МИНОБРНАУКИ РОССИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Использование спутниковых радионавигационных систем ГЛОНАСС и GPS для решения задач позиционирования и определения скорости космических аппаратов

Электронные методические указания

УДК 629.78 ББК 39.67

Составитель: Крамлих Андрей Васильевич

Компьютерная верстка А. В. Крамлих Доверстка А. В. Крамлих

Использование спутниковых радионавигационных систем ГЛОНАСС и GPS для решения задач позиционирования и определения скорости космических аппаратов [Электронный ресурс] : электрон. метод. указания / Минобрнауки России, Самар. гос. аэрокосм. ун-т им. С. П. Королева (нац. исслед. ун-т); составитель А. В. Крамлих. - Электрон. текстовые и граф. дан. (0,4 Мбайт). - Самара, 2011. - 1 эл. опт. диск (CD-ROM).

Приводится описание математических моделей движения, а также алгоритмы прогнозирования координат и скоростей нави-гационных спутников спутниковых радионавигационных систем ГЛОНАСС и GPS. Приведены алгоритмы определения ме-стоположения и скорости космического аппарата при помощи кодовых псевдодальностей, доплеровских псевдоскоростей

Методические указания предназначены для студентов, магистрантов изучающих вопросы практического использования спутниковых радионавигационных систем ГЛОНАСС и GPS.

Выполнено на межвузовской кафедре космических исследований, факультет летательных аппаратов; предназначено для студентов, обучающихся на специальности 210400 «Радиотехника» и 210601.65 «Радиоэлектронные системы и комплексы».

Содержание

Лабораторная	работа	№ 1	Прогно	зирование	эфемерид	И	скоро	эсти
навигационных спутников GPS								
Лабораторная	работа	№ 2	Прогнози	ирование	эфемерид	И	скоро	эсти
навигационных спутников ГЛОНАСС								
Лабораторная работа №3 Преобразование координат								12
Лабораторная р		-	-	-				
помощи разностно-дальномерного метода								23
Лабораторная 1								
помощи разностно-дальномерного метода								25
Лабораторная								
помощи доплер	овских пс	евдосі	коростей.					28

Лабораторная работа №1

Прогнозирование эфемерид и скорости навигационных спутников GPS

Цель лабораторной работы: исследование орбитального движения спутников GPS по данным альманаха.

1. Прогнозирование эфемерид навигационных спутников GPS.

Для расчета координат навигационных спутников GPS по данным оперативной информации, передаваемой со спутников, интерфейсный контрольный документ по GPS предлагает следующий алгоритм расчета.

Координаты спутников в геоцентрической фиксированной системе координат (ECEF) рассчитываются по формулам:

$$\begin{cases} x_k = x_k' \cdot \cos \Omega_k - y_k' \cdot \cos i_k \cdot \sin \Omega_k \\ y_k = x_k' \cdot \sin \Omega_k + y_k' \cdot \cos i_k \cdot \cos \Omega_k \\ z_k = y_k' \cdot \sin i_k \end{cases}$$
 (1)

Скорректированная долгота восходящего узла (Ω_k) определяется из соотношения

$$\Omega_k = \Omega_0 + (\Omega - \Omega_e) \cdot t_k - \Omega_e \cdot t_{oe} \,. \tag{2}$$

Координаты навигационного спутника в орбитальной плоскости:

$$\begin{cases} x'_k = r_k \cdot \cos u_k \\ y'_k = r_k \cdot \sin u_k \end{cases}$$
 (3)

Скорректированное наклонение орбиты спутника:

$$i_k = i_0 + \delta i_k + (IDOT) \cdot i_k. \tag{4}$$

Скорректированный радиус орбиты спутника:

$$r_k = A \cdot (1 - e \cdot \cos E_k) + \delta r_k. \tag{5}$$

Скорректированный аргумент широты:

$$u_k = \Phi_k + \delta u_k. \tag{6}$$

Поправка для коррекции аргумента широты:

$$\delta u_k = C_{us} \sin 2\Phi_k + C_{uc} \cos 2\Phi_k. \tag{7}$$

Поправка для коррекции радиуса:

$$\delta r_k = C_{rs} \sin 2\Phi_k + C_{rc} \cos 2\Phi_k \,. \tag{8}$$

Поправка для коррекции наклонения орбиты:

$$\delta i_k = C_{is} \sin 2\Phi_k + C_{ic} \cos 2\Phi_k \,. \tag{9}$$

Аргумент широты:

$$\Phi_k = \nu_k + \omega \,. \tag{10}$$

Эксцентрическая аномалия:

$$E_k = \arccos \frac{e + \cos v_k}{1 + e \cdot \cos v_k} \,. \tag{11}$$

Истинная аномалия:

$$\begin{cases} v_k = arctg\left(\frac{\sin v_k}{\cos v_k}\right) = arctg\left\{\frac{\left(\sqrt{1 - e^2} \cdot \sin E_k\right) / (1 - e \cdot \cos E_k)}{(\cos E_k - e) / (1 - e \cdot \cos E_k)}\right\} \\ \sin v_k = \left(\sqrt{1 - e^2} \cdot \sin E_k\right) / (1 - e \cdot \cos E_k) \\ \cos v_k = (\cos E_k - e) / (1 - e \cdot \cos E_k) \end{cases}$$

$$(12)$$

Уравнение Кеплера для эксцентрической аномалии, решаемое методом итераций:

$$M_k = E_k - e \cdot \sin E_k. \tag{13}$$

Средняя аномалия:

$$M_k = M_0 + n \cdot t_k. \tag{14}$$

Скорректированное среднее движение:

$$n = n_0 + \Delta n \,. \tag{15}$$

Время, отсчитываемое от опорной эпохи эфемерид:

$$t_k = t - t_{oc} \,, \tag{16}$$

где: t — системное время GPS на момент передачи сообщения (время скорректированное на величину задержки прохождения сигнала от спутника до потребителя, равную отношению дальности к скорости света); t_{κ} — текущий момент

времени. Этот параметр должен соответствовать истинной разности между системным временем GPS (t) и опорным временем задания эфемерид (t_{oe}) и учитывать момент перехода «начало/конец» недели. Учет момента перехода «начало/конец» недели производится так: если t_{κ} больше «302400» секунд, то из t_{κ} вычитается «604800» секунд; если меньше «-302400» секунд то к t_{κ} прибавляется «604800» («604800» – количество секунд в одной неделе).

Расчетное среднее движение:

$$n_0 = \sqrt{\frac{\mu}{A^3}} \,, \tag{17}$$

где $A = (\sqrt{A})^2$ — большая полуось эллиптической орбиты навигационного спутника.

В выражениях (1) — (17) параметры: C_{rs} , Δn , M_0 , C_{uc} , e, C_{us} , \sqrt{A} , t_{oe} передаются с навигационного спутника в подкадре 2; параметры: C_{ic} , Ω_0 , C_{is} , i_0 , C_{rc} , ω , $\dot{\Omega}$ (ОМЕСАДОТ), IDOT передаются с навигационного спутника в подкадре 3 (их содержание описано в разделе 5); параметры: μ = 3,986005 · 10¹⁴ метр³/сек² и Ω = 7,2921151467 · 10⁻⁵ радиан/сек есть элементы WGS-84.

2. Прогнозирование скорости навигационных спутников GPS.

Последовательность вычисления скорости навигационных спутников следующая.

