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 Introduction into practical training 

 

Unlike problems of general physical practical training where the most important role is played 

by problems in which a student must learn to work with different instruments he has at the moment, 

the cosmophysical problems use data received from instruments placed onboard spacecraft (SC) 

distantly or from satellite tracking services. Remote measurements represent one of the most 

widespread ways of physical experiment realization. This method is related not only to measurements 

on the orbit of onboard spacecraft but also to the conditions of realization of experiments inside active 

areas of nuclear reactors and chemical reactors, accelerators, deep-diving vehicles, medical 

experiments etc. Therefore skills and ability to work with the data received distantly make one of the 

most important components of a contemporary researcher training, and especially of a physicist. 
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Chapter 1.  The Earth. Motion of artificial satellites  

  

 

   

      
 

    

 

1.1  The theoretical background 

 

 

1.1.1  Motion of a point mass in the terrestrial gravitational field 

 

 

Keplerian orbits 
 

Newton's equations for a point particle with arbitrary mass in the gravitational field have the 

following form:   

 .= 
dt

dv
 (1.1) 

 Here   is gravitational potential of a field. Potential of the gravitational field of a spherically 
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symmetrical body has the form of:  

 .=
r

GM
  

In such field angular momentum of a satellite is constant:  
 .=][= constprL   

Thereby it is convenient to choose coordinate system so that the plane of satellite's motion is 

orthogonal to the constant vector L . Let's direct axis z  along vector L . in this case )(0,0,= zLL . 

Changing to polar coordinate system in orbit plane we obtain:   

 .c== 2 onstmrLz   (1.2) 

 

 

    
Fig. II-7-1. Elements of elliptic orbit  

  

In chosen polar coordinates energy conservation law can be written like that:   

 .c=)(
2

= 222

0 onst
r

mMG
rv

m
E r    (1.3) 

 Here rv  - radial velocity of a satellite, 0E  is its total energy. With  (1.2) taken into account this 

conservation law takes the form which contains only radial coordinate functions:   

 .c=
2

=
22

22

0 onst
r

mMG

rm

L

dt

drm
E z 























 (1.4) 

 This conservation law form corresponds to one-dimensional radial movement of a particle in the 

potential gravitational field with the effective potential energy:  

 ,
2

=
2

2

r

mMG

mr

L
U z

eff   

which differ from potential energy of the initial problem by the presence of a summand corresponding 

to energy of orbital motion. 

It is useful to transform  (1.4) into the form of conservation law for harmonic oscillator to 
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describe satellite's trajectory in examined gravitational field. It enables us to obtain series of relations 

based on this analogy to harmonic oscillator. Realizing sequentially substitution of variables 

))((=)( trtr   and )(=)( 1  r  we obtain:  

 0

2

22

=
2

EmMG
d

d

m

Lz 


























 

And finally:  

 .c=
2

=

2

2

2

2

0

2

2

22

onst
L

MGm

L

mE

L

MGm

d

d

zzz
































 

The obtained conservation law matches in a form with energy conservation law of a harmonic 

oscillator with unit mass, and equilibrium position and the position at a point with coordinate: 

2

2

0 =
zL

MGm
 . With that angular variable   plays the role of time. As far the law of harmonic 

oscillator motion is known beforehand we can write the solution for its effective coordinate   like:  

 ).(cos=
1

= 02

2

  A
L

MGm

r z

 

It is convenient to represent this solution in a form of ellipse canonical equation in polar coordinates:   

 ,
cos1

=
e

p
r


 (1.5) 

 where p  is focal parameter, e  is eccentricity. Angle 0=    counted from perigee direction is 

called the true anomaly. Perigee is a point of an orbit with the minimal distance from the field center, 

and apogee is a point with maximum distance (if such point exists). All these parameters are shown in 

fig. I-1. On this figure angle E  relative to the center of ellipse counted from perigee to line OB  is 

called eccentric anomaly E . 

Using the obtained solution it is possible to link ellipse canonical parameters to dynamic 

parameters of satellite movement - its total energy and angular momentum. Some simple 

considerations are needed for this. Radial velocity component is equal to zero in apogee and perigee. 

Therefore we find from energy conservation law:  

 ,
2

=
,

2

,

2

0

papa

z

r

mMG

mr

L
E   

where ar  and pr  are distances from the field center (the Earth) in apogee and perigee respectively. 

Summing these two relations for ar  and pr  and taking into account the definition of semimajor axis 

a : )/2(= pa rra   we obtain the following equation for the total energy:   

 .
2

=0
a

mGM
E   (1.6) 

 Hence we obtain a useful relation for squared absolute velocity of orbital movement:   

 .
12

=2










ar
GMV  (1.7) 

 

Now it is possible to obtain expressions for distances in apogee and perigee as functions of 

dynamic parameters of a satellite:  
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 .211=
1

232

2

02

2

,















GmM

L
E

L

MGm

r

z

zpa

 

On the other hand it follows from ellipse canonical equation  (1.5) :   

 .
1

=  ,
1

=
e

p
r

e

p
r ap


 (1.8) 

 Hence we obtain expressions for impact parameter p  and eccentricity e  also as functions of 

dynamic parameters of satellite motion:   

 .21==   ,=
2

=
232

2

02

2

GmM

L
E

rr

rr
e

MGm

L

rr

rr
p z

pa

paz

ap

ap







 (1.9) 

 

Kepler equation is used to describe the motion of a satellite on the orbit. The equation has the 

form of:   

 .)(=sin 00 MttnEeE   (1.10) 

 Here E  is eccentric anomaly, 00)(= MttnM   is called mean anomaly, and 0M  is mean 

anomaly at epoch ( 0t ), 
3= MGan  is mean motion. The geometric sense of eccentric anomaly is 

clarified in fig. I-1. Eccentric anomaly is linked to natural anomaly (angle   in fig. I-1) by formula:   

 
21

1
=

2

E

e

e




 (1.11) 

 True anomaly is defined from these two equations, corresponding to the definite moment of time t  

and therefore satellite position on the orbit is defined for example relative to perigee. 

 

Position of the orbit in space 
 

Obtained relations allow calculation of parameters of elliptic orbit of a satellite. But it is 

necessary to know not only parameters of ellipse but also the position of orbit in space in relation to 

geocentric coordinate system. These geometric parameters of orbit position in geocentric rectangular 

coordinate system for Earth satellites are introduced in the following way. Z -axis of this coordinate 

system coincides with the Earth axis of rotation with positive direction to the North Pole. This point is 

situated near the Pole star on the celestial sphere. X -axis directs from the Earth center to the vernal 

equinox situated in the Golden Fish constellation of the modern epoch. Y -axis is perpendicular to the 

other two axes. 
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Fig. II-7-2. Position of the orbit in space.  

 

The point where the orbit crosses the equatorial plane is called node of orbit. The point where 

a satellite passes from the southern hemisphere to the northern one is called ascending node. The 

point opposite to the Earth center is called descending node. Angle between the direction to the 

vernal equinox and ascending node, i.e. between the x -axis and ascending node, is called longitude 

of ascending node and is designated by   here. Angle in the plane of orbit counted from ascending 

node to perigee is called ascending node-perigee angle and is designated by  . Angle between the 

plane of orbit and equatorial plane is called orbit inclination and is designated by i  here. Orbit 

parameters also include focal parameter p  and eccentricity e . These parameters are shown in fig. 2. 

Cartesian coordinates of a satellite will have the following form in geocentric coordinate 

system:   

 ),cossinsincoscos(= iuurx   (1.12) 

 ),coscossinsincos(= iuury   (1.13) 

 .sinsin= iurz  (1.14) 

 Here  =u . Details can be found in [1] 
1
. The full set of formulae see in [4] (pages 171-180) 

2
. 

 

Basic equations of the Keplerian orbit modeling 
 

Suppose all Keplerian parameters of the orbit to be known, for example from NORAD data. 

To obtain image of the orbit in projection to the rotating Earth taking into account the satellite motion 

along the orbit it is useful to use the following equations for the preparatory calculation of the 

Cartesian coordinates in fixed coordinate system related to remote stars. These equations are 
3
:   

 ),cos(1= Eear   

 ,sin1=    ),cos(= 2 EeaeEa    

                                                 
1
A.N. Matveev. Mechanics and the theory of relativity. M "Vysshaya shkola" 1986 

2
Handbook of celestial mechanics and astridynamics. Edited by Duboshin, M: "Nauka" 1971, 584 

3
Handbook of celestial mechanics and astridynamics. Edited by Duboshin, M: "Nauka" 1971, 584 



8 

 

 ,=  xx QPx   (1.15) 

 ,=  yy QPy   

 ,=  zz QPz   

 where   and   are auxiliary orbital coordinates and direction cosine zyx QPP ,,,   are calculated 

by:   

 ,cos)(sinsin)(coscos= iPx    

 ,cos)(sincos)(cossin= iPy    

 ,sinsin= iPz   

 ,cos)(cossin)(sincos= iQx    

 ,cos)(coscos)(sinsin= iQy    

 .sincos= iQz   

 Direction cosines must satisfy the following conditions serving to control the correctness of 

calculations:   

 1,=222

zyx PPP   

 1,=222

zyx QQQ   

 0.=zzyyxx PQPQPQ   

 It is clear that quantities zyx QPP ,,,   are calculated once when the information about the new 

orbital parameters of satellite comes from ground-based services as they contain only Keplerian orbit 

parameters. 

To calculate the motion of a satellite along the orbit in the projection on the celestial sphere it 

is necessary to use equations of transformation of Cartesian ordinate into spherical coordinates:   

 ,arccos=  ,= 0
r

z

x

y
   (1.16) 

 where   is the longitude of a projection point of a satellite's position on the celestial sphere, 0  - 

present longitude of the vernal equinoctial point where the X -axis of geostationary coordinate 

system is directed to,   its latitude and the Cartesian coordinates zyx ,,  and the distance r  from 

the Earth center to the satellite are calculated by the described equations. 

The present position of a satellite in fixed coordinate system is calculated with the help of 

Kepler equation with respect to eccentricity anomaly E :   

 ,=)(=sin 00 MMttnEeE   (1.17) 

 where E  is eccentricity anomaly, n  - mean motion, 0t  - epoch, 0M  - mean anomaly in epoch. 

The numerical solution of this equation can be obtained with the help of iteration method:  

 .0,= ,)(sin= 001 kMttnEeE kk   

The initial value should be chosen:  

 ,)(= 000 MttnE   

And the process of iterations should be finished when needed accuracy is reached, i.e. when the 

quantity kk EE 1  becomes less than a given value. For eccentricity 0.5<e  the number of 

iterations does not exceed 5 with the accuracy of 7-8 decimal positions. 

