net diameters depends on ratio of *D  and **D , which depends on initial 
conditions. 
 2. Let *D = **D =D, and source of vibration excitation is in the point 1 and moves on the 
circle (Fig. 15.6). If for mode shape m=1 and **~

rq net diameter passes the point 1, the mode shape 
**~

rq  will not appear (an energy is transferred by work, but if displacement is equal to zero, work 

will be equal to zero too). In this case a perpendicular net diameter of mode shape *~
rq  will be 

excited. If source of vibration moves in the point 3 (with angle 900), mode shape *~
rq  will stop to 

excite, but mode shape **~
rq  will appear. If the source of excitation is in an intermediate point 2, a 

superposition of mode shapes *~
rq  и **~

rq , a diameter oppose against point 2, will be excited.  

 
Fig. 15.6. Excitation of paired mode shapes 

 
 Thus net diameters move on the disk if the source of vibration excitation moves. 

 3. If DDD  *** , 
2

*   , 0**  . Result will be 

)sin()()cos(sinsin)(cos(~~~ *** ptmrqDptmptmrqDqqq rrrrr    . 
 Position of net diameters is obtained from equation 0)sin(  ptm , from here  

kptm    , 
m
kt

m
p    . 

 It is seen that position of net diameters depends on time. It is an oscillation with running 
wave. An angular velocity of rotation of net diameters is 

m
p

dt
d


  ,  

because it is negative, it is oscillation with back running wave. 

 4. If *D = **D =D, 0*  , 
2

**   , it will be 

)cos()()sin(sincos)(cos(~ ptmrqDptmptmrqDq rrr    . 
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Position of net diameters is obtained from equation 0)cos(  ptm , from here  

kptm  
2

 , 
m
k

m
t

m
p  

2
 , 

m
p

dt
d


  . 

It is oscillation with forward running wave. 
 In a gas turbine engine all resonance vibrations are with a back running wave. A self-
excited oscillation is with a forward running wave in 90% of cases. 
 

16. FORCED VIBRATION OF BLADE WHEELS  
OF GAS TURBINE ENGINE 

 
16.1. Exciting harmonics 

The main source of vibration of blade wheel is a circular irregularity of pressure and 

velocity in a gas flow before and after the blade wheel.  Gas force on the blade rQ  is different 

and depends on conditions at an entrance in engine, on flowing of all elements in the flow before 

and after the blade wheel. Because rQ  changes on the circle periodically, it is possible to present 

it as Fourier series: 







0

1 )cos(
m

mrmr mQQ  .                                                                                           (16.1) 

An angle 1  is position of the blade in motionless coordinate system, an angle  is position of 

the blade in a coordinate system which rotates together with the blade wheel (Fig. 16.1). 

 
Fig. 16.1. Motionless and rotate coordinate systems 

t  1  

From here t 1  

Any part of the series (16.1) is  
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tmmQtmmQtmmQQ mrmmrmmrmrm  sin)sin(cos)cos()cos(~
 . 

Thus any this part is equivalent to two loads with frequency t  and phase shift on 1/4 of period. 

It is oscillation with back running wave. 

 Because any part of series (16.1) can excite a vibration, it is named as “exciting 

harmonic”. Because  

cekmnm





2
,  

a frequency of exciting harmonic depends linearly on rotor speed cekn . m is number of exciting 

harmonic. An exciting harmonic with number m excites only oscillations which are divisible by 

m. Amplitude rmQ  depends on condition of flowing of all elements in the flow before and after 

the blade wheel. Harmonic analysis of pressure circular irregularity shows that first harmonic has 

maximal amplitude. If number of harmonic increases its amplitude reduces. If amplitude of first 

harmonic is 100 %, amplitude of second one is about 30%, for third one it is about 10%, 

amplitude of fourth harmonic is neglible little. However if there are some elements (blades of 

distributor, fuel injectors of combustion chamber, ribs etc) with number m, the amplitude of 

exciting harmonic with number m will be much more and it is impossible to neglect it. 

 

16.2. Resonance diagram 

 Resonance diagram presents dependencies of own frequencies of blade wheel and 

frequencies of exciting harmonics on rotor speed (Fig. 16.2). It allows to find a speed of rotor on 

which the resonance vibration of blade wheel appears. At the resonance diagram should be 

shown:  

- frequency lines of blade wheel which show a dependency of any own frequency on 

rotor speed (because all blades have little difference of frequency of different geometry, different 

stiffness of fastening etc, really it is not a line but a strip with wideness about 3% on the both of 

sides of a middle line); 

- lines of exciting harmonics (it is line with angle coefficient m); 

- lines of enduring speeds of engine: maximal, cruiser, minimal etc (because an engine 

regulator has any mistake always, really it is not a line but a strip with wideness about 3% on the 

both of sides of a middle line). 
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Fig. 16.2. Resonance diagram 

 

 If a place where the line of exciting harmonic intersects the frequency line of blade 

wheel, a resonance takes place. However only the resonance which coincide with enduring speed 

of engine is danger. Other resonances the engine passes relatively quickly and danger vibration 

has no time to develop (and as it will show below, energy of vibration dissipates to a gas by 

aerodynamic damping).  

 

16.3. Self-excited oscillations 

 Self-excited oscillations are vibrations without of action of exciting harmonics and other 

forces variable in time. For self-excited oscillations it is necessary to have an energy source and 

a way of transform of this energy to energy of vibration. 

 Source of energy for a blade wheel is gas flow. The way of energy transform is connected 

with blade flowing. Let we consider a plain self-excited oscillations of blade without twisting in 

a flow which has no twisting too. Let the flow has velocity relatively the blade W


and meet the 

blade with an angle i . The name of this angle is angle of attack. Let randomly the blade went out 

of its equilibrium position and began to vibrate with its own frequency p.  

ptqq sin~  . 