Определяются значения некоторых параметров движения спутников: производной \dot{v}_k истинной аномалии v_k , производных $\delta \dot{u}_k$, $\delta \dot{r}_k$, $\delta \dot{r}_k$, параметров коррекции аргумента широты δu_k , радиуса δr_k и угла наклона орбиты δi_k :

$$\dot{v}_{k} = \frac{\left(\frac{\sqrt{\mu}}{a^{3/2}} + \Delta n\right)\sqrt{1 - e^{2}}}{\left(1 - e\cos E_{k}\right)^{2}},$$

$$\delta \dot{u}_{k} = 2\left(C_{us}\cos 2\Phi_{k} - C_{uc}\sin 2\Phi_{k}\right)\dot{v}_{k},$$

$$\delta \dot{r}_{k} = 2\left(C_{rs}\cos 2\Phi_{k} - C_{rc}\sin 2\Phi_{k}\right)\dot{v}_{k},$$

$$\delta \dot{i}_{k} = 2\left(C_{is}\cos 2\Phi_{k} - C_{ic}\sin 2\Phi_{k}\right)\dot{v}_{k}.$$

$$(18)$$

Определяются модули радиальной V_r и трансверсальной V_u составляющих скорости спутника:

$$v_r = a \left(\sqrt{\frac{\mu}{a^{3/2}}} + \Delta n \right) \frac{e \sin E_k}{1 - e \cos E_k} + \delta \ddot{r}_k,$$

$$v_u = r_k (\dot{v}_k + \delta \dot{u}_k).$$
(19)

Определяются компоненты вектора угловой скорости движения спутника в орбитальной системе координат:

$$v'_{1} = v_{r} \cos u_{k} - v_{u} \sin u_{k}, v'_{2} = v_{r} \sin u_{k} + v_{k} \cos u_{k}, v'_{3} = r_{k} \sin v_{k} (\dot{i} + \delta \dot{i}_{k}).$$
 (20)

Определяются компоненты вектора абсолютной скорости навигационного спутника в гринвичской систем координат:

$$v_{1} = v'_{1} \cos \Omega_{k} - v'_{2} \cos i_{k} \sin \Omega_{k} + v'_{3} \sin i_{k} \sin \Omega_{k},$$

$$v_{2} = v'_{1} \sin \Omega_{k} + v'_{2} \cos i_{k} \cos \Omega_{k} - v'_{3} \sin i_{k} \cos \Omega_{k},$$

$$v_{3} = v'_{2} \sin i_{k} + v'_{3} \cos i_{k}.$$
(21)

Определяются компоненты вектора относительной скорости навигационного спутника в гринвичской систем координат:

$$V_{x} = \mathbf{v}_{1} + \left(u - \dot{\Omega}\right)y,$$

$$V_{x} = \mathbf{v}_{2} + \left(u - \dot{\Omega}\right)x,$$

$$V_{y} = \mathbf{v}_{3}.$$
(22)

Последовательность выполнения работы:

- 1. Загрузить исходные данные (Эфемериды по данным альманаха GPS) с сайта http://www.glonass-ianc.rsa.ru/GPS/ephemeris.php.
- 2. Сформировать текстовый файл с исходными данными.
- 3. Расчет координат проводить по формулам (1)-(17) по обратном порядке.
- 4. Вычислить скорости по формулам (18)-(22).
- 5. Интервал прогнозирования 5 минут, с шагом 1 сек.
- 6. Результаты прогнозирования сохранить в числовом и графическом видах.

- 1. Основные расчетные формулы.
- 2. Исходные данные.
- 3. Результаты прогнозирования в графическом виде.
- 4. Выводы.

Лабораторная работа №2 Прогнозирование эфемерид и скорости навигационных спутников ГЛОНАСС

Цель лабораторной работы: исследование орбитального движения спутников ГЛОНАСС по данным альманаха.

Пересчет эфемерид навигационных спутников (HC) спутниковой радионавигационной системы (СРНС) ГЛОНАСС с момента времени задания эфемерид t_3 на моменты измерения навигационных параметров t_i , когда ($|\tau_i| = |t_i - t_3| \le 15$ мин), проводится методом численного интегрирования дифференциальных уравнений движений HC.

Уравнения движения интегрируются в прямоугольной абсолютной геоцентрической системе координат $OX_aY_aZ_a$ и имеют вид:

$$\begin{cases}
\frac{dx_a}{dt} = Vx_a, \\
\frac{dy_a}{dt} = Vy_a, \\
\frac{da_a}{dt} = Vz_a,
\end{cases}$$

$$\begin{cases}
\frac{dVx_a}{dt} = -\mu \times X_a - \frac{3}{2} \times J_2^0 \times X_a \times \rho^2 \times (1 - 5 \times Z_a^2) + Jx_a \pi + Jx_a c, \\
\frac{dVy_a}{dt} = -\mu \times X_a - \frac{3}{2} \times J_2^0 \times Y_a \times \rho^2 \times (1 - 5 \times Z_a^2) + Jy_a \pi + Jy_a c, \\
\frac{dVz_a}{dt} = -\mu \times Z_a - \frac{3}{2} \times J_2^0 \times Z_a \times \rho^2 \times (1 - 5 \times Z_a^2) + Jy_a \pi + Jy_a c,
\end{cases}$$

$$\begin{cases}
\frac{dVz_a}{dt} = -\mu \times Z_a - \frac{3}{2} \times J_2^0 \times Z_a \times \rho^2 \times (1 - 5 \times Z_a^2) + Jy_a \pi + Jy_a c,
\end{cases}$$

где: $\mu = \mu/r^2$, $X_a = x_a/r$, $Y_a = y_a/r$, $Z_a = z_a/r$, $\rho = a_c/r$, $r = \sqrt{X_a^2 + Y_a^2 + Z_a^2}$; Jx_ac , Jy_ac , Jz_ac — ускорения от солнечных гравитационных возмущений; Jx_an , Jy_an , Jz_an — ускорения от лунных гравитационных возмущений; Jx_an , Jy_an , Jz_an — ускорения от лунных гравитационных возмущений; Jx_an , Jx_an

Ускорения от лунных и солнечных гравитационных возмущений вычисляются по формулам:

$$\begin{cases}
Jx_{a}k = \overline{\mu}_{k} \left[\left(\xi_{k} - \overline{X}_{ak} \right) / \Delta_{k}^{3} - \xi_{k} \right] \\
Jy_{a}k = \overline{\mu}_{k} \left[\left(\eta_{k} - \overline{Y}_{ak} \right) / \Delta_{k}^{3} - \eta_{k} \right] \\
Jz_{a}k = \overline{\mu}_{k} \left[\left(\zeta_{k} - \overline{Z}_{ak} \right) / \Delta_{k}^{3} - \zeta_{k} \right]
\end{cases} \tag{2}$$

где:

 $\overline{\mu}_k = \mu_k / r_k^2$, $\overline{X}_{ak} = x_a / r_k$, $\overline{Y}_{ak} = y_a / r_k$, $\overline{Z}_{ak} = z_a / r_k$, $\Delta_k^2 = (\xi_k - \overline{X}_{ak})^2 + (\eta_k - \overline{Y}_{ak})^2 + (\zeta_k - \overline{Z}_{ak})^2$ к — индекс возмущающего тела, к=л для Луны и к=с для Солнца; ξ_k , η_k , ζ_k , r_k — направляющие косинусы и радиус-вектор возмущающих тел в системе $OX_aY_aZ_a$ на момент t_2 ;

 $\mu_{\scriptscriptstyle A} = 4902,835~{\rm km}^3/{\rm c}^2$ — константа гравитационного поля Луны; $\mu_c = 0,1325263 \times 10^{12}~{\rm km}^3/{\rm c}^2$ — константа гравитационного поля Солнца.

Входящие в (2) направляющие косинусы ξ_k , η_k , ζ_k и радиус-вектор r_k вычисляются один раз на момент времени t_3 и на весь интервал размножения (± 15 мин) по выражениям:

$$\begin{cases} \xi_{\pi} = \sin(\upsilon_{\pi} + \Gamma')\xi_{11} + \cos(\upsilon_{\pi} + \Gamma')\xi_{12} - \kappa cu \ \Pi y н ы \\ \eta_{\pi} = \sin(\upsilon_{\pi} + \Gamma')\mu_{11} + \cos(\upsilon_{\pi} + \Gamma')\eta_{12} - \Im m a \ \Pi y н ы \end{cases} \\ \zeta_{\pi} = \sin(\upsilon_{\pi} + \Gamma')\zeta_{11} + \cos(\upsilon_{\pi} + \Gamma')\zeta_{12} - \partial \Im m a \ \Pi y h ы \end{cases} \\ \xi_{c} = \cos\upsilon_{c} \cdot \cos\omega_{c} - \sin\upsilon_{c} \cdot \sin\omega_{c} - \kappa cu \ \Pi y h ы \end{cases} \\ \eta_{c} = (\sin\upsilon_{c} \cdot \cos\omega_{c} + \cos\upsilon_{c} \cdot \sin\omega_{c})\cos\varepsilon - \Im m a \ \Pi y h ы \end{cases} \\ \zeta_{\pi} = (\sin\upsilon_{c} \cdot \cos\omega_{c} + \cos\upsilon_{c} \cdot \sin\omega_{c})\sin\varepsilon - \partial \Im m a \ \Pi y h ы \end{cases} \\ \zeta_{\pi} = a_{k} (1 - e_{k} \cos E_{k}), \quad (\kappa = \pi, c) \end{cases}$$