Transition to the coordinate system rotating with the Earth is realized by the calculation of the 

longitude 0  from the equation:  
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 ott
t 360

86400

)(
1

365.242

1
(0)=)( 0

00










  

where (0)0  the value of longitude of vernal equinox point in epoch 0t . As far as the data 

concerning the time coming from NORAD is measured in days it is convenient to adduce these 

equations to these time units and angular variables to degrees which correspond to geographical 

coordinates. 

The speed of satellite's motion along the orbit can be calculated in the following way. 

Differentiate  (1.17) with respect to time. As the result we obtain:   

 ,cos1=   ,sin=   ,== 2

dt

dE
Eea

dt

d

dt

dE
Ea

dt

d

dt

dE
aeV

dt

dr
r 


 

 1,2,3.=  ,)cos1sin(=== 2 






dt

dE
EeQEPa

dt

d
Q

dt

d
P

dt

dx
V   (1.18) 

 Differentiate  (1.17) with respect to t , we find:  

 .
cos1

=
Ee

n

dt

dE


 

Finally we find:   

 1,2,3.=  ,
cos1

)cos1sin(
===

2


 





Ee

EeQEP
an

dt

d
Q

dt

d
P

dt

dx
V




  (1.19) 

 

For a circular orbit 0=e   

 .c== onstn
dt

dE
 

In this case  

 ),)((cos))((sin=== 0000 MttnanQMttnanP
dt

d
Q

dt

d
P

dt

dx
V  





 

With the help of simple calculations we find from these relations 
4
:   

 ,
12

=2










ar
V   

 ,sin= 


e
p

Vr  

 ).cos(1= 


e
p

Vn   

 And respectfully:   

 ,=)cos)(cossin)(sincos(= nxrnr VQV
r

x
ViV

r

x
x    

 ,=)cos)(coscos)(sinsin(= nyrnr VQV
r

y
ViV

r

y
y    

 .=)sin)(cos(= nzrnr VQV
r

z
ViV

r

z
z    

 

 

                                                 
4
Handbook of celestial mechanics and astridynamics. Edited by Duboshin, M: "Nauka" 1971, p. 174 
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Motion in spheroidal field. Model of precession 
 

In case if the gravitational field of a planet is not perfectly spherical the shape of the orbit and 

the character of the motion of a satellite along the orbit become more complicated. In the simplest case 

if the second zonal harmonic J2 is taken into account in the terrestrial gravitational field the 

gravitational field potential takes the following form:   

 ,13
2

1=
2

2

2

2

2


















r

R

r

zJ

r

mGM
U EE  (1.20) 

 where m  is mass of satellite and the equation rz/=cos  was used. Consideration of only zonal 

harmonics is equivalent to the supposition that the shape of the Earth is a solid of revolution around 

the axis passing through the poles of the planet. Denote this axis as Z . the influence of an additional 

summand leads to a slow rotation of the orbit plane around Z -axis. Together with the rotation of the 

orbit plane seen in the monotone increase of the ascending node longitude the position of the perigee 

also changes. So all quantities  ,   and M  change in the course of time. The speed of change of 

those quantities is proportional to 2J . Therefore measuring quantities  ,   and 0M  it is possible 

to calculate 2J  and estimate the degree of deviation of the shape of the Earth from sphere. For this 

purpose it is necessary to use equation:  

 ,1
5

1
=

2

2
























E

P

R

R
J  

Where PR  is polar radius of the Earth and ER  - equatorial radius of the Earth. 

The more precise analysis considering possible deviation of an orbit from circular one shows 

that at a first approximation ascending node-perigee angle   and mean anomaly 0M  also slowly 

change together with longitude of ascending node. Corresponding formulae for the rate of secular 

variation rate have the following form:   

 ,
)(1

cos

2

3
=

22

2

23 e

i

p

R
J

a

GM

dt

d E









 (1.21) 

 ,
)(1

)cos5(1

4

3
=

22

2
2

23 e

i

p

R
J

a

GM

dt

d E












 (1.22) 

 ,
)(1

1)cos(3

4

3
=

3/22

2
2

23

0

e

i

p

R
J

a

GM

dt

dM E












 (1.23) 

 here )(1= 2eap   is orbit focal parameter. ER  is equatorial radius of the Earth, a  - is semimajor 

axis. It is clear that for a circular orbit formula for   exactly coincides with the equation obtained 

earlier. These equations can be interpreted as a magnitude of orbit components changes in radian or 

angle measurement within some period of time, for example within on revolution of a satellite around 

the Earth. But as it will be shown further in real data parameters are usually given within twenty-four 

hours. Quantity 
3= GMan  is called mean motion and is given in NORAD data in a form of 

revolution number in twenty-four hours. Longitude of ascending node and ascending node-perigee 

angle is given in degree scale in NORAD data. In these units   and   in twenty-four hours will 

be expressed in a following way:   

 ,cos360
2

3
=

2

2 i
p

R
nJ E

day 







  (1.24) 
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 ),cos5(1360
4

3
= 2

2

2 i
p

R
nJ E

day 







  (1.25) 

 1)cos(3360
4

3
= 2

2

20 







 i

p

R
nJM E

day  (1.26) 

 Quantity n360  represents the total angular incursion on the true anomaly within twenty-four hours. 

Now we can easily estimate magnitude of changes of longitude of ascending node, ascending 

node-perigee angle and mean anomaly within twenty-four hours for some typical satellites. So for 

polar meteorological satellites of NOAA type dayrevn /14 . 1.2/ pRE , oi 98= , oicos 1.2  . 

Using value 2J  from Tab III-1 we obtain 
o

day

o

day 3  ,1   . 

 

   
Fig. II-7-3. Rotation of orbit plane in space.  

 

Formulae  (1.24) and  (1.25) are taken from [3]
5
. Formula  (1.26) is taken from reference 

guide [4](page 438) 
6
 containing reference information concerning all parameters of satellite motion. 

There is a slight difference between formulae given in [3] and [4]. The difference is in absence and 

presence (respectively) of multiplier 22 )(1 e  for the first two formulae and multiplier 3/22 )(1 e  

for mean anomaly. These multipliers practically do not differ from 1 for nearly circular orbits. Details 

of theory of satellite motion in spheroidal field of the Earth can be found in [4] 
7
. 

 

1.1.2  Atmospheric resistance influence on satellite motion 

 

This practical task is targeted at the verification of a simple model of the effect of the force of 

molecular resistance form atmosphere side on satellites which move along relatively low and 

                                                 
5
V.V.Beletckiy. Essay about celestial mechanics. M:``Nauka'',1972, 320 p. 

6
Handbook of celestial mechanics and astridynamics. Edited by Duboshin, M: "Nauka" 1971, 584 

7
G.N. Duboshin. Celestial mechanics. Basic problems and methods. M.: Nauka, 1968, P.IV, Ch.XII, pp. 566-652 
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near-circular orbits. 

Suppose satellite with mass m  and cross-sectional area   is moving along an orbit and 

experiencing frontal resistance of the atmosphere. Designate the concentration of molecules of 

atmospheric gases by N . Then the satellite collides with NdVdN =  molecules enclosed in volume 

dtvdV =  within time dt , so dtNvdN =  (see fig. 6). 

 

    
Fig. III-7-4 For molecular resistance force derivation. 

 

  

Each impact is considered to be perfectly elastic. Then within time dt  molecules give to the 

satellite momentum equal to NdtmvvdNmdp 0
2

0 2=2= . Here 0m  is mass of one molecule. Hence 

we obtain the resistance force experienced by a satellite:  

 ,=2== 22 vvF
dt

dp
d    

where  2=  is coefficient of friction, Nm0=  is density of the atmosphere. 

Consider a satellite motion in the potential field of force under such friction force. Equation of 

motion of a satellite in Cartesian coordinate system has the following form:  

 .== vvUFU
dt

dv
m   

Then we multiply this equation scalarly by velocity of satellite's motion. After simple transformations 

we obtain:  

 .=
2

3
2

vU
mv

dt

d









  

Hence total specific energy of a satellite mEEm /= 0  changes according to the equation:  

 .= 3v
mdt

dEm 
  

Now suppose a satellite to move along an orbit with small eccentricity 1<<e , i.e. near-circular orbit. 
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In this case radial component of satellite velocity is considerably less than the velocity of orbital 

motion 
rv = . So it is possible to consider:  

 ,==== 22

r

L

rm

L
rvvvv m

r 
  

where L  - absolute magnitude of orbital angular momentum of a satellite, mLLm /=  is specific 

angular moment. Then we obtain the following relation:   

 .c=/=
3

3

onstm
dt

dE

L

r m

m

  (1.27) 

 

Taking into account  (1.9) , relation  (1.27) can be represented as the following:   

 m
p

e

dt

d

p

p
/=

)(1

)(

2

3/2

3













 
  

 here GME= . As far as it is supposed that satellites orbits examined in this task are close to 

circular (small eccentricity) then pr . 

In addition disturbing additions related to nonspherisity of the Earth are neglected in the 

formula for total energy due to their smallness. As a result the latter relation can be reduced to a form:   

 .=
dt

pdm


   (1.28) 

 

Thus this formula allows us to estimate related change of atmospheric density at a satellite's 

orbit height. It is necessary to know cross-section and mass of a satellite to calculate absolute value of 

atmospheric density. 

 

1.2  Input data for practical work 

 

Problems of cosmophysical practical training referred to section "Mechanics" request skills of 

work with data on Keplerian elements of satellite's orbit which comes from tracking stations. One of 

the most complete databases of satellite regularly enriched and which has an open access for the most 

satellites is NORAD database (North American Aerospace Defense Command). But there are also 

other databases on other sites. Needed data can be received by an open access from a private site DR. 

T.S.Kelso 
8
: www.celestrak.com. 

 

NORAD data in TLE format 
 

Data received from the NORAD service in TLE format has a form of three-lines records. One 

of them is not obligatory and contains the name of a satellite (line 0). Two another obligatory lines 

contain the complete information about the Keplerian orbit of a satellite. Each line has the following 

pattern:  

 

 0   AAAAAAAAAAAAAAAAAAAAAAAA 

1    nnnnnU nnnnnaaa nnnnn.nnnnnnnn +.nnnnnnnn +nnnnn-n +nnnnn-n nnnnnn 

2    nnnnn nnn.nnnn nnn.nnnn nnnnnnn nnn.nnnn nnn.nnnn nn.nnnnnnnnnnnnnn   

                                                 
8
TS.Kelso@celestrak.com 
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Line 0 represents 24-symbol (24 bytes) name of a satellite assigned in NORAD system 

(NORAD SATCAT). 

Lines 2 and 3 contain the information according to table 2 (pattern form should be considered). 