 Let we present the movement q~  as a sum of two parts: ptqq sin~
11   is perpendicular to 

the flow direction and ptqq sin~
22  is parallel to one. Velocities of these movements are  
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ptpq
dt
qdV cos
~~

1
1

1   and ptpq
dt
qdV cos
~~

2
2

2   . Thus the velocity of the flow relatively to the 

blade will be 1W


 and the angle of attack will change on i (Fig. 16.3). If 0~
1 V  this changing 

i <0. 

 
Fig. 16.3. Changing of the angle of attack 

 

 
ptpqW

ptpq
VW

Vitg
cos

cos

2

1

2

1





 . 

Because 1q  and 2q  are little, iitg  , WptpqW  cos2 and 
W

ptpqi cos1 . 

 An aerodynamic force on the blade is ya CbWQ 2

2
1  . Here   is gas density, b  is 

blade chord, yC  is a coefficient of lift force. It depends on the angle of attack (Fig. 16.4). 

 
Fig. 16.4. Dependency of the coefficient of lift force on the angle of attack  

 

 Let present yC  as Taylor series near 0i : 

....
2

2

2

2

0 



i

di
Cd

i
di

dC
CC yy

yy  

If to take two first parts only, result will be 

 pt
di
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W
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y
y
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00   

In this case the aerodynamic force will be variable in time: 
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 Let we will find a work of the aerodynamic force on a blade displacement. 

dtptqpQqdQdA aa  cos~ . 

The work during period Т is 
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If 0
dt

dC y  (subcritical flowing, Fig. 16.4), it will be A<0, in this case an energy of 

vibration of blade will dissipate to gas flow. This dissipation of energy is aerodynamic damping.  

If 0
dt

dC y  (supercritical flowing), it will be A>0, in this case the gas flow add energy to 

the blade, and amplitude of its vibration will increase to its destruction. It is self-excited 

oscillations. 

 The self-excited oscillations are not admissible by standards of strength. If it appears, it is 

necessary to change the gas flowing in engine to avoid the supercritical flowing of blades. 

  

16.4. Protection of the blade wheel against danger vibration 

 Protection of the blade wheel against danger vibration is a complex problem which has 

no common solution. Any solution from one side can be not effective enough, from another side 

it can make worse any other parameters of engine. There are three ways of protection of the 

blade wheel against danger vibration. 

 

1. Reducing a vibration exciting force 

Because the main source of vibration of blade wheel is a circular irregularity of pressure and 

velocity in a gas flow, it is possible to reduce this irregularity. After the blade it reduces very 

quickly, proportional to 3

1


(here   is distance to a source of irregularity). Therefore a little 

increasing of distance between a blade wheel and distributor (Fig. 16.5) gives a large effect. It is 

more convenient to use relative values for axial gap:   

 = а/b,  or:  К=А/Сm,  
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here  а is middle axial gap between blades, b is length of chord of exciting blade, А is distance 

between maximal thicknesses of exciting blade and excited blade, Сm is maximal thickness of 

exciting blade. 

It is obtained experimentally that after  = 0.5 or К=6 a level of variable stress in the 

excited blade is minimal. However increasing of gap increases length and mass of engine.  

 
 
 
 
 
 
 
 

Fig. 16.5. Influence of axial gap between excited blade and exciting blade 
 

It is possible to design an inclined distributor (Fig. 16.6). In this case the blade meets an 

irregular flow from distributor  not on all its height but only in a point A, and this point moves on 

a length of blade during rotation. However the inclined distributor is heavier than usual one. 

  
Fig. 16.6. Inclined distributor 

 
Fig. 16.7. Placement of ribs with different angles 

А 

b 

а 

К=6 ( = 0.5) 

max 

 
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To make the frequency of exciting harmonic irregular, it is possible to place ribs, poles 

etc with different angles (Fig. 16.7, 321   ). However in this case a stiffness of structure 

will be different in different directions. Anisotropy of supports is not good for rotor vibration.  

Structure should not increase an irregularity of gas flow. For example, if valve of by-way 

is immediately on the flow part of engine, if it is open, very large circular irregularity will 

appear.  Therefore usually in the flow part there are many little holes on a circle, these holes lead 

a gas to receiver, and the valve of by-way is placed on the receiver where holes are absent. 

Irregularity of gas flow of many little holes is much less than of one large aperture. On the same 

reason a ribbon of by-way may be used, it opens an entrance for gas around all circle length. 

 

2. Frequency tune-out 

A frequency tune-out is the most often used way to avoid a danger vibration of blade.  

A necessity of tune-out is found during design of engine by a help of resonance diagram. 

Tune-out may be “up” and “down” as for rotor. Because own frequencies of blade have any 

difference, and engine regulator keeps speed with any mistake too, tune-out should be more than  

10% of engine speed from which this tune-out is necessary.  

Usually blade own frequency is changing by changing of thickness of blade in required 

places. Articulate blade foot exclude first bending mode shape, thus its introducing into the 

structure is a way of tune-out too. If changing of section thickness is more than 20%, it is 

necessary to profile the blade again, to calculate new gas flow across blades. As extraordinary 

way of tune-out it is possible to cut an angle of blade. For example it is made in turbine of R11-

F300 aircraft engine.  However it is undesirable because in this case a calculated optimal gas 

flow is distorted.    

Because after tune-out the blade sections were changed it is necessary to repeat a 

calculation of static strength of blade. 

One of difficultness of tune-out is a possibility to meet after it another resonance on other 

frequency and/or for other mode shape. Frequency tune-out is useless against self-excited 

oscillations. 

For disks of aircraft engine the frequency tune-out is the most often used way to avoid its 

danger vibration (an application of dampers in disk structure is often impossible). Disk own 

frequency is changing by changing of thickness of its sections in required places. 

3. Damping 

Dry friction dampers are used usually for protection of blades against vibration.  
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It is possible to dissipate an energy of vibration on friction of wires of rope in a hole of 

blade (Fig. 16.8, a). Because wires of rope have large corrosion under high temperature, a pipe is 

used in a turbine instead of rope, however its friction surface is less (Fig. 16.8, b). There is a 

friction between side surfaces of anti-vibration shelves (Fig. 16.8, c) or banding shelves. 