в которых $E_k = g_k + e_k \cdot \sin E_k$ и определяется при решении трансцендентного уравнения;

```
\sin \upsilon_{k} = \sqrt{1 - e_{k}^{2}} \cdot \sin E_{k} \cdot (1 - e_{k} \cos E_{k})^{-1},

\cos \upsilon_{k} = (\cos E_{k} - e_{k}) \cdot (1 - e_{k} \cos E_{k})^{-1},

\xi_{11} = \sin \Omega_{n} \cos \Omega_{n} (1 - \cos i_{n}),

\xi_{12} = 1 - \sin^{2} \Omega_{n} (1 - \cos i_{n}),

\eta_{11} = \xi^{*} \cos \varepsilon - \zeta^{*} \sin \varepsilon,

\eta_{12} = \xi_{11} \cos \varepsilon + \eta^{*} \sin \varepsilon,

\zeta_{11} = \xi^{*} \sin \varepsilon + \zeta^{*} \cos \varepsilon,

\zeta_{12} = \xi_{11} \sin \varepsilon - \eta^{*} \cos \varepsilon,

\xi^{*} = 1 - \cos^{2} \Omega_{n} (1 - \cos i_{n}),

\eta^{*} = \sin \Omega \sin i_{n},

\zeta^{*} = \cos \Omega \sin i_{n},

g_{k} = g_{ok} + g_{1k} \cdot T,

\Omega_{n} = \Omega_{0n} + \Omega_{1n} \cdot T,

\Gamma' = \Gamma'_{0} + \Gamma'_{1} \cdot T,

T = (27392,375 + \Sigma_{DH} + t_{3} / 86400) / 36525

(4)
```

где: $a_x = 3,84385243 \cdot 10^5$ км — большая полуось орбиты Луны; $a_c = 1,49598 \cdot 10^8$ км — большая полуось «орбиты» Солнца; $e_x = 0,054900489$ км — эксцентриситет лунной орбиты; $e_c = 0,016719$ км — эксцентриситет солнечной орбиты; $i_x = 5^\circ 08'43'',4$ — наклонение орбиты Луны к плоскости эклиптики; $\varepsilon = 23^\circ 26'33''$ — средний наклон эклиптики к экватору; $g_{ax} = -63^\circ 53'43'',414$; $g_{1x} = 477198^\circ 50'56'',79$; $\Omega_{ax} = 259^\circ 10'59'',79$; $\Omega_{1x} = -1934^\circ 08'31'',23$; $\Gamma_0' = -334^\circ 19'46'',40$; $\Gamma_1' = -4069^\circ 02'02'',52$; $\omega_c = 281^\circ 13'15'',00 + 6189,037$; $g_{oc} = 358^\circ 28'33'',04$; $g_{1c} = 129596579'',10$; $g_{oc} = 358^\circ 28'33'',04$; $g_{1c} = 129596579'',10$; $g_{oc} = 358^\circ 28'33'',04$; $g_{1c} = 129596579'',10$; $g_{oc} = 358^\circ 28'33'',04$; $g_{1c} = 129596579'',10$; $g_{oc} = 36525$ эфемеридных суток; $g_{oc} = 366^\circ 28',030'',03$

Начальными условиями для интегрирования системы (1) являются гринвичские координаты $x(t_9), y(t_9), z(t_9)$ и составляющие вектора скорости $V_x(t_9), V_y(t_9), V_z(t_9)$, содержащиеся в навигационном кадре, которые пересчитываются из гринвичской системы координат ОХҮZ (ПЗ-90) в абсолютную $OX_aY_aZ_a$ по формулам:

$$\begin{cases} X_{a}(t_{3}) = x(t_{3}) \cdot \cos S - y(t_{3}) \cdot \sin S \\ Y_{a}(t_{3}) = x(t_{3}) \cdot \sin S + y(t_{3}) \cdot \cos S \\ Z_{a}(t_{3}) = z(t_{3}) \end{cases}$$

$$\begin{cases} Vx_{a}(t_{3}) = z(t_{3}) \\ Vx_{a}(t_{3}) = Vx(t_{3}) \cdot \cos S - Vy(t_{3}) \cdot \sin S - \omega_{3} Y_{a}(t_{3}) \\ Vy_{a}(t_{3}) = Vx(t_{3}) \cdot \sin S + Vy(t_{3}) \cdot \cos S + \omega_{3} Y_{a}(t_{3}) \\ Vz_{a}(t_{3}) = Vz(t_{3}) \end{cases}$$

$$(5)$$

где $S = S_0 + \omega_3 (t - 3^h)$ — звездное время; ω 3- угловая скорость вращения Земли, равная $0,7292115\cdot 10^{-4}$ с⁻¹; S0- истинное звездное время в гринвичскую полночь даты задания эфемерид t9.

Последовательность выполнения работы:

- 1. Загрузить исходные данные (Эфемериды по данным альманаха КНС ГЛОНАСС) с сайта http://www.glonass-ianc.rsa.ru/GLONASS/ephemeris.php.
- 2. Сформировать текстовый файл с данными.
- 3. Рассчитать начальные условия по формуле (5).
- 4. Проинтегрировать уравнения движения (1) с учетом (2)-(4).
- 5. Интервал прогнозирования 5 минут, с шагом 1 сек.
- 6. Результаты прогнозирования сохранить в числовом и графическом видах.

- 5. Основные расчетные формулы.
- 6. Исходные данные.
- 7. Результаты прогнозирования в графическом виде.
- 8. Выводы.

Лабораторная работа №3 Преобразование координат

Цель лабораторной работы: Изучение и практическое освоение систем координат, применяемых в спутниковых радионавигационных системах.

Рассмотрим методы преобразований координат и их приращений из одной системы в другую, а также порядок использования численных значений элементов преобразования систем координат для задач навигации с использованием навигационной аппаратуры потребителей радионавигационных систем ГЛОНАСС иGPS.

1 Системы координат

1.1 Система геодезических параметров «Параметры Земли»

Система ПЗ включает в себя: фундаментальные геодезические постоянные, параметры ОЗЭ, систему координат ПЗ, закрепляемую координатами пунктов космической геодезической сети, характеристики модели ГПЗ и элементы трансформирования между системой координат ПЗ и национальными референцными системами России, приведенные в приложении <u>А</u>.

Теоретическое определение системы координат ПЗ основывается на следующих положениях:

- а) начало системы координат расположено в центре масс Земли;
- б) ось Z направлена в Международное условное начало;
- в) ось X лежит в плоскости начального астрономического меридиана, установленного Международным бюро времени;
 - Γ) ось Y дополняет систему до правой.

Положения точек в системе ПЗ могут быть получены в виде пространственных прямоугольных или геодезических координат.

Геодезические координаты относятся к ОЗЭ, размеры которого определяются значениями большой полуоси $a_{\Pi 3} = 6378136$ м и сжатия $\alpha_{\Pi 3} = 1/298,25784$.

Центр ОЗЭ совпадает с началом системы координат ПЗ, ось вращения эллипсоида - с осью Z, а плоскость начального меридиана - с плоскостью XOZ.

1.2 Система геодезических параметров «Мировая Геодезическая Система»

Система параметров МГС включает в себя: фундаментальные геодезические постоянные, систему координат МГС, закрепляемую координатами пунктов космической геодезической сети, параметры ОЗЭ, характеристики модели ГПЗ, элементы трансформирования между геоцентрической системой координат МГС и различными национальными системами координат.

Численные значения элементов трансформирования между системой координат ПЗ и системой координат МГС, а также порядок использования элементов трансформирования приведены в приложении $\underline{\mathbf{b}}$.

Теоретическое определение системы координат МГС основывается на положениях, аналогичных определению системы координат Π 3, приведенных в 3.1.

Положения точек в системе МГС могут быть получены в виде пространственных прямоугольных или геодезических координат.

Геодезические координаты относятся к ОЗЭ, размеры которого определяются значениями большой полуоси $a_{\text{MГC}} = 6378137$ м и сжатия $\alpha_{\text{МГС}} = 1/298,257223563$.