 

  Line 1 

 Number   Description 

byte    

 01   Number of line  

 02   Space 

 03-07   Number assigned to a satellite in NORAD system 

 08   Satellite classification (U- not classified) 

 09   Space 

 10-11  International code (the last two digits of the launch year) 

 12-14   International code (launch number in the year) 

 15-17   International code (number of stage) 

 18   Space 

 19-20   Epoch year (the last two digits) 

 21-32   Epoch (day of the year and fraction of the day with decimal dot) 

 33   Space 

 34-43   The first time derivative of mean motion (with decimal dot) 

 44   Space 

 45-52   The second time derivative of mean motion (decimal dot is 

supposed) 

 53   Space 

 54-61   Drag coefficient in the atmosphere (BSTAR drag term) 

 62   Space 

 63   Ephemerid type 

 65-68   Number of elements 

 69   Checksum (modulo 10) 

  (letters, spaces, dots, ``+''-sign - 0, ``-'' sign - 1) 

  

 

 

  Line 2 

 Number   Description 

byte    

 01   Line number  

 02   Space 

 03-07   Number assigned to a satellite in NORAD system 

 08   Space 

 09-016   Inclination (in degrees) 

 17   Space 

 18-25   longitude of ascending node (in degrees) 

 26   Space 

 27-33   Eccentricity (decimal dot is supposed) 
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 34   Space 

 35-42   Perigee argument (in degrees) 

 43   Space 

 44-51   Mean anomaly (in degrees) 

 52   Space 

 53-63   Mean motion (revolutions per day) 

 64-68   Number of revolutions per epoch ([Revs]) 

 69   Checksum (modulo 10) 

  (letters, spaces, dots, ``+''-sign - 0, ``-'' sign - 1) 

  

Table 2. data format in two-line element of Keplerian orbit description in NORAD system.  

 

All the orbit data is referred to one epoch indicated in the first line. Remember that longitude 

of ascending node is counted from the direction to the vernal equinox point the direction of which is 

(for convenience) tied to fixed celestial sphere. This direction slowly moves due to shift of terrestrial 

rotation axis and other processes. But for the practical training tasks it is possible to consider with a 

high accuracy that equatorial plane, direction to the vernal equinox point and terrestrial rotation axis 

are fixed. 

Example: 

 

 NOAA 14 1 23455U 94089A 97320.90946019 .00000140 00000-0 10191-3 0 2621 2 23455 

99.0090 272.6745 0008546 223.1686 136.8816 14.11711747148495  

 

In this fragment a meteorological satellite with name NOAA14 has number 23455 in NORAD 

system. The satellite is not defined - parameter U. The launch year - 1994. Launch number in that year 

- 89. Epoch, when orbit parameters were measured - 320.90946019 day in 1997, i.e. positions of 

rotation axis of the Earth, equatorial plane and vernal equinox direction refer to that moment. Then 

inclination of the orbit is 90.0090 degrees, longitude of ascending node in epoch is 272.6745. 

Eccentricity is 0.0008546 (the orbit is almost circular). Perigee argument is 223.1686 degrees. Mean 

anomaly in epoch 136.8816, mean motion - 14.11711747 or the number of revolutions by the moment 

of measurement is 14849 

Files containing a set of such records usually have TLE extension and are used by many 

program complexes of satellite tracking and amateur programs (e.g. Orbitron (www.stoff.pl) ). 

Realizing task with a computer in practical training it is useful to have a copy of data on set of 

satellites in TLE format for several years. Such data is for example on www.celestrak.com. A 

fragment of such file is represented in the table for satellite NOAA17:  

1 27453U 02032A 03036.91173877 .00000252 00000-0 13090-3 0 3431  

2 27453 98.7603 108.1893 0012457 36.6226 323.5801 14.23284986 32161  

1 27453U 02032A 03037.12263737 .00000259 00000-0 13369-3 0 2941  

2 27453 98.7603 108.3991 0012453 35.9336 324.2677 14.23285178 32198  

1 27453U 02032A 03037.89593266 .00000255 00000-0 13208-3 0 2957  

2 27453 98.7602 109.1685 0012437 33.8535 326.3432 14.23285612 32304  

1 27453U 02032A 03037.96623227 .00000255 00000-0 13205-3 0 2975  

2 27453 98.7602 109.2384 0012436 33.6520 326.5446 14.23285653 32315  

1 27453U 02032A 03038.95042518 .00000275 00000-0 14086-3 0 3378  

2 27453 98.7600 110.2175 0012397 30.9679 329.2227 14.23286491 32457  

1 27453U 02032A 03039.09102410 .00000280 00000-0 14294-3 0 2963  

2 27453 98.7600 110.3574 0012393 30.4998 329.6899 14.23286631 32473  
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1 27453U 02032A 03039.93461765 .00000289 00000-0 14705-3 0 2974  

2 27453 98.7599 111.1966 0012352 28.3357 331.8490 14.23287295 32596  

1 27453U 02032A 03040.91880989 .00000291 00000-0 14782-3 0 3437  

2 27453 98.7597 112.1756 0012326 25.4619 334.7164 14.23287992 32732  

1 27453U 02032A 03041.12970817 .00000294 00000-0 14934-3 0 2982  

2 27453 98.7597 112.3855 0012317 24.8073 335.3700 14.23288166 32761  

  

1.3  Tasks of the practical training 

 

 

1.3.1   Task 1. Measurement of J2 by secular variations of Keplerian 

parameters of satellite's orbit 

 

Measurement of parameter 2J  - amplitude of the second zonal harmonic - can be realized 

with the help of any equation  (1.24) - (1.26) . Curves of a secular variation of three basic parameters 

- longitude of ascending node, perigee argument and mean anomaly represent almost straight lines the 

inclination of which contains the information of the second zonal harmonic magnitude 2J . For 

NOAA-17 these curves are shown in fig. 7-9. There also a straight line of linear regression is shown 

with the red color. In fig. 10 a deviation of change of longitude of ascending node from secular one is 

shown. It is obtained by the subtraction of regression line from the initial data. This deviation 

represents harmonic oscillations of the longitude of ascending node and perigee argument in relatively 

short segments. Parameters of these oscillations can also be used for measurement of magnitude of the 

second zonal harmonic amplitude. 

 

 Task. 
 

 1. For several given satellites with different inclination of the orbit make a selection from 

NORAD data file based on satellite's orbit parameters in definite period of time. Selection should be 

made by the longitude of ascending node  , Mean anomaly 0M , perigee argument  , mean 

motion n  and inclination i . 

2. Graph the variation of difference E =  of the longitude of ascending node   in 

the given period of time and the diurnal rotation of the Earth E  for all satellites. In the similar way 

graph mean anomaly 0M  and perigee argument  . 

3. Calculate the average value of focal parameter p  of the orbit by the data on mean motion 

n  and estimate statistical error of calculation of p . Do the same for inclination of the orbit. 

4. 4. Using this data estimate tangent of inclination =anlR  of graphs of secular shift of 

longitude of ascending node, perigee argument and mean anomaly. Parameter anlR  in units used 

represents the shift value of longitude of ascending node in degrees per day. With the help of 

equations  (1.24) ,  (1.25) amd  (1.26) ) magnitude of zonal harmonic J2 amplitude can be 

calculated 2J :   

 ,
cos3603

2
=
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 Here n  is taken from NORAD data, i.e. in units - number of revolutions per day. Notice that number 

n360  represents the total run of the angle (true anomaly) per day. Multiplier 22 )(1 e  is neglected 

due to its proximity to 1. 

5. Estimate statistical error in 2J  estimation 

6. Compare results for several satellites. 

 

 

Questions for the preparation for the solution of the problem 
 

  

    1.  What is zonal, tesseral and sectoral spheric harmonics of the planet field? Describe 

qualitatively their basic parameters. 

 

    2.  In what way are amplitudes of the second harmonics related to the terrestrial moment 

of inertia? 

 

    3.  The values of the second harmonics for solar system planets are given in table 1. Give 

the qualitative explanation concerning the difference in the second and subsequent harmonics of 

different planets. 

 

    4.  What is planetary node? Explain its geometrical sense. 

 

    5.  Describe qualitatively the character of change of the longitude of ascending node for 

equatorial and polar orbits of a satellite. 

 

    6.  What is osculating elements of the orbit? 

 

    7.  What is perigee argument of a satellite? Explain its geometrical sense. 

 

    8.  Describe qualitatively the character of change of perigee argument for equatorial and 

polar orbits of a satellite 

 

    9.  What is critical inclination of the orbit? 

 

    10.  What is true, eccentric and mean anomaly? explain their geometrical sense. 

 

    11.  Write (derive) Keplerian equation. what is the relation between true, eccentric and 

mean anomaly?  
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1.3.2  Task 2. Measurement of 2J  by long-period variations of Keplerian 

parameters of satellite's orbit 
 

Measurement of parameter 2J  - amplitude of the second zonal harmonic can be realized with 

the help of equations of long-period perturbations of the orbit which are related to 2J . Long-period 

perturbations for perigee argument and mean anomaly represent almost harmonic deviations from 

secular perturbations amplitude of which is proportional to the second zonal harmonic 2J . According 

to the theory of perturbations (see [4]) corrections for the secular perturbations have a form of:   

 ,2sin])5(14011[1
16

1
= 12423

2

2  
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 Here the designation is introduced:   

 ).(cos=  ,1= 0

2

0 ie    

 In these equations parameters ,M  coincide with the secular variation of the orbit accurate within 
2

2J , i.e. grow linearly. 

To calculate the corrections it is necessary to subtract secular perturbations ,M  obtained 

in the first practical work from the graph of change of (å)(å),M . Residual series represents 

long-period perturbations of the orbit with contribution of other outer forces for example the 

gravitational force of the Moon and the Sun. but these quantities are relatively small. Amplitude of 

periodic change in the residual series can be estimated with the help of method of least squares for a 

probe harmonic function. The typical form of residual perturbations from the secular motion of orbital 

parameters for NOAA-17 is shown in fig. I-5. 

 

  
Fig. I-5. Residual series of perigee argument for satellite NOAA-17.  
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 Task. 
 

 1. For several given satellites with different inclination of the orbit make a selection from 

NORAD data file based on satellite's orbit parameters in definite period of time. Selection should be 

made by mean anomaly 0M , perigee argument  , mean motion n  and inclination i . 

2. With the help of method of least squares estimate tangent of inclination =anlR  of graphs 

of secular shift of perigee argument and mean anomaly and points of shift of linear regression. 

3. Basing on input data calculate the obtained linear regression dependences of )(t  and 

)(0 tM  . 

4. With the help of method of least squares for a probe harmonic function calculate the 

amplitude of oscillations in the residual series. Using equations  (1.29) estimate quantity 2J . 

5. Estimate statistical error of J2 estimation 2J . 

6. Compare the results for several satellites and compare results to the estimation obtained by 

secular perturbations.  

 

Questions for the preparation for the solution of the problem 
 

  

    1.  What are zonal, tesseral and sectoral harmonics of the planet's field? Describe 

qualitatively their basic characteristics.  

    2.  In what way are amplitudes of the second harmonics related to the terrestrial moment 

of inertia?  