However all these dampers are placed in a flow part and some energy of gas flow lost on its 

flowing. 

 
                      a                                                b                                                           c 

Fig. 16.8. Blade dampers placed in a flow part 

 

It is possible to make a friction surface by cutting of blade foot of blade directly (Fig. 

16.9, a). Sprigs (Fig. 16.9, b), damping sleeves (Fig. 16.9, c), multi-layer metal ribbons (Fig. 

16.9, d) are used for damping of blades too. 

 
                                               a                                                             b 

 
   c                                                      d 

Fig. 16.9. Dampers placed in blade foots 
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Details made of composite materials have large energy dissipation of inner friction into 

the material (this inner friction dozen times more в in composite than in steel). It is one of 

important reasons of introduction of composite materials. 

Damping dissipates energy and reduces amplitude on resonance frequency. It changes the 

resonance frequency insignificantly (some percents even if damping is large). In contrast to it the 

frequency tune-out changes own frequency, however amplitude of vibration on this new 

frequency remains about the same. 
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17. PROTECTION OF EQUIPMENT AGAINST VIBRATION AND SHOCK  

 

 Protection of equipment against vibration and shock decreases vibration and shock loads 

on equipment of aircraft engine (or any other mechanism) and increases its reliability and life-

time. Vibration insulators are used for this aim. It combines properties of damping and frequency 

tune-out. Vibration insulators are used for protection against shock too; a name “shock absorber” 

is used rarely.  

 

17.1. Data for vibration and shock protection system design 

 

It is necessary to have for design of vibration protection system: 

a) drafts of object to be protected with possible places of vibration insulators mounting;  

b)  

- mass of object m; 

- position of its gravity center (it is usually used as an origin of coordinate system for vibration 

protection system calculation; it is possible to find coordinates of this gravity center by 

equations: 





n

i
iio

n

i
iio

n

i
iio zQ

Q
zyQ

Q
yxQ

Q
x

111
;1;1;1                                                            (17.1)       

here Qi is mass of part i of equipment,  xi, yi,  zi, are coordinates of gravity center of this part i, п 

is number of parts); 

 - inertia moments kJ  of object relatively axis k of coordinate system; 

c) vibration load (its frequency k  and amplitude ks  for direction of axis k of coordinate system) 

and shock load (maximal acceleration of shock kw0 , time of shock k  and shape of shock 

impulse for direction of axis k of coordinate system); 

d) characteristics of different connections of object with other equipment (pipelines, cables etc, 

its shape, size, material, place of connection); 

e) requirements for vibration protection system:  

- admissible amplitudes of displacement ][ kA  and acceleration ][ kW  to be protected  (admissible 

displacement is determined by possibility of breaking of object connections such as pipelines and 

cables, possibility of shock on other equipment, preciseness of object working; admissible 

acceleration is determined by maximal inertia load which the object can bear and remain 

workable); 
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- efficiency of vibration protection system on working frequency (vibration transfer ratio 

k

k
kp s

A
 , here kA  is amplitude of vibration of protected object for k axis direction) and against 

shock (shock transfer ratio 
0

max

w
a

 , here maxa  is maximal acceleration of protected object 

during shock); 

f) working conditions of vibration protection system (high or low temperature, vacuum, 

aggressive media such as oil, fuel, acids); 

g) required life-time of vibration protection system. 

 

17.2. Calculation of vibration 

  

Vibration insulator as any elastic body has potential energy of deformation  . It is area 

of triangle (perhaps curvilinear) under its elastic line (Fig. 17.1). Vibration insulator has friction 

too. During vibration a direction of vibration insulator deformation changes, direction of friction 

force changes too. Therefore in coordinates “displacement k  - reaction of vibration insulator  

kP ” load process of vibration insulator doesn’t coincide with its unload process (for load process 

reaction is elastic force plus friction force, for unload process reaction is elastic force minus 

friction force). Load and unload processes form a hysteretic loop of vibration insulator. It is 

elastic-damping characteristics of vibration insulator. Area of this loop   is an energy 

dissipated during one cycle of deformation of vibration insulator (Fig. 17.1).  

 
Fig. 17.1. Hysteretic loop of vibration insulator 

 

Energy dissipation coefficient is ratio  
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П
П

 .    (17.2) 

Let consider a case of vibration excitation in k axis direction by variable harmonic force 

with amplitude kF  and frequency k  (“force” excitation). In this case a differential equation of 

system movement is  

tFC
dt

db
dt

dm kkkk
k

k
k 

 sin2

2

    (17.3) 

Here kC  is stiffness of system, k  is displacement, kb  is coefficient for damping force, 

all parameters are for  k axis direction, t is time. It is possible to transform this equation as  

t
m
F

dt
dn
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k
k

k
k

k
k 

 sin2
02

2

 ,  (17.4) 

here 
m
bn k

k  , and 
m
Ck

k 0 is frequency of own oscillation of the system.  

Common solution of this equation is 

)sin(sincos)( 0201   tAtAtAt kkkkk ,  

here   is phase shift of system oscillation relatively to oscillation of external force. First 

and second parts of this equation are free oscillations, it stops quickly of friction. Third part is 

forced vibration. Insert this part into (17.4). Beside it is necessary to replace  

)sin)cos(cos)(sin())sin(()sin(   tttt kkkk . Result is as 

)sin)cos(cos)(sin(
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  (17.5). 

This equation should be right for all t. Therefore coefficients for )sin(  tk  and 

)cos(  tk  should be equal. 

 cos)( 22
0 m

FA k
kkk     and    sin

m
FAn k

kkk     (17.6). 

Let take both of these equations (17.6) in second degree and sum.  