Центр эллипсоида совпадает с началом системы координат МГС, ось вращения эллипсоида совпадает с осью Z, а плоскость начального меридиана - с плоскостью XOZ.

1.3 Координатная основа Российской Федерации

Координатная основа Российской Федерации представлена референцной системой координат, реализованной в виде ГГС, закрепляющей систему координат на территории страны, и государственной нивелирной сети, распространяющей на всю территорию страны систему нормальных высот (Балтийская система), исходным началом которой является нуль Кронштадтского футштока.

Положения определяемых точек относительно координатной основы могут быть получены в виде пространственных прямоугольных или геодезических координат либо в виде плоских прямоугольных координат и высот.

За отсчетную поверхность в референциой системе координат РФ принят эллипсоид Красовского с большой полуосью $a_{\rm Kp} = 6378245$ м и сжатием $\alpha_{\rm Kp} = 1/298,3$.

Центр эллипсоида Красовского совпадает с началом референцной системы координат, ось вращения эллипсоида параллельна оси вращения Земли, а плоскость нулевого меридиана определяет положение начала счета долгот.

2 Методы преобразований координат определяемых точек

2.1 Преобразование прямоугольных пространственных координат в геодезические и обратно

Преобразование прямоугольных пространственных координат в геодезические осуществляют по формулам:

$$X = (N+H)\cos B \cos L$$

$$Y = (N+H)\cos B \sin L$$

$$Z = [(1-e^2)N+H]\sin B$$
(1)

где X, Y, Z - прямоугольные координаты точки;

B, L, H - геодезические координаты точки (соответственно широта и долгота, рад, и высота, м);

N - радиус кривизны первого вертикала, м;

e - эксцентриситет эллипсоида.

Значения радиуса кривизны первого вертикала и квадрата эксцентриситета эллипсоида вычисляют соответственно по формулам:

$$N = \frac{a}{\sqrt{1 - e^2 \sin^2 B}},\tag{2}$$

$$e^2 = 2\alpha - \alpha^2, \tag{3}$$

где a - большая полуось эллипсоида, м;

α - сжатие эллипсоида.

Для преобразования пространственных прямоугольных координат в геодезические необходимо проведение итераций при вычислении геодезической широты и геодезической высоты.

Для этого используют следующий алгоритм:

1) вычисляют вспомогательную величину D по формуле

$$D = \sqrt{X^2 + Y^2}; \tag{4}$$

- 2) анализируют значение D следующим образом:
- а) если D = 0, то

$$B = \frac{\pi}{2} \frac{Z}{|Z|},\tag{5}$$

$$L=0$$
,

$$H = Z\sin B - a\sqrt{1 - e^2\sin^2 B};$$
 (6)

б) если D > 0, то

$$L_{\rm a} = \arcsin\left(\frac{Y}{D}\right);\tag{7}$$

при этом

если
$$Y<0,\,X>0,$$
 то $L=2\pi-L_{\rm a}$ если $Y<0,\,X<0,$ то $L=2\pi+L_{\rm a}$ если $Y>0,\,X<0,$ то $L=\pi$ - $L_{\rm a}$ если $Y>0,\,X>0,$ то $L=L_{\rm a}$

- 3) анализируют значение Z:
- а) если Z = 0, то

$$B = 0; H = D - a;$$
 (9)

- б) во всех других случаях вычисления выполняют следующим образом:
- находят вспомогательные величины r, c, p по формулам:

$$r = \sqrt{X^2 + Y^2 + Z^2},\tag{10}$$

$$c = \arcsin\left(\frac{Z}{r}\right),\tag{11}$$

$$p = \frac{e^2 a}{2r},\tag{12}$$

- реализуют итеративный процесс:

$$s_1 = 0$$
,(13)

$$b = c + s_1, \tag{14}$$

$$s_2 = \arcsin\left(\frac{p\sin(2b)}{\sqrt{1 - e^2\sin^2 b}}\right),\tag{15}$$

$$d = |s_2 - s_1|; \tag{16}$$

если модуль разности d, определяемый по формуле (<u>16</u>), меньше установленного значения, то

$$B = b$$
, (17)

$$H = D\cos B + Z\sin B - a\sqrt{1 - e^2\sin^2 B}.$$
 (18)

Если модуль разности d равен или больше установленного значения, то

$$s_1 = s_2(19)$$

и вычисления повторяют, начиная с формулы (14).

При преобразованиях координат в качестве допуска прекращения итеративного процесса принимают значение 0,0001". В этом случае погрешность вычисления геодезической высоты не превышает 0,003 м.

2.2 Преобразование координат

Пользователям КНС ГЛОНАСС и ГСП необходимо выполнять преобразования координат из ПЗ в систему МГС и обратно, а также из ПЗ и МГС в референциую систему координат Российской Федерации. Указанные преобразования координат выполняют, используя семь элементов трансформирования, точность которых определяет точность преобразований.

Элементы трансформирования между системами координат $\Pi 3$ и МГС приведены в приложении $\underline{\mathbf{b}}$.

Преобразование координат из системы МГС в координаты референцной системы Российской Федерации осуществляют последовательным преобразованием координат сначала в систему ПЗ, а затем - в координаты референцной системы.

Преобразование пространственных прямоугольных координат выполняют по формуле

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{6} = (1+m) \begin{pmatrix} 1 & +\omega_{z} & -\omega_{y} \\ -\omega_{z} & 1 & +\omega_{x} \\ +\omega_{y} & -\omega_{x} & \cdot & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{a} + \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix},$$
(20)

где Δx , Δy , Δz - линейные элементы трансформирования, м;

 $\omega_{\rm x},\,\omega_{\rm y},\,\omega_{\rm z}$ - угловые элементы трансформирования, рад;

m - дифференциальное различие масштабов систем координат;

а, б - системы координат.

Обратное преобразование прямоугольных координат выполняют по формуле

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{a} = (1 - m) \begin{pmatrix} 1 & -\omega_{z} & +\omega_{y} \\ +\omega_{z} & 1 & -\omega_{x} \\ -\omega_{y} & +\omega_{x} & 1 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{6} - \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}. \tag{21}$$

Прямое и обратное перевычисление геодезических координат выполняют по формулам:

$$B_{6} = B_{a} + \Delta B$$

$$L_{6} = L_{a} + \Delta L$$

$$H_{6} = H_{a} + \Delta H$$

$$(22)$$

где B, L, H - геодезические широта и долгота, выраженные в единицах плоского угла, и высота, м;

 ΔB , ΔL , ΔH - поправки к геодезическим координатам точки;

а, б - системы координат.

Поправки к геодезическим координатам определяют по следующим формулам:

$$\Delta B = \frac{\rho}{(M+H)} \left[\frac{N}{a} e^2 \sin B \cos B \Delta a + \left(\frac{N^2}{a^2} + 1 \right) N \sin B \cos B \frac{\Delta e^2}{2} - \left(\Delta x \cos L + \Delta y \sin L \right) \sin B + \Delta z \cos B \right] - \left(\Delta x \cos L + \Delta y \sin L \right) \sin B + \Delta z \cos B \right] - \rho m e^2 \sin B \cos B$$

$$\Delta L = \frac{\rho}{(N+H)\cos B} \left(-\Delta x \sin L + \Delta y \cos L \right) + t g B (1 - e^2) (\omega_x \cos L + \omega_y \sin L) - \omega_z$$