    3.  Values of zonal harmonics for planets of the solar system are given in table 1. Give the 

qualitative explanation to relative differences in the second and subsequent harmonics of different 

planets.  

    4.  What is orbital node? Describe qualitatively the character of change of the longitude of 

ascending node for equatorial and polar orbits of a satellite.  

    5.  What is osculating elements of the orbit?  

    6.  What is perigee argument of a satellite? Explain its geometrical sense.  

    7.  Describe qualitatively the character of change of perigee argument for equatorial and 

polar orbits of a satellite  

    8.  What is critical inclination of the orbit?  

    9.  What is true, eccentric and mean anomaly? explain their geometrical sense.  

    10.  Write (derive) Keplerian equation. what is the relation between true, eccentric and 

mean anomaly? 

 

 

 

1.3.3  Task 3. Exploration of variation of atmospheric density at the 

satellite's height with the help of method of estimation of atmospheric resistance 

magnitude 

 

Examining the variation of the mean motion within long periods of time from several months 

to tens of years it is possible to discover the changes of the atmospheric density within this period of 

time. Variation of atmospheric density at the height of satellite's orbit is caused by two basic reasons. 

The first one is a slow descent of the satellite's orbit and the growth of atmospheric density at lower 
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orbits. The second reason of atmospheric density variation is its warming by the solar radiation. The 

most interesting task in this problem is the disclosure of the way the atmospheric density changes due 

to its warming by the solar radiation. 

 

  
Fig. I-6. The example of calculation of the dependence of focal parameter on time.  

 

There are two basic phenomena to be observed with the help of exploration of variation of 

satellite's orbit radius. The first one can be observed within periods of several months. As far as the 

atmosphere is constantly heated by the Sun on the side facing the Sun the atmosphere is more 

stretched to the Sun than in perpendicular direction. As the result when analyzing the data it is possible 

to observe the variation of density which have typical period coinciding with the period of secular 

rotation of the orbital plane of a satellite. 

In order to complete this laboratory work it is necessary to select data concerning motion of 

satellite with near-circular orbits from the NORAD database. Satellites should be chosen that have 

orbits remaining unchanged within quiet a long period of time thanks to orbital maneuvering drives. 

Analysis of orbits can be verified with the examination of graphs of variation of longitude of 

ascending node, perigee argument  , mean anomaly 0M , mean motion n  and inclination i . After 

the selection of data one can start the work. 

Tasks. 
 1. For satellites given by a teacher choose data on orbital elements into separate file with the 

help of a program written. (see exemplary listings in Maple.). 

2. Graph the variation of the specific total energy, specific angular momentum and focal 

parameter. 

3. With the help of method of smoothing of series, for example with the help of low-frequency 

filtration, calculate smoothed series of parameter )(tp . 

4. With the help of calculation of the central (right or left) difference derivative or with the 

help of the method of least squares calculate the speed of parameter )(tp  variation as a time 

function in the whole time interval. Data obtained in tasks 3 and 4 should be plotted in one graph. 

Analyze graphs and explain it (additional information concerning the solar activity could be used). 



21 

 

5. Supposing a satellite mass and cross-section area to be constant estimate the relative 

variation of atmospheric density at the height of satellite's orbit within the period of several months to 

several years. With the help of harmonic analysis calculate the typical period of atmospheric density 

variation and compare it to the angular velocity of the secular rotation of the orbital plane.  

 

Questions for the preparation for the solution of the problem 
 

  

    1.  In what way does the atmospheric resistance influence the shape of the orbit?  

    2.  Describe qualitatively the variation of shape of a very elliptical orbit when a satellite 

passes near the Earth (in perigee)?  

    3.  Describe qualitatively the variation of near-circular orbit parameters near the Earth 

due to the resistance of the atmosphere?  

    4.  What can cause short-period growth of drag coefficient of the atmosphere?  

 

 

1.3.4  Task 4. Exploration of interconnection between the atmospheric 

density variation and the solar activity 

 

The second phenomenon observable with the help of estimations is related to the variation of 

solar activity with a typical period of 11 years. With the growth of solar activity the atmosphere of the 

Earth warms up much more due to increase of charged particles flows falling on the Earth. It leads to 

a considerable growth of speed of reduction of satellite's orbit radius. This phenomenon can be 

observed if one watches satellites having been on the orbit for quite a long time, i.e. several years or 

even more. 

To complete this work it is necessary to choose orbital parameters for a long enough period of 

time for a satellite or satellites from NORAD database and to calculate values of specific total energy, 

specific angular momentum and semimajor axis and then to graph them. Then one should estimate the 

speed of decrease of total energy of a satellite with the help of least-squares method. And after that it is 

possible to calculate the specific drag coefficient of the atmosphere. 

Task. 
 1. For satellites given by a teacher choose data on orbital elements into separate file with the 

help of a program written. (see exemplary listings in Maple.). 

2. Graph the variation of the specific total energy, specific angular momentum and focal 

parameter. 

3. With the help of method of smoothing of series, for example with the help of low-frequency 

filtration, calculate smoothed series of parameter )(tp . Adjust the filter length in such way to leave 

in series measurements with a typical scale not less than one year. 

4. With the help of calculation of the central (right or left) difference derivative or with the 

help of the method of least squares calculate the speed of parameter )(tp  changing as a time 

function in the whole time interval. Data obtained in tasks 3 and 4 should be plotted in one graph. 

Analyse the graphs and explain it using the additional information about the solar activity. Data on 

series of Wolf number should be taken as such information (e.d. on a site:  

ftp://ftp.ngdc.noaa.gov/stp/solar_data/sunspot_numbers/international/monthly/MONTHLY.PLT. . 

5. It is necessary to smooth the data on the atmospheric density to compare it to series of Wolf 

numbers. Overlay the graphs and calculate correlation coefficient between the relative density of the 

atmosphere and Wolf numbers.  
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1.3.5  Task 5. Modeling of satellite's motion along low orbits near the Earth 

 

One of the problems one has to solve analyzing the data coming from satellites is calculation 

of the satellite's position relative to the Earth where any measurement of the space medium was 

carried out. It is necessary to solve this problem because the position of a satellite cannot always be 

obtained from a direct measurement of its coordinates. For many satellites their position can be 

detected only by ground-based tracking services which transmit the data from several times per day to 

several times per week. In all intermediate moments the satellite's position is calculated by the 

solution of the problem of satellite's motion. 

In this problem a short program is supposed to be written to calculate the geographical 

coordinates of satellite's position projection on the celestial sphere at the given moment of time if 

Keplerian parameters of the satellite's orbit are known. It is supposed to be realized with nonsphericity 

of the Earth and other disturbing factors not taken into account. 

In this task it is supposed to calculate the satellite's orbit using the data accessible from the 

NORAD system, such calculations can be carried out with the help of equations  (1.15) ,  (1.16) ,  

(1.17) etc. in this case we offer to explore orbits of satellites the orbital height of which is in the range 

from hundreds to several thousand kilometers. 

 

Task. 
 

 1. For satellites given by a teacher choose data on orbital elements in some epoch 0t . 

2. Using the chosen parameters graph the projection of satellite's orbit on the geographic map 

taking into account rotation of the Earth. 

3. Compare the calculated position of a satellite to its real position respective to NORAD 

system data. Estimate the accuracy of coincidence of coordinates. 

4. Explain deviations.  

 

1.3.6  Task 6. Modeling of satellite's motion along geostationary orbit 

 

Specific types of orbits lead to some interesting facts when projecting them on the Earth's 

surface. Geostationary orbits are the ones. There are a lot of scientific and telecommunication 

satellites on these orbits. That is why it is necessary to be able to calculate an orbit of a geostationary 

satellite. 

Task. 
 1. For satellites given by a teacher choose data on orbital elements in some epoch 0t . 

2. Using the chosen parameters graph he projection of satellite's orbit on the geographic map 

taking into account rotation of the Earth. 

3. Compare the calculated position of a satellite to its real position respective to NORAD 

system data. Estimate the accuracy of coincidence of coordinates. 

4. Explain the difference between the behaviors of different geostationary satellites.  
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1.4  Appendix 1. Texts of programs for realization of tasks 

 

The text of a program in C (of Borland c company) allowing to chose needed data from files 

containing satellite data. 

 

 #include <conio.h> #include <stdio.h>  

#include <mem.h>  

#include <string.h> 

 #include <math.h>  

#include <stdlib.h> 

 void main(void)  

{ 

 // Variable type FILE for satellite data - file and  

// graph - output files  

FILE *file,*graph;  

// String variable Buff using for reading 

 // line elements char  

Buff[141];  

// Set names for  

files (FileName[60])  

// file (FileGraph[60])  

char FileName[60]="NOAA-17.txt";  

char FileGraph[60]="ALNOAA17.txt";  

int l,i;  

// Var data for epoch. 

// AscNodLong - longitude of ascending node (grad)  

// amove - mean motion s^{-1}.  

// p - focal parameter m  

// a - big halfaxis m  

// e - eccentrisity  

// mu=M_Eth*G - Mass Earth non Grav. const G  

// Energym - Energy per one kg mass  

// Lm - specific angular momentum  

double data,AscNodLong,amove,de2,p,e,a,mu,Energym,Lm;  

double Pi=3.141592L,  

// nu,ber Pi R_Eth=6378000,  

// Equatorial radius of the Earth [m] M_Eth=5.98E24,  

// Mass of the Earth [kg] G=6.672E-11;  

// Gravitational constant in SI mu=M_Eth*G;  

// String variable char SData[13];  

// Epoch char SAMove[13];  

// Mean motion (1/day) char SAscNodLong[10];  

// longitude of ascending node (grad) char SEccentr[8];  

// eccentrisuty *10^7 (mantissa without decimal point) char SIncl[9];  

// Inclination (grad) char SArgPer[9];  

// Argument peregee (grad) char Sp[9];  

// Focal parameter  
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// Clean str var  

setmem(Buff,141,0);  

setmem(SData,13,0);  

setmem(SAscNodLong,9,0);  

setmem(SAMove,13,0);  

setmem(SEccentr,8,0);  

setmem(SIncl,9,0);  

setmem(SArgPer,9,0);  

setmem(Sp,9,0);  

// Open files  

if(NULL ==(file=fopen(FileName,"r") ))  

{  

puts("File error!"); exit(0); 

}  

if(NULL ==(graph=fopen(FileGraph,"w") ))  

{  

puts("File error!"); exit(0); 

}  

// Reading the file  

for(i=1;i<100;i++)  

{  

// Copy to buffer  

fread(Buff,1,140,file);  

// Copy to var  

memcpy(SData,&Buff[20],12);  

memcpy(SData,&Buff[20],12);  

memcpy(SAMove,&Buff[70+52],11);  

memcpy(SEccentr,&Buff[70+26],7);  

memcpy(SIncl,&Buff[70+8],8);  

memcpy(SArgPer,&Buff[70+34],8);  

memcpy(SAscNodLong,&Buff[70+17],8);  