2222222
0 )()()(

m
FAnA k

kkkkkk   , 

From here an amplitude of forced vibration is 

2222
0 )()(

1

kkkk

k
k

nm
FA

 
 .    (17.7) 

If to take into account 
m
Ck

k 0 , result is 
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If 0k , value of amplitude is k
k

k
k s

C
FA   . It is a case of static deformation. 

Amplitude of vibration is maximal if kk 0  . In this case it is equal to 
k

k
kk n

sA 0
0


 . It 

is a case of resonance. Value  

k

k
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   is damping coefficient. 
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Vibration transfer ratio for resonance is  
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Vibration transfer ration for any frequency is 
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Maximal acceleration at resonance is 

kkk AW 0
2
00    .                          (17.11) 

If a source of vibration is harmonic displacement of basis with amplitude ks  (it is 

“kinematic” excitation), equation (17.3) transforms to 

02

2

 kk
k

k
k C

dt
db

dt
dm 

 ,                                   (17.12) 

here 

ts kkkk  sin     (17.13) 

is displacement of mass center of the system in absolute coordinates ( k  in this case is relative 

displacement). After differentiation and dividing by m equation (17.12) transforms to  

ts
dt

dn
dt

d
kkkkk

k
k

k 
 sin22

02

2

                (17.14). 

Solution of this equation is analogous to (17.4). If to take into account (17.13), amplitude 

of displacement is 
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from here the vibration transfer ratio is 
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 Resonance amplitude of displacement is  

20
11
k

kk sA


    .                                                            (17.17) 

Amplitude of absolute acceleration on resonance is 

                                         2
22

00
11)1(
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kkkk sW
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Resonance frequency of system in this case depends on damping and equal to  

20
0 1

2 k
k

kf 



 .                                                 (17.19) 

It is seen from (17.14) – (17.18) that difference of “force” and “kinematic” excitation is 

connected with value of k . For most of vibration protection systems k < 0.1, therefore this 

difference isn’t very large. 

Linear system has hysteretic loop in a shape of ellipsis. Hysteretic loops of other 

vibration isolators (especially with dry friction) have other shape. It is possible to use equations  

(17.3) or (17.14) for calculation of these systems, if linearization is used. For linearization an 

equivalent damping coefficient k  is obtained. For this coefficient area of real hysteretic loop of 

vibration insulator is equal to area of linear elliptic loop with the same deformation amplitude 

and k . 

If to insert into (17.3) the solution )sin()(   tAt kkk  it is seen that maximal friction 

force (wideness of hysteretic loop) in this case equal to kkk Ab  . Area of linear elliptic loop wih 

deformation amplitude kA  is 2
kkk Ab  . 
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Potential energy of deformation of elastic body to the amplitude kA  is 2

2
1

kk AС . In 

this case an energy dissipation coefficient of linear system equals to   

k

kk
k C

b  2





 . 

It is easy to obtain the value of energy dissipation coefficient by its hysteretic loop and 

equation (17.2). Thus an equivalent damping coefficient is  
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Because 
m
Ck

k 0 , value of equivalent damping coefficient is 
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If the protected object has n vibration insulators, it is necessary instead kC  to use a 

summary stiffness of vibration protection system for k axis direction 


 
n

i
ikk CC

1
, here ikC is 

stiffness of vibration insulator with number i in the same direction.  

If to neglect the damping, the vibration transfer ratio on frequency k  is  
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It is possible to see from this equation that reducing of vibration ( 1k ) takes place if  

20kk    and it will be more if difference of k  and 0k  will be more. A frequency range 

after 20k  is a range of vibration protection. However to make this range more by means of 

excessive reducing of 0k  (that is the stiffness of the system) is inadmissible because very soft 

vibration protection system has an amplitude of resonance vibration which is more than limit. A 

deformation of system under static load kq0  in this case is excessive too. Because 

kkkk qmqCmg 0
2
00   , it will be 2

00 kk gq  . For example for own frequency of system 

equal to 10 Hz, it is necessary the static displacement 2.5 mm. If own frequency is 5 Hz, the 

static displacement is 10 mm, for own frequency 1 Hz it is necessary the static displacement 250 

mm, which is impossible on reasons of units composition and vibration insulators structure.  
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  It is seen of equation (17.10) for vibration transfer ratio which takes into account a 

friction that for large values of   the reducing of vibration in the vibration protection range is 

very little, vibration protection system is non-effective. However if value of   is too little, the 

amplitude of vibration on resonance will be too large and the protected object will be destructed 

during resonance. Thus the value of   should be optimal. 

 The stiffness of vibration insulator, such as its energy dissipation coefficient may be 

obtained experimentally by hysteretic loop. If maximal and minimal deformation of vibration 

isolator for k axis direction are maxk and mink , maximal and minimal reaction are maxkP and 

minkP  respectively (Fig. 17.1), the stiffness is  

                                                                  
minmax

minmax

kk

kk
k

PPC
 


    .                                     (17.22) 

 Because stiffness and energy dissipation coefficient of vibration isolator depend on a 

shape of hysteretic loop, they depend in a common case of non-linear elastic-damping 

characteristics on amplitude of dynamic deformation and on preliminary static deformation. 

  

17.3. Optimal placement of vibration insulators  

 

 During vibration excited by translational displacement of basement the protected it is 

possible that protected object has rotational vibration too. Maximal amplitude of vibration in any 

point i it is possible to estimate by equations: 

;0000 oiziyxxi yzaa                                                (17.23)                                    

;0000 oixizyyi zxaa                                              (17.24)                                  

;0000 oiyixzzi xyaa                                                (17.25) 

here x0i, y0i, z0i are coordinates of point i in a coordinate system Х0, Y0, Z0 which origin is in a 

center of gravity of object, a0x, a0y, a0z are amplitudes of translational displacement of center of 

gravity in respective axis direction, x0 , y0 , z0  are amplitudes of object rotation around  

respective axis. It is seen that a large vibration deformation is possible in any points far from the 

center of gravity. It can lead to destruction of pipelines and cables to the object, to a shock of 

object on near structures. Life-time of vibration insulators decreases of large deformation too. 