$$\Delta H = -\frac{a}{N} \Delta a + N \sin^2 B \frac{\Delta e^2}{2} + (\Delta x \cos L + \Delta y \sin L) \cos B + \Delta z \sin B - \frac{a}{N} \Delta a + N \sin^2 B \frac{\Delta e^2}{2} + (\Delta x \cos L + \Delta y \sin L) \cos B + \Delta z \sin B - \frac{a}{N} \Delta a + N \sin^2 B \frac{\Delta e^2}{2} + (\Delta x \cos L + \Delta y \sin L) \cos B + \Delta z \sin B - \frac{a}{N} \Delta a + N \sin^2 B \frac{\Delta e^2}{2} + (\Delta x \cos L + \Delta y \sin L) \cos B + \Delta z \sin B - \frac{a}{N} \Delta a + N \sin^2 B \frac{\Delta e^2}{2} + (\Delta x \cos L + \Delta y \sin L) \cos B + \Delta z \sin B - \frac{a}{N} \Delta a + N \sin^2 B \frac{\Delta e^2}{2} + (\Delta x \cos L + \Delta y \sin L) \cos B + \Delta z \sin B - \frac{a}{N} \Delta a + N \sin^2 B \frac{\Delta e^2}{2} + (\Delta x \cos L + \Delta y \sin L) \cos B + \Delta z \sin B - \frac{a}{N} \Delta a + N \sin^2 B \frac{\Delta e^2}{2} + (\Delta x \cos L + \Delta y \sin L) \cos B + \Delta z \sin B - \frac{a}{N} \Delta a + N \sin^2 B \frac{\Delta e^2}{2} + (\Delta x \cos L + \Delta y \sin L) \cos B + \Delta z \sin B - \frac{a}{N} \Delta a + N \sin^2 B \frac{\Delta e^2}{2} + \Delta z \sin B - \frac{a}{N} \Delta a + N \sin^2 B \frac{\Delta e^2}{2} + \Delta z \sin B + \Delta z \cos B + \Delta z \sin B + \Delta z \cos B + \Delta z \sin B + \Delta z \cos B + \Delta z \sin B + \Delta z \cos B + \Delta z \sin B + \Delta z \cos B + \Delta z \sin B + \Delta z \cos B + \Delta z \sin B + \Delta z \cos B + \Delta z \sin B + \Delta z \cos B + \Delta z \sin B + \Delta z \cos B + \Delta z \sin B + \Delta z \cos B + \Delta z \sin B + \Delta z \cos B$$

где ΔB , ΔL , ΔH - поправки к геодезическим широте, долготе, ...", и поправка к высоте, м;

B, L, H - геодезические широта, долгота, рад, и высота, м;

 Δx , Δy , Δz - линейные элементы трансформирования системы координат а относительно системы координат б, м;

 $\omega_x \, \omega_y \, \omega_z$ - угловые элементы трансформирования системы координат а относительно системы координат б, ...";

m - дифференциальное различие масштабов систем координат б и а; а, б - системы координат

$$\Delta a = a_6 - a_a;$$

$$\Delta e^2 = e_6^2 - e_a^2;$$

$$a = \frac{a_6 + a_a}{2};$$

$$e^2 = \frac{e_6^2 + e_a^2}{2};$$

M - радиус кривизны меридианного сечения $(M = a(1 - e^2)(1 - e^2 \sin^2 B)^{-1})$

N - радиус кривизны первого вертикала ($N = a(1 - e^2 \sin^2 B)^{-1/2}$);

 a_{6} , a_{a} - большие полуоси эллипсоидов в системах координат б и а соответственно;

 e_{6}^{2}, e_{a}^{2} - квадраты эксцентриситетов эллипсоидов в системах координат б и а соответственно;

 ρ - число угловых секунд в 1 радиане (ρ = 206264,8062").

При преобразовании из системы а в систему б используют значения геодезических координат в системе а, а при обратном переходе - в системе б.

Формулы ($\underline{23}$) обеспечивают вычисление поправок к геодезическим координатам с погрешностью, не превышающей 0,3 м (в линейной мере), а для достижения погрешности не более 0,001 м выполняют вторую итерацию, то есть учитывают значения поправок к геодезическим координатам по формулам ($\underline{22}$) и повторно выполняют вычисления по формулам ($\underline{23}$). При этом

$$B = \frac{B_{a} + (B_{a} + \Delta B)}{2}$$

$$L = \frac{L_{a} + (L_{a} + \Delta L)}{2}$$

$$H = \frac{H_{a} + (H_{a} + \Delta H)}{2}$$
(24)

3.3 Преобразование геодезических координат в плоские прямоугольные координаты и обратно

Для получения плоских прямоугольных координат в принятой на территории Российской Федерации проекции Гаусса - Крюгера используют геодезические координаты на эллипсоиде Красовского.

Преобразование геодезических координат из систем ПЗ и МГС в геодезические координаты на эллипсоиде Красовского осуществляют по формулам (22), (23). Плоские прямоугольные координаты с погрешностью не более 0,001 м вычисляют по формулам:

$$x = 6367558,4968B - \sin 2B(16002,8900 + 66,9607 \sin^2 B + 0,3515 \sin^4 B - l^2(1594561,25 + 5336,535 \sin^2 B + 26,790 \sin^4 B + 0,149 \sin^6 B + l^2(672483,4 - 811219,9 \sin^2 B + 5420,0 \sin^4 B - 10,6 \sin^6 B + l^2(278194 - 830174 \sin^2 B + 572434 \sin^4 B - 16010 \sin^6 B + l^2(109500 - 574700 \sin^2 B + 863700 \sin^4 B - 398600 \sin^6 B)))));$$

$$y = (5 + 10n)10^5 + l\cos B(6378245 + 21346,1415 \sin^2 B + 107,1590 \sin^4 B + 107,1590 \cos^2 B + 107,1590 \cos^$$

$$y = (5 + 10n)10^{5} + l\cos B (6378245 + 21346,1415\sin^{2} B + 107,1590\sin^{4} B + 10,5977\sin^{6} B + l^{2}(1070204,16 - 2136826,66\sin^{2} B + 17,98\sin^{4} B - 11,99\sin^{6} B + l^{2}(270806 - 1523417\sin^{2} B + 1327645\sin^{4} B - 21701\sin^{6} B + l^{2}(79690 - 866190\sin^{2} B + 1730360\sin^{4} B - 945460\sin^{6} B)))),$$
(26)

где x, y - плоские прямоугольные координаты определяемой точки в проекции Гаусса - Крюгера, м;

В - геодезическая широта определяемой точки, рад;

l - расстояние от определяемой точки до осевого меридиана зоны, рад, вычисляемое по формуле

$$l = \{L - [3 + 6(n - 1)]\}/57,29577951; \tag{27}$$

L - геодезическая долгота определяемой точки, ...;

n - номер шестиградусной зоны в проекции Гаусса - Крюгера, вычисляемый по формуле

$$n = E[(6+L)/6], (28)$$

E[...] - целая часть выражения, заключенного в квадратные скобки.

Преобразование прямоугольных координат проекции Гаусса - Крюгера на эллипсоиде Красовского в геодезические координаты осуществляют по формулам:

$$B = B_0 + \Delta B; \tag{29}$$

$$L = 6(n - 0.5)/57,29577951 + l, (30)$$

где B, L - геодезические широта и долгота определяемой точки, рад;

 B_0 - геодезическая широта точки, абцисса которой равна абциссе x определяемой точки, а ордината равна нулю, рад;

n - целая часть числа, вычисляемого по формуле

$$n = E[y \ 10^6],$$
 (31)

E[...] - целая часть выражения, стоящего в квадратных скобках;

у - ордината определяемой точки в проекции Гаусса - Крюгера, м;

β - вспомогательная величина, вычисляемая по формуле

$$\beta = x/6367558,4968; \tag{32}$$

x - абцисса определяемой точки, в проекции Гаусса - Крюгера, м;

 z_0 - вспомогательная величина, вычисляемая по формуле

$$z_0 = (y - (10n + 5)10^5)/6378245 \cos B_0.$$
 (33)