// Calculation of var  

data=atof(SData);  

amove=atof(SAMove)*2.0L*Pi/(3600.0L*24.0L);  

a=pow(mu/(amove*amove),1.0L/3.0L);  

e=atof(SEccentr)/10000000.0L;  

de2=(1-e*e);  

p=de2*a/R_Eth;  

Energym=-de2*mu/p; Lm=sqrt(mu*p);  

AscNodLong=atof(SAscNodLong);  

setmem(Sp,9,0);  

sprintf(Sp," setmem(SEccentr,8,0);  

// Writing to output files  

fprintf(graph," SData,SAscNodLong,SIncl,Sp,SArgPer,SEccentr,SAMove,Energym,Lm);  

} 

 // Close file  

fclose(file); fclose(graph); 

 }  
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Example of output file  
 175.81115570 242.8893 98.7855 1.12925 5.7429 0.00149 14.21021993 -3.533192e+14 2.122624e+07 
 175.84076954 242.9161 98.7900 1.12831 333.1378 0.00101 14.22801375 -3.536141e+14 2.121740e+07 
 175.88146355 242.9592 98.7879 1.12813 331.0799 0.00108 14.23131149 -3.536687e+14 2.121576e+07 
 175.89388638 242.9710 98.7876 1.12812 330.2629 0.00106 14.23159387 -3.536734e+14 2.121562e+07 
 175.89512742 242.9721 98.7873 1.12811 330.2535 0.00105 14.23166583 -3.536746e+14 2.121559e+07 
 175.91822197 242.9955 98.7878 1.12811 330.2151 0.00111 14.23177189 -3.536763e+14 2.121553e+07 
 175.97060955 243.0459 98.7876 1.12814 331.7044 0.00108 14.23118277 -3.536666e+14 2.121583e+07 
 176.10887502 243.1851 98.7874 1.12816 331.9446 0.00114 14.23079723 -3.536602e+14 2.121602e+07 
 176.51425062 243.5873 98.7867 1.12816 330.9632 0.00111 14.23078277 -3.536599e+14 2.121602e+07 
 176.79548995 243.8675 98.7850 1.12816 330.4900 0.00113 14.23072515 -3.536590e+14 2.121605e+07  
Programm trs.c. 

 

 > restart; > with(plots): > with(plottools):  

 

Warning, the name changecoords has been redefined 

Warning, the assigned name arrow now has a global binding 

 

 Constants > 

 >  R_Eth:=6378000;  # Radius of the Earth 

 > M_Eth:=5.98E24; # Mass of the Earth  

 > G:=6.672E-11; # Gravitational const 

 > mu:=M_Eth*G; #  

 

6378000:=thRE  
250.59810:=thME  

100.667210:= G  
1500.39898561:=mu  

 

 Input data > fd:=fopen("d:\\sattelites \\date\\alnoaa17.txt",READ);  

 

fd := 0 

 

 > sNp:=fscanf(fd,"> Np:=op(1,sNp);  

 

sNp := [300] 

 Np := 300 

 

 > for i from 1 to Np do > gr[i]:=fscanf(fd,"> end do: > fclose(fd);  

 

 

 > op(1,gr[1]);  

 

175.8111557 

 

 Parameters of linear regression Date (Epoch) -dt Long. ascend. node - anl Argument peregee 

- arp Mean anomaly - aan Mean value has prefix - s: sdt,sarnl,sarp,saan Mean multiplication prefix - c: 

ctanl,ctarp,ctaan Mean square - d: ddt  
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> N:=Np; # End index  

> Nb:=20; # Start index  

 

N := 300 

Nb := 20 

> sdt:=0;  

> sanl:=0;  

> sarp:=0;  

> saan:=0;  

> sincl:=0;  

> sp:=0;  samove:=0;  ddt:=0;  ctaan:=0;  ctarp:=0;  ctanl:=0;  

 

sdt := 0 

sanl := 0 

sarp := 0 

saan := 0 

sincl := 0 

sp := 0 

samove := 0 

ddt := 0 

ctaan := 0 

ctarp := 0 

ctanl := 0 

 

 > for i from Nb to N do  

> dt:=op(1,gr[i]);  

# Epoch 

 >anl:=op(2,gr[i]);  

# Longitude ascend. Node 

> ecc:=op(7,gr[i]);  

# Eccentricity  

> arp:=op(5,gr[i]);  

# Arg. peregee  

> aan:=op(6,gr[i]);  

# Mean anomaly  

> amove:=op(8,gr[i]);  

# Mean motion  

> incl:=op(3,gr[i]);  

# Inclination  

> p:=op(4,gr[i]);  

# Focal parameter  

> sdt:=sdt+dt;  

> sp:=sp+p;  

> sincl:=sincl+incl;  

> samove:=samove+amove;  

> sanl:=sanl+anl;  

> sarp:=sarp+arp;  

> saan:=saan+aan;  
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> ddt:=ddt+dt*dt;  

> ctanl:=ctanl+dt*anl;  

> ctarp:=ctarp+dt*arp;  

> ctaan:=ctaan+dt*aan;  

> end do:  

> sdt:=sdt/(N-Nb+1);  

> sanl:=sanl/(N-Nb+1);  

> sarp:=sarp/(N-Nb+1);  

> saan:=saan/(N-Nb+1);  

> samove:=samove/(N-Nb+1);  

> sincl:=sincl/(N-Nb+1);  

> sp:=sp/(N-Nb+1);  

> f:=sp^2;  

#Calculation of linear regression parameters >  

>RANL:=evalf((ctanl/(N-Nb+1)-sanl*sdt)/(ddt/(N-Nb+1)-sdt*sdt)); >  

RARP:=evalf((ctarp/(N-Nb+1)-sarp*sdt)/(ddt/(N-Nb+1)-sdt*sdt)); > 

RAAN:=evalf((ctaan/(N-Nb+1)-saan*sdt)/(ddt/(N-Nb+1)-sdt*sdt)); > BANL:=sanl-RANL*sdt; > 

BARP:=sarp-RARP*sdt; > BAAN:=saan-RAAN*sdt;  

 

sdt := 252.2973278 

sanl := 319.1639384 

sarp := -252.9898302 

saan := 253.1034345 

samove := 14.23140240 

sincl := 98.77901032 

sp := 1.128127356 

f := 1.272671331 

RANL := 0.9970098010 

RARP := -2.866122188 

RAAN := 2.866453539 

BANL := 67.6210298 

BARP := 470.1251390 

BAAN := -470.0951337 

 

 Calculation J_2 from long. asc. Node>  

> J2anl:=evalf((2/3)*f*(RANL/cos(sincl))/(360*samove));  

 

J2anl := -0.0009164191231 

 

 Argument peregee>  

> J2anl:=evalf((4/3)*f*(RARP/(1-5*(cos(sincl))^2))/(360*samove));  

 

J2anl := -0.001133217422 

 

 Mean anomaly >  

> J2ann:=-evalf((4/3)*f*(RAAN/(1-3*(cos(sincl))^2))/(360*samove));  

         J2ann := -0.001051831107 
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Create graphics >  

Regression line  >  

>lanl:=line([op(1,gr[Nb]),RANL*op(1,gr[Nb])+BANL], 

[op(1,gr[N]),RANL*op(1,gr[N])+BANL], color=red,linestyle=3,thickness=5):  

>larp:=line([op(1,gr[Nb]),RARP*op(1,gr[Nb])+BARP], 

[op(1,gr[N]),RARP*op(1,gr[N])+BARP], color=red,linestyle=3,thickness=5): 

>laan:=line([op(1,gr[Nb]),RAAN*op(1,gr[Nb])+BAAN], 

[op(1,gr[N]),RAAN*op(1,gr[N])+BAAN], color=red,linestyle=3,thickness=5):  

>pic12:=[seq([op(1,gr[i]),op(2,gr[i])],i=Nb..N)]:  

> pic13:=[seq([op(1,gr[i]),op(5,gr[i])],i=Nb..N)]:  

> pic16:=[seq([op(1,gr[i]),op(6,gr[i])],i=Nb..N)]:  

> pic19:=[seq([op(1,gr[i]),op(9,gr[i])],i=Nb..N)]:  

> pic14:=[seq([op(1,gr[i]),op(4,gr[i])],i=Nb..N)]:  

> pic110:=[seq([op(1,gr[i]),op(10,gr[i])],i=Nb..N)]:  

> pictanl:=[seq([op(1,gr[i]),op(2,gr[i])-RANL*op(1,gr[i])-BANL],i=Nb..N)]:  

> pictarp:=[seq([op(1,gr[i]),op(5,gr[i])-RARP*op(1,gr[i])-BARP],i=Nb..N)]:  

> pictaan:=[seq([op(1,gr[i]),op(6,gr[i])-RAAN*op(1,gr[i])-BAAN],i=Nb..N)]:  

>ptanl:=pointplot(pictanl,labels=[day,degree],font=[SYMBOL,2], title="Long variations of 

longitude ascending node "):  

>ptarp:=pointplot(pictarp,labels=[day,degree],font=[SYMBOL,2], title=" Long variations of 

argument peregee "):  

>ptaan:=pointplot(pictaan,labels=[day,degree],font=[SYMBOL,2], title=" Long variations of 

mean anomaly "):  

> p1:=pointplot(pic12,labels=[day,degree],font=[SYMBOL,2], title="Secular variations of 

longitude ascending node "):  

> p3:=pointplot(pic13,labels=[day,degree],font=[SYMBOL,2], title=" Secular variations 

argumenr peregee"):  

> p6:=pointplot(pic16,labels=[day,degree],font=[SYMBOL,2], title=" Secular variations 

mean anomaly"):  

> p4:=pointplot(pic14,labels=[day,"p/R_Eth"],font=[SYMBOL,2], title=" Secular variations 

of focal parameter "): 

> p9:=pointplot(pic19,labels=[day,"Dj"],font=[SYMBOL,2], title="Variations of specific 

energy "):  

>p10:=pointplot(pic110,labels=[day,"m^2/s"],font=[SYMBOL,2], title="Variations of 

specific angle moment "): > plots[display](ptanl);  

> plots[display](ptarp); > plots[display](ptaan); > plots[display](p1,lanl);  

> plots[display](p3,larp); > plots[display](p6,laan); > plots[display](p4); > plots[display](p9); 

> plots[display](p10);  
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2.1  Theoretical background 

 

 

2.1.1  Sunspots and their motion on the solar disk 

 

(The theory is given in accordance to the course Life of the Earth in the solar atmosphere. For 

detailed information one should appeal to this course and to literature given in the section List of 

literature) 

Dark sharply outlined sunspots forming groups are the most noticeable structures in visible 

light (Fig. II-1). Among the number of more or less small spots two big spots are usually 

distinguished. They form a bipolar group with the opposite polarity of the magnetic field and with the 

intensity equal to thousands of oersted . 