Thus if rotation vibration is absent, a placement of vibration insulators is optimal. 

 If the object has translational vibration in Z axis direction with amplitude a0z, vibration 

insulator i has force Czi a0z. This force provides a moment yviCzi a0z around X axis (here yvi is a 

coordinate of placement of vibration insulator i, Fig. 17.2).  
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Fig. 17.2. Placement of vibration insulator and force in it 

 

Condition of absence of rotational vibration around Х axis is equality to zero of moment 

sum around this axis, that is 00
1


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n

i
zivi aCy , or, divide by a0z ,  
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Analogously a moment sum around Y axis should be equal to zero to, that is 

0
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ziviCx .                                              (17.27) 

Action of vibration in X axis direction is possible too. If to consider translational vibration in X 

axis direction, it is possible to obtain condition 

0
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xiviCz .                                              (17.28) 

If to consider translational vibration in Y axis direction, it is possible to obtain condition 

0
1
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n

i
yiviCz .                                              (17.29) 

Conditions (17.26) – (17.29) determine the optimal placement of vibration insulators. The 

point relatively which these conditions are fulfilled is a center of stiffness of the system.  To 

exclude the rotational vibration it is necessary to combine the center of stiffness and the center of 

gravity of protected object or at least to place the center of stiffness and the center of gravity on 

the same line on which the exciting vibration acts. 

 Of this condition it is possible to consider different variants of placement of vibration 

insulators (Fig. 17.3).  
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                 a                                                        b                                                         c 

 
                 d                                                       e                                                         f 

Fig. 17.3. Different variants of placement of vibration insulators 

 

Variant (a) is simple for assembling but non-optimal for vibration action in X and Y axis 

direction. In a variant (b) center of stiffness and center of gravity coincide, but it is necessary an 

additional plane of vibration insulator placement, it increase a mass of system. In a variant (c) a 

wideness of vibration protection system increases. A variant (d) provides an absence of 

rotational vibration, however the object has an incline in static position. Variants (e) and (f) need 

special incline corbels for assembling of vibration insulators.  

It is necessary to place vibration isolators such way that its assembling, replacing, 

inspection of its condition would be possible. It should be a free space providing access to all 

vibration insulators. 

 

17.4. Structures of vibration isolators for units of engine  

 

There are many types of vibration insulators. Each of them has its advantages and 

disadvantages. 

 1. Steel springs. They have large strength, their cost is little, their characteristics are 

linear (it simplify a calculation of vibration protection system). However an energy dissipation in 

it take place only of inner friction in material, thus energy dissipation coefficient is very little and 
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vibration transfer ratio on resonance can be equal to 100 or more. It can lead to destruction of 

protected object during resonance passing. 

 2. Vibration insulators with elastic-damping element made of elastomer (mostly rubber) 

(Figure 17.4 – 17.6).  Its cost is not large, energy dissipation is provided by inner friction of long 

polymer molecules and much more than in metal (vibration transfer ratio on resonance is about 

10 or less), its weight is not large. However its strength is not enough, these elastic-damping 

elements is not able to work under high and low temperature, in aggressive media (oil, fuel, 

acids), it changes its properties during long-term storage.  

  

                                      
       Fig. 17.4. Vibration insulator AKSS type           Fig. 17.5. Vibration insulator AR type 

 
Fig. 17.6. Vibration insulator ARM type 

 



143 
 

3. Hydro-pneumatic vibration insulators and dampers. They have very high load ability 

(dozen and hundreds of tons, for example, dampers which absorb shock of aircraft during its 

landing). Energy dissipation in these vibration insulators is proved by flow of liquid or gas throw 

little holes with high hydraulic resistance. This dissipation is large enough (it is possible to 

obtain vibration transfer ratio on resonance about 3). However structures of these vibration 

insulators is complex, they often need additional systems such as liquid or gas pumps, pipelines, 

filters etc. They are sensitive to obstruction of working part. Its characteristics depends on 

vibration frequency (for hydraulic vibration insulators) or on second degree of frequency (for 

pneumatic vibration insulators), it makes its calculation more complex. 

 4. Dry friction vibration insulators, mostly all-metal (made of steel plates, rope, pressed 

wire, for example, wire material “Metal Rubber”, MR, developed in KuAI/SSAU). Outer friction 

of structure elements provides the energy dissipation, thus another name of this vibration 

insulators is structure damping vibration insulators. They have very large energy dissipation (the 

vibration transfer ratio on resonance to 1.5), high strength, high ability to work in extreme 

conditions. However technology of its manufacturing is usually complex and cost is high. Its 

characteristics are non-linear, it provide difficultness during vibration protection system 

calculation. 

 Thus for vibration and shock protection of engine units it is necessary to use dry friction 

vibration insulators in a place with high temperature, oil, fuel etc. In other place it is possible to 

use elastic-damping elements made of rubber. 

 Shape of elastic-damping elements may be different. Sleeve-type vibration insulators are 

presented on Fig. 17.7 (а – without case and b – with case). Ring-type vibration insulators are 

presented on Fig. 17.8, bell-type ones on Fig. 17.9.  Rope can work as elastic-damping element 

too (Fig. 17.10). 

 
                                                     a                                          b 

Fig. 17.7. Sleeve-type vibration insulators: а – without case, b – with case 
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Fig. 17.8. Ring-type vibration insulators: 

1 – elastic-damping element, 2 – bolt, 3 – corbel, 4 – rivet 

 
Fig. 17.9. Bell-type vibration insulator 

              
Fig. 17.10. Rope vibration insulators 

 

 Vibration insulator can have the elastic-damping element made of elastomer or pressed 

wire and in the same time unloading spring  (Fig. 17.11).  