Далее вычисления геодезических координат определяемой точки выполняют по следующим формулам:

$$B_{0} = (\beta + \sin 2\beta (0,00252588685 - 0,00001491860 \sin^{2}\beta + 0,00000011904 \sin^{4}\beta); (34)$$

$$\Delta B = -z_{0}^{2} \sin^{2} B_{0}(0,251684631 - 0,003369263 \sin^{2} B_{0} + 0,0000011276 \sin^{4} B_{0} -$$

$$-z_{0}^{2}(0,10500614 - 0,04559916 \sin^{2} B_{0} + 0,00228901 \sin^{4} B_{0} - 0,00002987 \sin^{6} B_{0} -$$

$$-z_{0}^{2}(0,042858 - 0,025318 \sin^{2} B_{0} + 0,014346 \sin^{4} B_{0} - 0,001264 \sin^{6} B_{0} -$$

$$-z_{0}^{2}(0,01672 - 0,00630 \sin^{2} B_{0} + 0,01188 \sin^{4} B_{0} - 0,00328 \sin^{6} B_{0}))));$$

$$I = z_{0}(1 - 0,0033467108 \sin^{2} B_{0} - 0,0000056002 \sin^{4} B_{0} - 0,0000000187 \sin^{6} B_{0} -$$

$$-z_{0}^{2}(0,16778975 + 0,16273586 \sin^{2} B_{0} - 0,00052490 \sin^{4} B_{0} - 0,00000846 \sin^{6} B_{0} -$$

$$-z_{0}^{2}(0,0420025 + 0,1487407 \sin^{2} B_{0} + 0,0059420 \sin^{4} B_{0} - 0,0000150 \sin^{6} B_{0} -$$

$$-z_{0}^{2}(0,01225 + 0,09477 \sin^{2} B_{0} + 0,03282 \sin^{4} B_{0} - 0,00034 \sin^{6} B_{0} - z_{0}^{2}(0,0038 +$$

$$+ 0,0524 \sin^{2} B_{0} + 0,0482 \sin^{4} B_{0} + 0,0032 \sin^{6} B_{0})))).$$

$$(36)$$

2.4 Преобразование приращений координат из системы в систему

Преобразование приращений пространственных координат из системы координат а в систему б осуществляют по формуле

$$\begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}_{6} = (1+m) \begin{pmatrix} 1 & +\omega_{z} & -\omega_{y} \\ -\omega_{z} & 1 & +\omega_{x} \\ +\omega_{y} & -\omega_{x} & 1 \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}_{a}.$$
(37)

(36)

Обратное преобразование приращений пространственных координат из системы б в систему а выполняют по формуле

$$\begin{pmatrix}
\Delta x \\
\Delta y \\
\Delta z
\end{pmatrix}_{a} = (1 - m) \begin{pmatrix}
1 & -\omega_{z} & +\omega_{y} \\
+\omega_{z} & 1 & -\omega_{x} \\
-\omega_{y} & +\omega_{x} & 1
\end{pmatrix} \begin{pmatrix}
\Delta x \\
\Delta y \\
\Delta z
\end{pmatrix}_{6}.$$
(38)

В формулах (37) и (38) угловые элементы трансформирования ω_x , ω_y , ω_z выражены в радианах.

2.5 Связь между различными системами высот

Геодезическая и нормальная высоты связаны соотношением:

$$H = H^{\gamma} + \zeta, \tag{39}$$

где H - геодезическая высота определяемой точки, м;

 H^{γ} - нормальная высота определяемой точки, м;

 ζ - высота квазигеоида в определяемой точке, м.

Высоты квазигеоида над отсчетным эллипсоидом систем геодезических параметров ПЗ и МГС вычисляют по моделям ГПЗ, являющимся составной частью систем геодезических параметров.

Высоты квазигеоида над ОЗЭ и эллипсоидом Красовского связаны соотношением

$$\zeta_{O39} = \zeta_{Kp} + \Delta H \tag{40}$$

где ζ_{O39} - высота квазигеоида над O39, м;

 ζ_{Kp} - высота квазигеоида над эллипсоидом Красовского, м;

 ΔH - поправка к геодезической высоте, м, вычисляемая по формуле (23).

2.6 Элементы преобразования между системой координат ПЗ и национальными референцными системами России

Преобразование координат из референцной Системы координат 1942 года в систему ПЗ-90

$$\Delta x = (+25 \pm 2) \text{ M}; \ \omega_x = 0.00" \pm 0.1";$$

$$\Delta y = (-141 \pm 2) \text{ M}; \ \omega_y = -0.35" \pm 0.1";$$

$$\Delta z = (-80 \pm 3) \text{ M}; \ \omega_z = -0.66" \pm 0.1";$$

$$m = (0.00 \pm 0.25)10^{-6};$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{II3-90}} = \begin{bmatrix} 1 & -3.3 \cdot 10^{-6} & +1.8 \cdot 10^{-6} \\ +3.3 \cdot 10^{-6} & 1 & 0 \\ -1.8 \cdot 10^{-6} & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{CK-42}} + \begin{bmatrix} 25 \\ -141 \\ -80 \end{bmatrix}.$$

Преобразование координат из системы координат ПЗ-90 в референцную Систему координат 1942 года

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{CK-42}} = \begin{bmatrix} 1 & +3.3 \cdot 10^{-6} & -1.8 \cdot 10^{-6} \\ -3.3 \cdot 10^{-6} & 1 & 0 \\ +1.8 \cdot 10^{-6} & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{II3-90}} - \begin{bmatrix} 25 \\ -141 \\ -80 \end{bmatrix}.$$

Преобразование координат из референцной Системы координат 1995 года в систему ПЗ-90

$$\Delta x = +25,90 \text{ m};$$

 $\Delta y = -130,94 \text{ m};$
 $\Delta z = -81,76 \text{ m};$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{II3-90}} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{CK-95}} + \begin{bmatrix} 25,90 \\ -130,94 \\ -81,76 \end{bmatrix}.$$

Преобразование координат из системы координат ПЗ-90 в референциую Систему координат 1995 года

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{CK-95} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{II3-90} - \begin{bmatrix} 25,90 \\ -130,94 \\ -81,76 \end{bmatrix}.$$

2.7 Элементы трансформирования между системой координат ПЗ и системой координат WGS-84

Преобразование координат из системы координат ПЗ-90 в систему WGS-84

$$\Delta x = (-1,08 \pm 2) \text{ M}; \ \omega_x = 0;$$

$$\Delta y = (-0,27 \pm 0,2) \text{ M}; \ \omega_y = 0;$$

$$\Delta z = (-0,90 \pm 0,3) \text{ M}; \ \omega_z = -0,16" \pm 0,01";$$

$$m = (-0,12 \pm 0,06) \cdot 10^{-6};$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{MICC-84}} = (1-0,12 \cdot 10^{-6}) \begin{bmatrix} 1 & -0,82 \cdot 10^{-6} & 0 \\ 0,82 \cdot 10^{-6} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{II3-90}} + \begin{bmatrix} -1,1 \\ -0,3 \\ -0,9 \end{bmatrix}.$$

Преобразование координат из системы координат МГС-84 в систему ПЗ-90

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{II3-90}} = (1+0,12\cdot10^{-6}) \begin{bmatrix} 1 & 0,82\cdot10^{-6} & 0 \\ -0,82\cdot10^{-6} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}_{\text{MICC-84}} - \begin{bmatrix} -1,1 \\ -0,3 \\ -0,9 \end{bmatrix}.$$

Последовательность выполнения работы:

- 1. Подключить антенну к навигационному приемнику МНП-М1.
- 2. Подключить навигационный приемник МНП-М1 к ПК.
- 3. Запустить программу Nuvi.exe и дождаться получения навигационного решения (1-3 минуты).
- 4. В программе Nuvi.exe выбрать систему координат для решения (WGS-84 или ПЗ-90).
- 5. Записать полученное навигационное решение (геодезические координаты: высоту, широту и долготу).
- 6. Пересчитать полученные координаты в прямоугольные координаты (WGS-84 или ПЗ-90).

- 7. Преобразовать полученные данные в систему координат ПЗ-90 (если была выбрана изначально WGS-84) или в WGS-84 (если была выбрана изначально ПЗ-90).
- 8. В программе Nuvi.exe выбрать систему координат для решения (если в п. 4 выбрана WGS-84, то выбрать ПЗ-90 и наоборот).
- 9. Сравнить результаты, полученные в п.6 с данными программы Nuvi.exe.

- 1. Основные расчетные формулы.
- 2. Исходные данные (скриншот программы Nuvi.exe (п.4)).
- 3. Результаты: преобразованные значения и скриншот программы Nuvi.exe (п. 8).
- 4. Выводы.

Лабораторная работа №4

Определение координат космического аппарата при помощи разностнодальномерного метода

Цель лабораторной работы: изучение алгоритма определения координат космического аппарата по измеренным псевдодальностям.

Стандартный алгоритм определения координат космического аппарата (КА) при помощи измерений псевдодальностей КА-навигационные спутники (НС), основывается на процедуре линеаризации уравнений кодовых измерений в окрестности априорного решения с последующим применением метода наименьших квадратов для возникающей задачи оценивания.

Допущения: не учитываются погрешности ионосферы и тропосферы.