 

    
Fig. II-1. Groups of Sunspots 

 

  

Sunspots appear in a form of dark pores between granules (see inscription and arrow in fig. 2) 

having size of several thousands of kilometers. The shadow of a developed big spot has a diameter of 

tens of thousands kilometers and brightness 5-10 times less than the surrounding photosphere. The 

spot shadow is surrounded by a radial structure. 

Sunspots are the places where a strong magnetic field of 34)·10(2  oersted coming out into the 

photosphere. The shadow temperature is 34)·10(3  K. for the first time a vertical motion of plasma 

with the speed of 6 km/s in semishadow was discovered by English astronomer Evershed in1909. The 

dimensions in million kilometers (megameters, Mm) are laid off along axes 
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Fig. II-2. Basic elements of Sunspots structure. 

 

  

Spots have quite stable dynamics and cinematics. 

First, spots at different latitudes take part in general rotation of the Sun which differs from the 

angular velocity at different latitudes. This phenomenon is called the differential rotation of the Sun. 

A visible motion on the solar limb is related to this phenomenon. 

Second, spots appear as small dark areas on the Sun grow under a certain law and then reduce 

and disappear. 

The lifetime of big size spots is long enough so that within this period a spot has time to 

complete the turn around the Sun which takes 27 days. 

The physics of spot formation and disappearance processes is not studied yet. So it is useful to 

examine some simple laws of the process to have a general idea of the character of this process. 

 

Model of Sun spots evolution 
 

In this task laws of time variation of spot area and other parameters are explored. The task is 

targeted at the verification of a standard model of sunspot area variation based on the data obtained 

from the examination of sets of photo images of the Sun. 

The standard model represents a so-called log-normal distribution:  

 .
2

))/(ln(
exp=)(

2

2

0
0












tt
StS  

Here )(tS  is spot area as a time t  function, 0t  a moment of time when the area is maximum, 2  a 

quantity characterizing the lifetime of a spot, 0S  - maximum area of a spot. With that it is considered 

that the moment 0=t  corresponds to the birth moment of a spot. Typical graphs of this dependence 

are shown in fig. II-3 
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Fig. II-3. Log-normal distribution for different values of dispersion 2 : 1 - 0.2= , 2 - 

0.4= , 3 - 0.6= , 4 - 0.8= , 5 - 1.0= .  

  

In fig. II-3 curves of log-normal distribution are shown for five values of parameter   for 

values: 1= 1,= 00 tS . As it is seen from graphs log-normal description describes the process of fast 

birth of spots and slower destruction. 

Another model is a model (Lorentz distribution):  
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Here parameters 0t ,   have the same sense as for log-normal distribution. Maximum area of a spot 

is 20/S . This distribution is represented in fig. II-3. 
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Fig. II-4. Lorentz distribution for different values of parameter 2 : 1 - 0.4= , 2 - 0.8= , 

3 - 1.2= , 4 - 1.6= , 5 - 2.0= . 

 

  

It is clear from the comparison of figures II-3 and II-4 that Lorentz distribution describes the 

process of appearance of sunspot with the same speed as its further destruction. In the offered problem 

the best of the two models is to be chosen by the Fisher criterion. 

 

The procedure of spots parameters calculation 
. 

The procedure of identification of spots on the solar limb is based on a special procedure of 

contouring areas bounded by a curve with given value of color level, defined by RGB-representation 

of a color dot of the image. The program identifies such areas automatically and calculates their area 

as a number of pixels of the image. 

Area measured in pixels is converted into metric area with the help of a simple correspondence 

between linear dimensions of the Sun in the picture and real Sun dimensions. To do this the program 

does the calculation of the solar diameter in pixels as the diameter of a circle. The circle is plotted 

basing on the boundary points of the solar limb in the picture with the help of the least-square method. 

The relation of the real solar diameter in km to the diameter in pixels yields a parameter for conversion 

of pixel area into real area. More over the program makes the correction of the spot area by the angle 

of view. As far as the majority of spots have relatively small angular dimensions, the correction of the 

spot area can be done by the following equation with high accuracy :  
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where S  in corrected area, S   - not corrected area,   - the latitude of the spot center counted from 

helioequator (the middle line of the image),   longitude of the spot center counted from the central 

meridian of the image (the center of a picture). With that the center of an image is detected as the 

center of the smallest rectangle, completely bounding the spot. 

Coordinates of the center of a spot are traced in all totality of images to be processed. Motion 

of a spot is detected by these coordinates. 

The analysis of the longitudinal motion yields the estimation of the speed of the differential 

rotation at the given latitude. Latitudinal motion of a spot gives the estimation of a current inclination 

of the solar axis to the view axis. Maximum of this inclination is about 70 degrees. 

 

2.1.2  The differential rotation of the Sun 

 

The differential rotation means that the Sun rotates not as a solid body but as a gas sphere with 

the different speed of contrasting elements on its surface (for example spots) at different distances 

from the solar equator:  

 )).()((1=)( 42

0  ccosbcosV   

At the equator the rotation velocity is about 2 km/s and decreases to the Poles. The general form of this 

dependence is usually given as: 6

0 102.87=   rad  s 1 , 0.17.=  0.12,= cb  

The problem of the determination of velocities of the differential rotation of the Sun at 

different helio-latitudes is usually solved with the help of long-period observation of separate spots 

within a week or even longer. The period of time needed for a spot to complete the total turn at this 

latitude is counted. After that the velocity is calculated as a ratio of the length of a travel arch of a spot 

to the time of travel. The velocity value is usually considered as the average one for a set of spots. 

Such procedure requires an analysis of a great number of Sun images obtained in quite a long period 

of time. 

In the given task another method is offered. It allows us to estimate the speed of the differential 

rotation of the Sun in quite a short period of time of several hours. The basis of the method is in the 

measurement of phase velocity of harmonic components visual band electromagnetic radiation 

intensity variations or variation of the magnitude of the solar photosphere magnetic field in zonal 

direction (along the equator). If we observe quite stable-shape spots for several hours, their harmonic 

components will have phase velocity coinciding with the velocity of the whole spot. More over a 

compact shape of a spot in zonal direction in the intensity of radiation leads to the fact that there will 

be several separate harmonic waves with different zonal wave numbers in Fourier expansion in 

harmonic components and therefore these components will have different frequencies. With that 

phase velocities of those components will be equal. 

With that the spectrum will also contain harmonic components with phase velocity different 

from the velocity of the whole spot. Such waves are related to different wave processes possible in the 

solar atmosphere. For example harmonic components can be related to the generation of 

hydrodynamic waves in plasma at boundaries of flows moving with different velocities. The example 

of such wave generation is shown by waves in atmospheres of the giant planets. Such waves also exist 

in the terrestrial atmosphere and oceans. 

The target of this work is the calculation of the phase velocity of sets of harmonic components 

of radiation intensity variation in different bands of electromagnetic radiation and magnetograms of 

the Sun with the help of estimation of these variations time-space spectra. 
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Wave numbers and frequencies spectra 
 

To calculate wave numbers and frequencies of harmonic components of radiation intensity or 

magnitude of the magnetic field (further intensity) an antenna array method is usually applied. An 

antenna array is usually a set of elements (nodes of antenna array) placed in the space at some 

well-known distances. There is a receiver or detector in each node. It measures the magnitude of a 

physical parameter in time-space variation of which waves are observed. This can be the intensity of 

electromagnetic radiation (as it is in radiotelescopes), the pressure of the atmosphere or magnitude of 

the magnetic field. Time series of separate magnitudes of a parameter measured at the same moments 

of time in all nodes are usually used for the exploration of frequencies. Spectral matrixes are 

calculated in the frequency range from 0 to the Niquist maximum frequency determined by the 

formula )1/(2= tfn   where t  is a time interval between consequent measurements of the 

parameter. Except series autospectra the spectral matrix contains cross-spectra which allow the 

estimation of phase shift between harmonic components with one and the same frequency at different 

elements of antenna array. The magnitude of these phase shifts is related to the value of wave number 

of a harmonic component in given frequency. Details can be found in [13, 13, 15]. 

It is convenient to change this procedure in this task and change places of time and space. As 

time series it is possible to use spatial series of intensity in zonal direction taken from separate images 

of the Sun. Separate images (photos) can be considered as a set of variations at the nodes of antenna 

array which is placed in the time. Nodes of antenna array are the moments of time when corresponding 

images were obtained. It is supposed that the time of image reception is considerably less than the 

interval between images. Such replacement of the time and the space becomes necessary because the 

intervals between separate images are not usually regular and the number of images does not exceed 

ten per day. That is why it is impossible to get a set of points big enough for a spectral estimation. On 

the contrary the series of points in zonal direction are regular and unchangeable for separate images. A 

standard resolution for images 512x512 or 1024x1024 pixels allows to obtain a set of data 

representative enough for the estimation of peak wave numbers in the intensity spectrum along 

helio-longitude for each image. 

The calculation of wave numbers and frequencies of harmonic components of radiation 

intensity contrasts or a magnitude of the magnetic field are usually done in two steps according to 

common principles of spectral analysis. At the first step a spectral matrix is built 

MjikSkS ij ,1,=, )),,((=),(   as a function of zonal wave numbers k  for each fixed latitude   

in the totality of images of the Sun. here M  is a number of antenna array elements and in this case it 

is a number of separate processed images. For each latitude an antenna array is a sequence of time 

moments when separate images were obtained. 

That is why the spectral matrix is built on the totality zonal series taken for a fixed latitude of 

each chosen image of the Sun. To make an assessment of spectral matrix ),( kS   in this work a 

method of maximum entropy is used. It is related to multidimensional autoregression (see details in 

the part Methods of spectral estimation). A typical form of wave numbers spectra is represented in the 

following picture. After the calculation of a spectral matrix all local maxima of autospecra 

MjkS jj ,1,= ),(   are found (diagonal elements of the spectral matrix). Among all local maxima 

those are distinguished which have a mean coherence higher than the critical value 0.8=)(kcr . for a 

given wave number k coherences ij  and phase shifts ij  between nodes of antenna array are related 

to nondiagonal elements of the spectral matrix by the following relation: values of coherences )(kij  

lie in the interval [0,1]  and describe the degree of linear connection of harmonic components 

between elements of antenna array i  and j  for a given wave number k . the error in the definition 
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of phase shift considerably depends on the coherence magnitude. So for the purpose of this problem it 

is useful to consider only the spectrum characteristics near the high coherent harmonic components. 

At the second step spectrum of frequencies S ),,( fkS   is built with the help of spectral 

matrix. In this work the creation of a frequency spectrum is realized either with the help of 

maximum-likelihood method or Bartalett method with a glance at interferential effects or without it. 