 
Fig. 17.11. Sleeve-type vibration insulator with a spring  
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17.5. Protection against random load 
 
 In many cases vibration protection system is under random load. For example, it is 

vibration during transportation, because road surface imperfections are placed irregularly and 

have random height. Superposition of very many exciting forces may be considered as random 

load too. It can appears for units on engine case, because harmonic vibration from rotor transmits 

to it across many intermediate objects with different own frequencies and mode shapes.  

 It is impossible to use acceleration as a characteristics of random load, because for 

random process its middle value equal to zero for any case, large load and little load (Fig. 17.12).  

 

 
Fig. 17.12. Random load with different amplitude 

 

As characteristics of random load a middle square of acceleration divided by wideness of 

frequency range is used (Fig. 17.13). It is spectral density of random vibration (power spectral 

density, PSD) W . Its dimension is  
Hz

sm 22 )/( . 

 
Fig. 17.13. Middle square of random load 

 

Middle acceleration of object under random load is  

               



  0W
DW AR      ,                                                    

middle displacement is  

                           






3
0

2
0

WWX R
R    .               
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Maximal displacement of object with probability 0.995 is equal to RXX 3max  , maximal 

acceleration is RWW 3max  . Maximal inertia load on protected equipment is obtained by maximal 

acceleration maxW , this load should not exceed an admissible value for this equipment.  Value of 

maximal displacement maxX  allows to estimate a working ability of pipelines and cables to the 

object and absence of shock on other structures near it. Middle values of acceleration ad 

displacement allow estimating a level of comfort for man on protected object (for example, seat).  
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           18. PROTECTION AGAINST SHOCK 

 

Shock is impulse of large intensity and little duration. For cinematic exciting the shock is 
determined by dependency of an object basis w on time t.  

Main characteristics of shock are maximal acceleration of basis 0w , time of shock  , shape 
of shock impulse and full impulse of shock on a body with mass  m 




0

)( dttwmS   .                                                                      (18.1) 

The shape of shock impulse usually is simplified as rectangular, triangle, half-sine, saw-tooth etc 
(Fig. 18.1).  

In some cases a duration of shock on a level dw  is considered. It is time d  when dwtw )(  . 
A calculation model of shock protection system contains a body with movement in Х axis 

direction, vibration insulator with force ),( xxR   and basis. For force exciting an outer force )(tF  
is applied to the body, the basis in this case is motionless and is an object of protection.  

1 2 3 4  
Fig. 18.1. Shapes of shock impulse. 1 – rectangular, 2 – triangle, 3 – saw-tooth, 4 – half-sine 

 
An equation of body movement in this case is 

)(),( twxxrx    ,                                                                     (18.2) 
here mtFtw /)()(   and mxxRxxr /),(),(    , x  is absolute coordinate of the body.  

For cinematic exciting the basis moves on a low )(tu , an object of protection is the body, a force 
in vibration insulator is ),( xxR  , here uxx    is relative displacement of body. An equation of 
body movement in this case is 

)(),( twxxrx     ,                                                                     (18.3) 
here )()( tutw   . Equations (18.2) and (18.3) are similar, thus a calculation of force and 
cinematic exciting is similar too.  

Let we consider firstly the simplest linear model of shock protection system with constant 
stiffness k (Fig. 18.2). Because time of shock is very little, let we assume that an energy have no 
time to dissipate, and we will neglect a damping. In this case an equation of movement is  

)(2
0 twxx   ,                                                                            (18.4) 

here mk /2
0   is own frequency of the system. 
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Fig. 18.2. Linear model of shock protection system 

 
Movement of this system after instant impulse 0S  in a moment   is determined by equation  

)(sin)()(cos)( 0
0

0 

  txtxx


  . 

For initial condition 0)( x  and 
m
Sx 0)(   this equation will be as )(sin 0

0

0 


 t
m

Sx  . 

If to consider an action to the system as a row of impulses  dmw )( , it is possible to obtain an 
integral  

 
t

dtwx
0

0
0

)(sin)(1



                                           (18.5a) 

for  t0  or  

 



 0

0
0

)(sin)(1 dtwx                                            (18.5b) 

for  t  (in this case shock is already finished and the system has free oscillation). 
From (18.4) an absolute acceleration of protected object is  

)()( 2
0 txta                                                                                 (18.6) 

Let transform (18.5) and  (18.6) to: 

))(sin()(1)( 0
0

tttQtx  


 ,                                                 (18.7) 

))(sin()()( 00 tttQta     ,                                                 (18.8) 

here  )()()( 22 tBtAtQ    , 
)(
)()(

tA
tBarctgt   ,  


t

dwtA
0

0cos)()(    , 
t

dwtB
0

0sin)()(  . 

For  t   
)()( AtA  , )()( BtB  , )()( QtQ  , )()(  t . 

In accordance to (18.7) and (18.8) it is possible to consider processes )(tx  and )(ta  as 

oscillation with frequency 0  modulated by amplitude. Functions )(1

0

tQ


 and )(0 tQ  are 

envelope lines. Maximal values of acceleration and displacement cannot exceed it.  
Dependencies of acceleration of basis and protected object on time are presented on Fig. 