Исходными данными этой задачи являются:

1. Априорные гринвичские координаты КА

$$q^{SC'} = \begin{pmatrix} x^{SC'} & y^{SC'} & z^{SC'} \end{pmatrix}^T.$$

- 2. Массив измерений псевдодальностей $\{D_{\rho}^{(i)}\}, i=\overline{1,M}$ KA-HC. Здесь М число видимых HC.
- 3. Подготовленный массив гринвичских координат $\{q^{sat_i}\}$ навигационных спутников.

Определяемые величины:

1. Оценка \hat{q}^{SC} гринвичских координат q^{SC} KA.

Последовательность вычислений:

$$\hat{D}_{\rho}^{(i)} = D_{\rho}^{(i)} + c\Delta T^{(i)} - \Delta \rho_{ion}^{(i)} - \Delta \rho_{trop}^{(i)}.$$
 (1)

Совокупная модель измерений кодовых псевдодальностей примет вид:

$$\hat{D}_{\rho}^{(1)} = \rho^{(1)} + \rho_{\Delta\tau} + \Delta \rho_{1}^{s},$$

$$\hat{D}_{\rho}^{(1)} = \rho^{(2)} + \rho_{\Delta\tau} + \Delta \rho_{2}^{s},$$
...
$$\hat{D}_{\rho}^{(M)} = \rho^{(M)} + \rho_{\Delta\tau} + \Delta \rho_{M}^{s},$$

$$\rho^{(i)} = \sqrt{\sum_{j=1}^{3} \left(q_{j}^{sat_{i}} - q_{j}^{SC}\right)^{2}},$$
(2)

где $\rho^{(i)}$ — истинное расстояние KA-HC с номером i; $\rho_{\Delta \tau} = c \Delta \tau$ — погрешность часов приёмоиндикатора выраженная в метрах; $\Delta \rho^s_i$ — остаточные погрешности кодовых измерений.

<u>Шаг 2.</u> Осуществляется линеаризация уравнений измерений (2) в окрестности опорного решения $q^{SC'}: q^{SC'} = q^{SC} + \Delta q$, где $\Delta \eta$ — искомая ошибка местоположения. Формируются измерения $d_{\rho}^{(i)}$ «в малом»:

$$d_{\rho}^{(i)} = \hat{D}_{\rho}^{(i)} - \rho_{calc}^{(i)} \approx h_{(i)}^{T} \eta + \Delta \rho_{i}^{s},$$

$$\rho_{calc}^{(i)} = \sqrt{\sum_{j=1}^{3} \left(q_{j}^{sat_{i}} - q_{j}^{SC'}\right)^{2}}.$$
(3)

Здесь $\eta = (\Delta x \ \Delta y \ \Delta z \ \rho_{\Delta \tau})^T$ — вектор оцениваемых параметров, $h_{(i)}^T$ — векторстрока с компонентами

$$h_{(i)}^{T} = \left(\frac{x_{1}^{sat_{i}} - x^{SC'}}{\rho_{calc}^{(i)}} \quad \frac{y_{2}^{sat_{i}} - y^{SC'}}{\rho_{calc}^{(i)}} \quad \frac{z_{3}^{sat_{i}} - z^{SC'}}{\rho_{calc}^{(i)}} \quad 1\right).$$

В результате определяется следующая модель задачи оценивания:

$$d = \begin{pmatrix} d_{\rho}^{(1)} \\ d_{\rho}^{(2)} \\ \dots \\ d_{\rho}^{(M)} \end{pmatrix} = \begin{pmatrix} h_{(1)}^T \\ h_{(2)}^T \\ \dots \\ h_{(M)}^T \end{pmatrix} \eta + \begin{pmatrix} \Delta \rho_1^s \\ \Delta \rho_2^s \\ \dots \\ \Delta \rho_M^s \end{pmatrix} = H\eta + r. \tag{4}$$

Шаг 3. Решение задачи (5) по методу наименьших квадратов имеет вид:

$$\hat{\eta} = (H^T W^{-1} H)^{-1} H^T W^{-1} d. \tag{5}$$

Здесь W — корреляционная матрица шумов измерений $\{\Delta \rho_i^s\}$.

Последовательность выполнения работы:

- 1. Запустить математический пакет Mathcad/Scilab/Matlab.
- 2. Загрузить в математический пакет априорные гринвичские координаты КА.
- 3. Загрузить математический массив измеренных псевдодальностей (файл pseudorange.txt).
- 4. Загрузить математический массив гринвичских координат навигационных спутников (satdata.txt).
- 5. Задать погрешность решения задачи.
- 6. Провести вычисления (см. выше).

- 1. Массивы исходных данных.
- 2. Основные расчетные формулы.
- 3. Результаты расчета.
- 4. Выводы.

Лабораторная работа №5

Определение координат космического аппарата при помощи разностнодальномерного метода

Цель лабораторной работы: изучение алгоритма определения координат космического аппарата по первым разностям псевдодальностей.

Разностно-дальномерный способ решения задачи при помощи кодовых измерений основан на идее использования первых разностей кодовых измерений.

Первые разности $\nabla D_{\rho}^{(i)}$ кодового измерения $D_{\rho}^{(i)}$ для спутника с номером i представляет собой величину

$$\nabla D_{\rho}^{(i)} = D_{\rho}^{(i)} - D_{\rho}^{(*)} \tag{1}$$

где $D_{\rho}^{(*)}$ — кодовое измерение опорного спутника. Обычно в качестве опорного используется спутник с наибольшим углом возвышения.

При формировании первых разностей кодовых измерений происходит алгоритмическая компенсация погрешности часов $\rho_{\Delta \tau} = c \Delta \tau$ навигационного при-ёмника, общей для всех кодовых измерений.

Сформируем первые разности кодовых измерений $D_{\rho}^{(i)}$, для определенности выбирая в качестве опорного спутника, спутник с индексом 1. В результате получим систему уравнений на единицу меньшей размерности

$$\nabla \widetilde{D}_{\rho}^{(1)} = \left(D_{\rho}^{(2)} - D_{\rho}^{(1)}\right) = \left(\rho^{(2)} - \rho^{(1)}\right) + \left(\Delta \rho_{2}^{s} - \Delta \rho_{1}^{s}\right), \dots$$

$$\nabla \widetilde{D}_{\rho}^{(M-1)} = \left(D_{\rho}^{(M)} - D_{\rho}^{(1)}\right) = \left(\rho^{(M)} - \rho^{(1)}\right) + \left(\Delta \rho_{M}^{s} - \Delta \rho_{1}^{s}\right). \tag{2}$$

В (2) неизвестными являются параметры $x_1^{SC}, y_2^{SC}, z_3^{SC}$.

Дальнейшее решение задачи (2) аналогично итерационный схеме лабораторной работе №4:

- осуществляется линеаризация задачи в окрестности опорного решения;
- задача сводится к линейной задаче оценивания;
- используется метод наименьших квадратов. Основные расчетные формулы:
- 1. Модель задачи оценивания:

$$\nabla d^* = \begin{pmatrix} \nabla d_{\rho}^{(1)*} \\ \nabla d_{\rho}^{(2)*} \\ \dots \\ d_{\rho}^{(M-1)*} \end{pmatrix} = \begin{pmatrix} h_{(1)}^{*T} \\ h_{(2)}^{*T} \\ \dots \\ h_{(M-1)}^{*T} \end{pmatrix} \eta^* + \begin{pmatrix} \Delta \rho_1^{**} \\ \Delta \rho_2^{**} \\ \dots \\ \Delta \rho_{M-1}^{**} \end{pmatrix} = H^* \eta^* + r^*, \tag{3}$$

$$\eta^* = (\Delta x \quad \Delta y \quad \Delta z)^T, h_{(i-1)}^* = h_{(i)} - h_{(1)},$$

где $\nabla d^* = Bd$, $\nabla r^* = Br$, $\nabla d_{\rho}^{(i)*} = \nabla \widetilde{D}_{\rho}^{(i)*} - \nabla \rho_{calc}^{(i)}$,

$$\nabla \rho_{calc}^{(i-1)} = \rho_{calc}^{(i)} - \rho_{calc}^{(1)}, \Delta \rho_{i-1}^{(s^*)} = \Delta \rho_i^s - \Delta \rho_1^s,$$

а матрица $B((N-1) \times N)$ имеет вид:

$$B = \begin{pmatrix} -1 & 1 & 0 & \dots & 0 \\ -1 & 0 & 1 & \dots & 0 \\ & & \dots & & \\ -1 & 0 & \dots & & 1 \end{pmatrix}.$$

2. По методу наименьших квадратов определяется оценка $\hat{\eta}^*$ вектора η^*

$$\hat{\eta}^* = (H^{*T} W^{*-1} H^*)^{-1} H^{*T} W^{*-1} d^*.$$
 (4)

где

$$W^* = \begin{pmatrix} \sigma_1^2 + \sigma_2^2 & \sigma_1^2 & \sigma_1^2 & \dots & \sigma_1^2 \\ \sigma_1^2 & \sigma_1^2 + \sigma_3^2 & \sigma_1^2 & \dots & \sigma_1^2 \\ & & & & \dots \\ \sigma_1^2 & & & \dots & \sigma_1^2 & \sigma_1^2 + \sigma_M^2 \end{pmatrix}.$$

При помощи полученных оценок ошибок местоположения уточняются координаты

$$\hat{q}^{SC} = q^{SC'} - \Delta q .$$

Возможно делается несколько итераций.