On default a normalized spectral matrix with elements is used to create a spectrum. In this case 

interferential effects are excluded. This method of estimation should be considered as the best (see. 

Methods of spectral estimation). A typical set frequency spectra is represented in the following figure. 

Having estimated S ),,( fkS a  for each naka ,1,= ,   from a list of wave numbers ( n  - is a number 

of peaks in the spectrum) corresponding to high coherent peaks in a wave number spectrum, one has to 

find the absolute maximum of spectral density ),,( fkS   with respect to frequency. As the result a 

list of pairs of wave numbers and spectral density peaks frequencies: the union of all these point at a 

graph ( ),( fk  allows the creation of a dispersion curve which should be approximated by a linear 

function. The inclination of a linear regression function equals to the needed phase velocity. This 

velocity in turn defines the rotation velocity at this latitude. If there are only harmonic components in 

the spectrum which are related to the intensity contrasts motion as the whole in zonal direction, then 

this velocity coincides with the velocity of differential rotation.  

The diagram wave number - frequency built on seven photos for two latitudes 46.4 and 40.1 

degrees of northern latitude. The red lines show lines of linear regression of peaks in frequency 

spectrum for a list of wave numbers at each latitude. 

 

Obtaining the dots intensity of the image 
 

In this problem a simple method of obtaining the intensity is accepted. It is based on summing 

the intensities of red, blue and green colors in RGB-representation of dots. This method is justified by 

the fact that the color of a dot does not play any important role in this task, but a motion of dots with 

the same values of color is interesting. It is useful to exclude one or two color layers from 

RGB-representation to improve the contrast. So the program offers a user a possibility to choose the 

best combination of layers with the help of switching on and off any layer by a switch placed in the 

first inlay Solar. Three switches have a shared name RGB-filter and are marked with respective 

colored labels. It is important that at least one layer is switched on to create a set of data with nonzero 

colors. It is recommended that all three layers are switched on for grey images. It is recommended for 

example for solar magnetograms. 

 

Algorithm of distinguishing the solar dimensions in the photo 
 

Algorithm of distinguishing the solar dimensions in the photo is different for different types of 

solar photos 

For MDI images (visible band) and MDI-mag (magnetograms) the algorithm represents the 

finding of a dot in the chosen line (line 256) and the total brightness of RGB-intensity of this dot must 

exceed the background intensity chosen to be equal to 10. The extreme dots with such exceeding on 

the left and on the right are the extreme points of a solar disk. The real diameter of the Sun is 1320000 

km. the relation between the real diameter in kilometers and the pixel dimensions yield the relation 

between all the major metric scales of the solar image in the picture and its real dimensions. The 

vertical diameter of the Sun is defined in the same way. 

For ETI-images the algorithm is different. It is related to the fact that the solar corona is visible 

outside the disk in these photos. The criterion of the edge of solar disk is local maximum of 



37 

 

RGB-intensity magnitude on the right and on the left. As far as local extremums may appear due to 

local variation of intensity, it is necessary firstly to smooth the dots intensity in a line to determine the 

edge. So at the first step a smoothing of intensities is realized with the help of cosine filter in a chosen 

line ( line 256) and then left and right positions of the disk edges are determined independently with 

the help of a simple algorithm of local extremum distinguishing. As in case of MDI-images the solar 

disk dimensions are chosen to be equal to the pixel distance between the left and the right maxima. 

The vertical solar diameter is defined in the photo in the same way . 

 

Calculation of the wave phase velocity. 
 

The calculation of the phase velocity is based on a standard determination of a wave phase 

velocity as a ratio of a wave number to its frequency. The estimation of the wave number is realized in 

the program with the help of wave numbers spectrum by the positions of spectral density peaks in 

zonal wave numbers scale. At the next step for each peak a frequency spectrum is estimated. A 

frequency corresponding to the peak position in autospectrum is considered as a wave frequency. The 

relation of these quantities is a normalized phase velocity. As the basic verifiable model of the 

differential rotation of the Sun such model is used: constants A and B are to be defined with the help of 

least squares. But as it is shown by a theoretical analysis the model can be chosen in more generalized 

form. So a user is able to vary the form of the model but justifying his choice. 

 

2.1.3  The solar wind, SCR and Parker's spiral 
 

The area around the Sun with the radius about 75-90 a.u. is called heliosphere. There solar 

magnetic field and flows of charged particles from the Sun prevail over the field and particle of 

galactic origin. Heliopause is an area where ions of solar and galactic origin collide. This area has a 

radius of about 110 a.u. The area placed just behind the heliopause represents a shock wave in the 

galactic gas in front of the moving Sun. This area stretches up to the radius of about 230 a.u. 

Schematically these areas are represented in fig. 1. 

All basic processes generated thanks to the solar activity and influencing the Earth are 

concentrated in the area of heliosphere placed between the Sun and the Earth. Solar cosmic rays 

(SCR) and the solar wind play the most important role in solar-terrestrial relations. SCR and solar 

wind represent charged particles of different energy. 

One more important element of the heliosphere is the magnetic field generated by the Sun. this 

problem is devoted to the exploration of these objects and their interconnection. 

The solar-terrestrial physics considers the relation of phenomena taking place on the Earth and 

in the near-Earth space to the solar activity. 

The Sun rotates around the axis deviating from the normal to the plane of ecliptic by   15' and 

with that the angular velocity measured in degrees per day decreases with the growth of heliographic 

latitude. 

The corresponding period (siderical period) is about 25 days at the equator and reaches 30 

days near the poles. The Earth moves around the Sun in the same direction and the period of rotation 

of the Sun relative to the observer on the Earth (synodic period) is almost 27 days and 32 days near the 

poles. At the equator the linear velocity of rotation is about 2 km/s. 

The energy flux from the Sun heats the coronal plasma to 100 eV and is not equalized by the 

coronal radiation (due to its low density), i.e. the solar corona is not in the state of hydrodynamic 

equilibrium and constantly expands. The extension of the solar corona into interplanetary space (up to 

100 a.e.) is called heliosphere and the radial flows of plasma taking away the excess of energy is called 

the solar wind. 
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Fig. II-5. The structure of the vicinity of the Solar system interacting with the galactic medium.  

 

The motion of charged particles in heliosphere (SCR) is performed along the Parker's spiral 

representing the spiral of Archimedes. The general conception of such spiral can be seen in fig. II-6. 

 

    
Fig. II-7 the sectoral structure of the solar magnetic field.  

 

It is shown in fig. II-4 that the solar wind moves radially. The solar wind stretches lines of 

force in radial direction. Lines of force rotate together with the Sun and it males the spiral of 

Archimedes which is called Parker's spiral in this case. The spiral is described by the equation:  
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r 
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Here u  in the speed of solar wind,   is angular velocity of solar rotation at the equator,   is angle 

in the coordinate system with the center on the Sun corresponding to the observer's position, r  is 

radial distance from the observation position to the center of the Sun. and 0  is the initial angle of the 

spiral branch on the surface placed at the distance 0r  from the center of the Sun. 

During flares X-ray radiation gets to the Earth in 8 minutes if it propagates directly. It is 

possible to compute the point on the Sun where the flare happened if we measure the time of arrival of 

SCR particles from the flare registered by an X-ray burst. For this a length of the Archimedes' spiral 

the particles move along is needed. It is described by the formula:   
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 In this formula:  

 .=


u
k  

This is the distance between the center of the Sun and the point of arrival of SCR particle. It is 

necessary to know the speed of the solar wind at the given moment of time to calculate the point where 

the burst has come from. If one chooses particles with given energy as a time marker of SCR arrival 

and measures the time of their travel to the Earth it is possible to compute the distance they have 

travelled. If we know this distance it is possible to calculate the angle of turning of the spiral (using  

(2.1) ) and find the point on the Sun. 

 

2.2  Tasks of practical works 

 

 

2.2.1  Task 7. Dynamics and cinematics of sunspots 

 

A problem of computing of cinematic motion along the solar disk is a simple but important 

exploration of sunspots. Mostly this motion is related to the differential rotation of the Sun. this 

rotation was discovered by the examination of dependence of the motion velocity on the heliolatitude. 

It is offered to calculate the motion velocity of chosen spots on the Sun and estimate the period of 

completion of the whole turn by the spot independently in this problem. A set of images of a several 

days period is need, then it is necessary to estimate the position of the conventional center of a spot 

and compute its motion in heliolatitude and heliolongitude. The motion in the heliolongitude is mostly 

related to the differential rotation and the motion in the heliolatitude is related to the inclination of the 

solar rotation axis to the plane of ecliptic. It is possible to estimate the projection of the solar rotation 

axis on the plane of visible disk of the Sun by the maximum displacement of the spot along the 

heliolatitude and then calculate the angular distance of the Earth from the current position to the 

positions on the orbit where the visible inclination of the solar rotation axis will be zero and 

maximum. To complete this task it is possible to perform the calculations independently or use the 

program package ``Cosmophysics'' (the problem ``Dynamics and cinematics of spots''). 

Task. 
 1. From the database of images of the Sun obtained with the help of spacecraft SOHO, SDO 

or Hinode choose a sequence of images in a period of 2-3 months. The choice should be done in such 

way that the number of spots should not be too big and spots should be placed at different 
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heliolatitudes. 

2. Calculate positions of spots in several days and graph the dependence of heliolatitude and 

heliolongitude on time. 

3. Calculate the motion velocity of spots in the heliolongitude during the examined period. 

Estimate the time needed for a spot to make a complete turn and come out at the eastern edge again. 

Investigating the sequent images of the Sun define if the spot appeared in supposed time. Explain the 

result. 

4. Calculate the maximum displacement of spots in heliolatitude within the given period. 

Estimate a visible inclination of the solar rotation axis for spots at different heliolatitudes. Compute 

the angular distance of the Earth on the orbit where the visible inclination is zero or maximum. 

Estimate the time neede for the Earth to travel this distance. Verify the result with the help of images 

obtained in the calculated time. Calculate the error of this estimation.  

 

2.2.2  Task 8. Dynamics of the sunspots area 

 

One more important element of spots exploration is the examination of time variation of their 

area. This information is important because there is no exact information about the formation of spots 

and their deep structure. A simple research able to give some useful information concerning the 

process of sunspots formation is an examination of time variation of their area. Results obtained in 

problem 7 can point at the importance of such work. This problem lets answer the question - why the 

spot appeared or did not appear on the solar disk after the complete turn around the Sun. if the spot 

appeared it is possible to answer another question - is it a new spot or an old one. The answer to this 

question is unequivocal. But the forecast of the spot area offered to be done in this problem can serve 

as the information for this answer. To complete this task it is possible to perform the calculations 

independently or use the program package ``Cosmophysics'' (the problem ``Dynamics and cinematics 

of spots''). 