18.3. Let at time 0t  displacement of the object is maximal. If 0t , the shock is “short”, in 
other case it is “long”.  
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Fig. 18.3. Dependencies of acceleration of basis and protected object on time 

 
For the simplest case of “short” shock with constant acceleration 0w  (rectangular shock 

impulse) displacement is: 

)
2

(sin
2

sin2
0

0
2
0

0 



 twx  .                                        (18.9)  

Maximal displacement of object in this case is 

2
sin2 0

2
0

0
max



wx  ,                                                           (18.10) 

maximal acceleration of protected object is 

2
sin2 0

0max
wa    .                                                           (18.11) 

It is seen from these equations that efficiency of shock protection depends on value of 

dimensionless parameter  0 (or 
T
 , here Т is period of own oscillations of the system). A 

shock transfer ratio is 

2
sin2 0

0

max 
 

w
a .                                                         (18.12) 

Shock protection ( 1 ) is provided for 
30
  .                                                               

For other shock impulse shape: 
- half-sine shape: 

2
sin

1
2 0

22
0

2
0

0max









 wa     for  0t  ;               (18.13a) 

)sin(sin
1

00
0

0

22
0

2
0

max ttwa 












   for  0t  

                                                                                                     (18.13b) 
Triangle shape:   

4

4
sin

2
0

02

0max 



wa    при  0t  ;                                (18.14a) 
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)
)

2
(sin2sin1(2
0

00

00

000
0max 











t

t
ttwa   

for 
 02

t ;                                                                         (18.14b) 

)ln(2
0

000
0max 




ttwa   при  
2

0 0


 t  .            (18.14c) 

 
Reducing of parameter  0  is necessary for shock protection in these cases too. For 

example it is possible to obtain from (18.13a) that for protection against short half-sine shock it 
is necessary  

73.1
71

2
0 




 . 

Maximal possible value of shock transfer ratio 2max   for linear system and rectangular 
shape of shock it is possible to obtain from (18.11). Because rectangular shape has maximal 
value of impulse S, for all other shapes the maximal value of shock transfer ratio   is less. For 
example, for saw-tooth shape 25.1 , for half-sine shape 78.1 . 

An energy dissipation reduces the value of maxa . If to take damping into account, shock 
transfer ratio is about 

)
8

1(     ,                                                                       (18.15) 

here    is energy dissipation coefficient. 
“Shock specter” is dependency of shock transfer ratio on ratio of shock duration to the period 

of own oscillation of the system (or, it is the same, a product of shock duration on own frequency 
of the system).  

The shock specter of linear damped system under half-sine shock is presented on Fig. 18.4. It 
is obtained from equations (18.13) and (18.15). 

 
Fig. 18.4. Shock specter of linear damped system under half-sine shock 

 
Load characteristics P(x) (here P is force, x is displacement) of vibration insulators used in 

shock protection systems are non-linear very frequently. For “stiff” non-linear characteristic the 
force increases more than for linear one, for “soft” characteristic the force increases less than for 
linear one (Fig. 18.5).  
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Fig. 18.5. “Soft” (1) and “stiff” (2) non-linear characteristics of vibration insulator  

 
If to assume that shock time is little and to neglect the damping, it is possible to obtain a 

velocity of protected object after the shock: 




0

)( dttwV  .                                                                         (18.16) 

Kinetic energy of the system is 

2

2mVK   .                                                                              (18.17) 

This energy is equal to potential energy of vibration insulator deformation 
max

0

)(
x

dxxPE . 

If max1x  and max2x  are maximal deformation of vibration insulator with “soft” and “stiff”  

characteristic respectively, and max1P  and max2P  are maximal force in vibration insulator (Fig. 

18.5), areas 1E  and 2E should be equal to K.  
Thus it is possible to obtain a calculation method for non-linear system under shock load. 

Energy of shock is calculated by equations (18.16) and (18.17). After it an area under load 
characteristic of vibration insulator is integrated with increasing of x. This integral is value of 
potential energy. Equality of this integral to K  means that values of maxx and respectively maxP  

are obtained. Maximal acceleration of protected object is 
m

Pa max
max   . 

It is possible that characteristic of vibration insulator is non-symmetric (Fig. 18.6) (such as 
for vibration insulators DK, DKU, AK, AMG types, Fig. 4.8, 4.9). In this case it is necessary to 
integrate both of part of pressing and part of tension of vibration insulator. Perhaps maximal 
values maxx and maxP will be reached separately for deformation of vibration insulator in 
different directions.  
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Fig. 18.6. Non-symmetric characteristic of vibration insulator  

 
Vibration insulators usually are used for protection of object against both of shock and 

vibration. Because displacement during vibration is much less than during shock, it is possible to 
make a stiffness of system for a range of little displacement   as optimal for protection 
against vibration (let it value is vk ), and for a range of large deformation the characteristic is 
optimal for protection against shock (Fig. 18.7). Usually it is bilinear characteristic. 

 
Fig. 18.7. Bilinear characteristic for protection against vibration and shock 

 
It is possible to obtain an equation for this bilinear system for rectangular impulse from 

condition of equality of shock energy K and area under load characteristic of bilinear system. 
Maximal acceleration of protected object is  





 2
0

max

22
0

2

max 


x
Va  . 

After every calculation of shock protection system it is necessary to estimate a period of own 

oscillation of system 
max

max2
P

mxT  . For linear system a time of achievement of maximal 

displacement and acceleration values is 
40
Tt  . If 

4
T , the shock is “long” and it is necessary 

to use other calculation method. 
If the shock is long, it is not correctly to consider it as an instant impulse. A basis of other 

calculation method is replacing of shock acceleration )(tw  by rectangular impulse with the same 
area, the same duration   and intensity sw .  






 0

)( dttw
ws  
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This quasi-constant acceleration provides force )( ss xPmw  and quasi-static displacement  

sx . Value of sx is obtained by value of )( sxP  from load characteristic of vibration insulator. 

The system has free vibration relatively of new equilibrium center ( sx ; smw ) (Fig. 18.8, a, b). 
It is possible to remove a coordinate system in this point and to obtain energy of this oscillation 
to the left side:  

 
Sx

s dxxPmwE
0

))((  

If to neglect energy dissipation, energy of oscillation in the right side should be the same: 

 
max

))((
x

x
s

S

dxmwxPE  

Thus it is necessary to integrate the right area under load characteristic in new coordinates till 
both of energies will be equal. In this case values of maxx and maxP are obtained. 

 
a                                                                           b 

Fig. 18.8. Acton of “long” shock on non-linear system:  
a – for coordinates (t; P), b – for coordinates (x; P) 
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19. CALCULATION OF ENGINE CASE IMPENETRABILITY  

 

During destruction of rotor results of secondary destruction can be more danger for aircraft 

than primary destruction. It is necessary special protective layer for protection of aircraft. 