- 3. Используя полученные оценки местоположения \hat{q}^{SC} далее можно определить оценку $\hat{\rho}_{\Delta \tau}$ погрешности часов $\rho_{\Delta \tau}$ навигационного приёмника.
 - 3.1 Формируются «новые» кодовые измерения $\left\{ {D_{
 ho}^{(i)}}^{'} \right\}$:

$${D_{\rho}^{(i)}}' = \widetilde{D}_{\rho}^{(i)} - \widetilde{\rho}^{(i)}, \quad \widetilde{\rho}^{(i)} = \sqrt{\sum_{j=1}^{3} \left(q_{j}^{sat_{i}} - \widetilde{q}_{j}^{SC}\right)^{2}}$$

в которых скомпенсирован полезный сигнал-расстояние КА-навигационный спутник.

3.2 Для оценивания погрешности часов $\rho_{\scriptscriptstyle \Delta \tau}$ формализуется следующая задача:

$$D_{\rho}^{(i)} = \rho_{\Delta\tau} + \Delta \rho_i^s, \quad (i = \overline{1, M}.)$$
 (5)

Её решение по методу наименьших квадратов имеет вид:

$$\widetilde{\rho}_{\Delta\tau} = (h^T W^{-1} h)^{-1} h^T W^{-1} D',
h = (1 1 ... 1)^T.$$
(6)

Последовательность выполнения работы:

- 1. Запустить математический пакет Mathcad/Scilab/Matlab.
- 2. Загрузить в математический пакет априорные гринвичские координаты КА.

- 3. Загрузить математический массив измеренных псевдодальностей (файл pseudorange.txt).
- 4. Загрузить математический массив гринвичских координат навигационных спутников (satdata.txt).
- 5. Задать погрешность решения задачи.
- 6. Провести вычисления (см. выше).

- 1. Массивы исходных данных.
- 2. Основные расчетные формулы.
- 3. Результаты расчета.
- 4. Выводы.

Лабораторная работа №6

Определение скорости космического аппарата при помощи доплеровских псевдоскоростей

Цель лабораторной работы: изучение алгоритма определения скорости космического аппарата по доплеровским измерениям.

Выражение для радиальной скорости V_{ρ} Космический аппаратнавигационный спутник имеет вид:

$$V_{\rho} = \frac{\left(q^{sat} - q^{SC}\right)^{T} \left(V^{sat} - V^{SC}\right)}{\rho},$$

$$\rho = \sqrt{\left(q^{sat} - q^{SC}\right)^{T} \left(q^{sat} - q^{SC}\right)},$$
(1)

где q^{sat}, q^{SC} — гринвичские координаты космического аппарата (КА) и навигационного спутника (НС), V^{sat} — вектор относительной скорости НС в гринвичской системе координат; ρ — вычисленная дальность КА-НС; V^{SC} — вектор искомой относительной скорости КА в гринвичской системе координат.

Соотношение (1) представим в виде:

$$V_{\rho} = V_{\rho}^{sat} + V_{\rho}^{SC},$$

$$V_{\rho}^{sat} = \frac{\left(q^{sat} - q^{SC}\right)^{T}}{\rho} V^{sat},$$

$$V_{\rho}^{SC} = -\frac{\left(q^{sat} - q^{SC}\right)^{T}}{\rho} V^{SC}.$$

$$(2)$$

Таким образом, полезный сигнал V_{ρ} доплеровского измерения $D_{\dot{\rho}}$ можно представить в виде суммы двух составляющих. Первая составляющая V_{ρ}^{sat} вычисляется в явном виде по известной информации о параметрах движения навигационного спутника и координатах КА; вторая составляющая V_{ρ}^{SC} — линейно зависит от искомой скорости V^{SC} объекта.

Используя модель доплеровского измерения

$$D_{\dot{\rho}} = \lambda \Delta f_d = V_{\rho} - \lambda (f_{\Delta \tau} - f_{\Delta T}) + \Delta V_{ion} + \Delta V_{trop} + \Delta V_{sat} + \Delta V_{SC} + \Delta V_{\rho}^{s}.$$

возможность компенсации $\widetilde{D}_{\dot{\rho}} = D_{\dot{\rho}} - \lambda f_{\Delta T}$ погрешности $\lambda f_{\Delta T}$, возможность компенсации моделируемых атмосферных погрешностей $\Delta \rho_{ion}^{(i)}, \Delta \rho_{trop}^{(i)}$, и учитывая соотношение (1), определим новый набор измерений $\{d_{\dot{\rho}}^{(i)}\}$:

$$d_{\dot{\rho}}^{(i)} = D_{\dot{\rho}}^{(i)} - \lambda \Delta f_{\Delta T^{(i)}} - \Delta \dot{\rho}_{ion}^{(i)} - \Delta \dot{\rho}_{trop}^{(i)} - V_{\rho}^{sat_i},$$
(3)

где $\Delta \dot{\rho}_{ion}^{(i)}, \Delta \dot{\rho}_{trop}^{(i)}$ — численные производные моделируемых ионосферных и тропосферных задержек.

Введем вектор состояния $\eta = \begin{pmatrix} V_x^{SC} & V_y^{SC} & V_z^{SC} & \Delta V_\rho \end{pmatrix}^T$. Тогда

$$d = \begin{pmatrix} d_{\dot{\rho}}^{(1)} \\ d_{\dot{\rho}}^{(2)} \\ \dots \\ d_{\dot{\rho}}^{(M)} \end{pmatrix} = \begin{pmatrix} h_{(1)}^T \\ h_{(2)}^T \\ \dots \\ h_{(M)}^T \end{pmatrix} \eta + \begin{pmatrix} \Delta V_{\rho 1}^s \\ \Delta V_{\rho 2}^s \\ \dots \\ \Delta V_{\rho M}^s \end{pmatrix} = H \eta + r,$$

$$\Delta V_{\rho M}^s$$

$$h_{(i)}^T = \begin{pmatrix} \frac{x^{SC'} - x_1^{sat_i}}{\rho^{(i)}} & \frac{y^{SC'} - y_2^{sat_i}}{\rho^{(i)}} & \frac{z^{SC'} - z_3^{sat_i}}{\rho^{(i)}} & 1 \end{pmatrix}.$$
(4)

Таким образом, задача определения скорости V^{sat} при помощи доплеровских измерений $\{D_{\dot{\rho}}^{(i)}\}$ к стандартной задаче оценивания (4). Её решение с использованием метода наименьших квадратов имеет вид:

$$\hat{\eta} = (H^T W^{-1} H)^{-1} H^T W^{-1} d_{\dot{\rho}}. \tag{5}$$

Здесь W — корреляционная матрица шумов измерений $\{\Delta V_{\rho_i}^s\}$.

Последовательность выполнения работы:

- 1. Запустить математический пакет Mathcad/Scilab/Matlab.
- 2. Загрузить в математический пакет гринвичские координаты КА.
- 3. Загрузить математический пакет массив гринвичских координат навигационных спутников (satdata.txt).
- 4. Загрузить математический пакет массив скоростей навигационных спутников (vsatdata.txt).
- 5. Задать погрешность решения задачи.
- 6. Провести вычисления (см. выше).

- 1. Массивы исходных данных.
- 2. Основные расчетные формулы.
- 3. Результаты расчета.
- 4. Выводы.