Thickness of this protective layer is determined by equality of kinetic energy of fragments of 

rotor destruction and energy for destruction of protective layer.  

                           Wк = Ln .                    (19.1). 

Kinetic energy of fragment of rotor destruction is: 

Wк = 
2

22
mR ,  (19.2) 

here m is mass of fragment;   is angular velocity of rotor; R is radius of mass center. 

It is possible to calculate the energy for destruction of protective layer by equation:  

L = l h2 ср ( 2
1 к + n ),   (19.3) 

here l is perimeter of fragment of rotor destruction; 

h is thickness of protective layer; 

ср =  0.65 b is dynamic limit of strength for shear; 

 is coefficient of increasing of strength of material during shock (for usual angular velocity 

of rotor  = 1.3); 

b is limit of strength of material of protective layer; 

к  2.5 is empirically obtained coefficient which takes into account an energy for bending of 

the protective layer; 

n = 2/3 is empirically obtained coefficient which takes into account an energy for shear 

destruction of the protective layer; 

From (19.2) and (19.3) it is seen that thickness of the protective layer is: 

.
)

2
1( nkl

Wh
cp

k





 

It is obtained from experiment that fragments of rotor destruction can fly with angle 150 

from plane which is perpendicular to an axis of rotation. Therefore a wideness of protective layer 

is S = 2ltg150, here l is distance from mass center of fragment of rotor destruction to the 

protective layer. 

For blade with anti-vibration shelf a rupture of part above of shelf is the most probable. 

Therefore it is possible to calculate a thickness of protective layer only for catching of this part 

above of shelf.  
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An example for calculation of protective layer made of titanium alloy VT-20 against rupture 

of blade part above shelf is presented in Table 19.1. 

 Table 19.1. 

Fan stage 1 2 3 

Maximal possible speed of rotor, rpm  5430 5430 5430 

Maximal possible angular velocity of rotor =(n/30), s-1 568,6 568,6 568,6 

Mass of blade part above of shelf, m, kg 0,411 0,153 0,118 

Radius of mass center of blade part above of shelf R, m 0,643 0,617 0,589 

Kinetic energy of blade part above of shelf Wк, Joule  77459 35860 23076 

Centrifugal force of blade part above of shelf, N 85112 30411 22406 

Centrifugal force of total blade, N  318442 139312 92940 

Thickness of protective layer to catch blade part above of shelf, 

h, mm 

8,9 4,8 4.8 
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20. BASEMENT OF VIBRATION-BASED DIAGNOSTICS 
 

 
 Vibration-based diagnostics allows knowing a condition of engine by its vibration. Its 

advantages are to find a defect in time (before it will lead to engine breakage), to know an engine 

condition directly during its work but not during engine disassembling at factory. It allows 

turning from engine exploitation by life-time to engine exploitation by technical condition.  

Engine exploitation by life-time requires that after life-time an engine should be sent to a factory, 

disassembled, inspected. From one side in many case it is useless work because the engine still 

workable. From another side to use the engine after its life-time is danger. During engine 

exploitation by technical condition the condition of this present real engine on this aircraft is 

known, is it possible to exploit it safely or it needs repair. 

It is possible to make harmonic analysis of vibration signal from engine (frequency 

analysis 





1

0 )cos(
m

mm mAA  ) and to obtain an engine vibration spectrum (Fig. 20.1). 

 
Fig. 20.1. Engine vibration spectrum 

 

This spectrum should be compare with reference spectrum of workable engine. Some 

defects (perhaps, fracture development) can lead to reducing of vibration. Therefore if vibration 

reduces soon, it is danger too. In the beginning of vibration-based diagnostics development, a 

sum of middle-square of vibration amplitudes was chosen as a criterion. If this value changed on 

20% during one flight or on 40% during three flights (in any direction, increasing or decreasing), 

the engine should be taken out of work.  

Contemporary computer equipment and software allow comparison of engine vibration 

spectrums directly and to determine which deviation from the reference spectrum of workable 

engine is possible, which one is danger. Data base has vibration spectrums of engines which 
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defects are known, thus by vibration spectrum of presented engine is possible to determine, 

which defect develops in this engine. 

The vibration-based diagnostics can find defects in the main modulus of engine: turbine, 

compressor, transmission, and afterburner. 

The system of engine exploitation by technical condition includes not only vibration-

based diagnostics, but system of control of oil temperature, system of control of metal shavings 

in the oil, system of control of bearing temperature, system of control of pressure and 

temperature in different sections of gas path (it should control not only a value of pressure and 

temperature but its circular uniformity), system of visual inspection of inner parts of engine (first 

of all it is blades, disks and combustion chamber) by flexible optic tools, etc. It makes structure 

of engine more complex, however economic efficiency of engine exploitation by technical 

condition much more than engine exploitation by life-time. 
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CONCLUSIONS 

After the studying of Strength Calculation of Aircraft Engine student should know: 

- contemporary methods of analysis of structure static and dynamic strength;  

- models of strength reliability and destruction;  

- influence of creep on structure stress;  

- basics of mathematical models development for stress condition of plates and twisted rods 

(disks and blades of gas turbine engine);  

- formation of stress condition, its general properties and  basics of static stress calculation of 

blades and disks;  

- basics of mathematical models development for calculation of vibration of plates and twisted 

rods (disks and blades of gas turbine engine);  

- basics of theory of vibration of the simplest rotor, critical speeds and influence of different 

factors on it;  

- methods of protection of rotor against danger bending vibration;  

- classification of modes of blades and disks vibration; formation of own frequencies spectrum 

for vibration of blade wheel of gas turbine engine;  

- methods of calculation of resonance frequencies, methods of protection of blades and disks 

against danger vibration; 

- methods for protection of engine equipment against shock and vibration, methods for 

calculation of vibration and shock protection systems. 
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