 Task. 
 1. From the database of images of the Sun obtained with the help of spacecraft SOHO, SDO 

or Hinode choose a sequence of images in a period of 2-3 months. The choice should be done in such 

way that the number of spots should not be too big and spots should be placed at different 

heliolatitudes. 

2. Calculate the positions of spots in first several days and their area. graph the time 

dependence of the spot area. 

3. Use one of the models of spot area variation and estimate parameters of these models with 

the help of least-squares method. Explain the result. 

4. Using the obtained parameters of the model estimate the spot area by the moment of its 

appearance at the eastern edge of the solar disk . compare it to real images. Explain the obtained result.  

 

2.2.3  Task 9. The differential rotation of the Sun 

  

 Method of completion the tasks 
 

Method of completion the tasks consists of three stages. The first stage is selection of 

photographs needed for the determination of the differential rotation. The second stage is the initial 

processing in order to get the information about dispersion relation of zonal waves. The third stage is 

modeling of the differential rotation. The first two stages should be completed with the help of 

``Cosmophysics'' program and the last stage should be completed independently with the help of any 

mathematical calculation system of with the help of a written program. 
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The sequence of operations can be described as the following. 

1. Input of the list of solar images and the indication of the region parameters given by a 

teacher. This procedure is described in chapter ``Initial information''. 

2. Formation of the initial set of data. This procedure is described in the chapter ``Input set of 

data''. Its preparation consists of two stages: ``Specification of RGB-filter'' and ``Filtration of series''. 

3. For each latitude from the data area there is step-by-step procedure of calculation of 

maximums of wave time-space spectrum, which propagate in zonal direction. The procedure includes 

several stages. For each latitude: 

3.1. The first stage is the preparatory selection of the optimal degree of the model. 

3.2. Calculation of a spectral matrix as a function of a wave number and definition of positions 

of spectral density maximums in the examined interval of wave numbers with an average coherence 

more than 0.8. 

3.3. For each selected maximum of wave numbers spectrum an estimation of frequency 

spectrum and definition of frequency spectral maximum positions should be done. 

3.4. Memorizing of the output set of data. 

4. Estimation of dispersion curves inclination with the help of least-squares method and 

calculation of differential rotation velocity with the help of the output set of data. Calculation of the 

model curve of the differential rotation and estimation of errors of model parameters definition. 

5. Representation of results in a form of report and graphs. 

 

Initial information 
 

Sets of solar images in MDI-band or megnetograms are used as the initial information for the 

solution of the problem. The choice of list of images and their type is defined by a teacher before the 

work when the permission for the realization is obtained. It is recommended to use magnetograms 

because they have the most contrast elements of structure. All images should be converted in BMP 

format with a size 512x512 pixels. That can be done with the help of any graphic editor. 

Input of images should be realized in a sequence or as a selected list when the button Add is 

pushed. The button is placed in the inlay Solar just below the window List of Solar Images. After this 

button is clicked a standard dialog of image input opens. A needed catalogue should be selected and 

uploaded into the program memory by a click on a needed file. After the dialog is opened images can 

be uploaded in a list which can be selected in a dialog with the help of Shift button held during the 

motion of cursor by ``arrows'' buttons. In the group of control elements ``Images of the Sun'' there are 

also three more buttons except the button Add: Delete, Order, Clear. Button Delete is needed for the 

removal of a single file from the list; button Order sorts the list of images by the time or creation of an 

image. It is useful for a convenient viewing of images on a display. The button Clear is needed to clear 

the list of images before downloading another list. 

The totality of images should be placed in a separate catalog. After its download with the help 

of elements group List of images of the Sun placed in the first inlay Solar, the list of images can be 

memorized on a disk and can be downloaded during the second use of program. But it is 

recommended only after the selection of the processing region of the image totality because the list of 

images (*.LST format) also contains the information about the region of data by the moment of 

saving. With that one should remember that the list of images contains files names and routes to the 

catalog where images are saved. So the change of route to the catalog will lead to the failure of file 

search on a disk. This fault can be debugged by the correction of list file (see ``file structure List of 

images'' *.LST). saving the list of images is realized by a click on a display button [PICTURE 

SAVE.BMP] on the control panel (or in a file menu File). Repeated download can be realized with the 

help of display button [PICTURE OPEN.BMP] on the control panel (or in a file menu File). File 
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structure ``List of images''. 

Information about the list of images is saved on a disk in a special text file with LST extension. 

The example of this file is: 

6 

 

 D:\DATA\Magnitometer\2001\BMP\BMP-512\ 31  

MDI_mag_2001.01.01_00 03_resize 2001.01.01.00.03.00 63146908980 31 

MDI_mag_2001.01.01_01 36_resize 2001.01.01.01.36.00 63146914560 31 

MDI_mag_2001.01.01_03 12_resize 2001.01.01.03.12.00 63146920320 31 

MDI_mag_2001.01.01_04 48_resize 2001.01.01.04.48.00 63146926080 31 

MDI_mag_2001.01.01_06 27_resize 2001.01.01.06.27.00 63146932020 31 

MDI_mag_2001.01.01_08       03_resize       2001.01.01.08.03.00       63146937780      31 

Line 1. Contains the number of images in a list (in this case it is 6). 

Line 2. Contains the route to the catalog where the list of images without file names is saved. 

Lines 3-6. Each line is used for its own image and contains sequent information in a form of 

substrings separated by at least one space: 

Substring 1. An integral number denoting the length of file name (in this case 31) 

Substring 2. File name (without the route) with the length indicated in the first substring. 

Substring 3. Time of creation in a format: 

SSMMOODDMMYYYY .....  

(YYYY-year, MM - month, DD - day, OO - hour, MM - minute, SS - second) 

Substring 4. The time of creation of the image in time units established by a variable in the last 

line of the file, counted from the one of standard moment of time, e.g. 0000.00.00.00.00.00. in this 

case the time is counted in seconds. 

Line 7. Contains the beginning and the end of the data region in longitude, counted from the 

left edge of the image (in this case 156356). 

Line 8. Contains the beginning and the end of the data region in latitude, counted from the 

upper edge of the image. (in this case 136 376). 

Line 9. Contains step in longitude for a choice of dots (in this case 10). 

Line 10. Contains step in latitude for a choice of image lines for a set of data (in this case 20). 

Line 11. Contains time dimensions type (in this case 0). 

Output set of data. The example of output file created by the program at the end of work: 

 

 D:\DATA\Magnitometer\2001\1-7.lst 7 D:\DATA\Magnitometer\2001\BMP\BMP-512\ 31 

MDI_mag_2001.01.01_00 03_resize 2001.01.01.00.03.00 63146908980 31 

MDI_mag_2001.01.01_01 36_resize 2001.01.01.01.36.00 63146914560 31 

MDI_mag_2001.01.01_03 12_resize 2001.01.01.03.12.00 63146920320 31 

MDI_mag_2001.01.01_04 48_resize 2001.01.01.04.48.00 63146926080 31 

MDI_mag_2001.01.01_06 27_resize 2001.01.01.06.27.00 63146932020 31 

MDI_mag_2001.01.01_08 03_resize 2001.01.01.08.03.00 63146937780 31 

MDI_mag_2001.01.01_09 39_resize 2001.01.01.09.39.00 63146943540  

 

Parameters of data region (pix) (pix) 156 356 136 376 1 20 0 

Real Sun dimensions: 06101.392   km 

Horizontal Sun dimensions: 497 pix 

Vertical Sun dimensions: 497 pix  

Latitude: 0 (120 , 28.8748) 

The last model rang: 6 
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Wave number range: [0, 500]; 

Frequency range: [-0.5 , 0.5 ]; 

Frequency step: 0.01 

Normalized wave number: 0.043 -0.39 -0.23 -0.03 0.17 0.3 0.45 0.130258 0.137045 0.221468 

0.128913 0.130603 0.129564 

Normalized wave number: 0.082 -0.45 -0.15 0.04 0.21 0.36 0.132586 0.179725 0.152298 

0.13264 0.131843 

Normalized wave number: 0.11 -0.36 -0.16 0.02 0.16 0.31 0.45 0.136079 0.215618 0.13309 

0.130956 0.13022 0.130672 

Normalized wave number: 0.169 -0.26 -0.06 0.1 0.24 0.39 0.205439 0.134387 0.131355 

0.130169 0.131585 

Normalized wave number: 0.222 -0.36 -0.17 0.1 0.26 0.42 0.188549 0.139529 0.137287 

0.130745 0.140161 

Normalized wave number: 0.258 -0.47 -0.13 0.02 0.31 0.19449 0.131373 0.133878 0.133967  

Line 1. Contains route and the name of images list file. 

 Line 2. Contains number of processed images. 

Line 3. Contains route to the list of images. 

Lines 4 - 10 . (the number of these lines is determined by the parameter in line 2). Contain the 

following information in each line. 

Substring 1. An integral number indicating the length of file name (in this case 31) 

Substring 2. File name (without the route) with the length indicated in the first substring. 

Substring 3. Time of creation in a format : YYYY.MM.DD.OO.MM.SS 

(YYYY - year, MM-month, DD - day, OO - hour, MM - minute, SS second) 

Substring 4. The time of creation of the image in time units established by a variable in the last 

line of the file, counted from the one of standard moment of time, e.g. 0000.00.00.00.00.00. in this 

case the time is counted in seconds. 

String 11. Contains the beginning and the end of the data region in longitude, counted from the 

left edge of the image (in this case 156356). 

Line 13. Contains step in longitude for a choice of dots (in this case 10) 

Line 14. Contains step in latitude for a choice of image lines for a set of data (in this case 20) 

Line 15. Contains time dimensions type (in this case 0). 

Line 16. Contains solar diameter used in calculations. 

Line 17. Contains horizontal solar disk dimensions in pixels for a given image totality (in this 

case 497) 

Line 18. Contains vertical solar disk dimensions in pixels for a given image totality (in this 

case 497) The lines follow which contain the same information for each latitude: 

Line 19. Contains number of latitude and latitude in degrees and in pixels in brackets (in this 

case respectively 0 (120, 28.8748)). 

Line 20. Contains the last matrix rang when a spectral matrix was estimated at this latitude: 6 

Line 21. Contains wave numbers range where a spectral matrix was estimated: [0, 500] 

Line 22. Contains frequency range where frequency spectrum was estimated: [-0.5, 0.5] and 

frequency step: 0.01. 

Line 23. Contains normalized wave number for which a frequency spectrum was estimated: 

0.043 

Lime 24. Contains the list of spectral density magnitude in frequency spectrum peaks for a 

given wave number -0.39 -0.23 -0.03 0.17 0.3 0.45 

Lime 25. Contains wave number peaks : 0.130258 0.137045 0.221468 0.128913 0.130603 

0.129564 
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Then the lines follow containing the same information for all wave number peaks starting from 

line 23 and finishing by line 25.the the information repeats for the next latitude selected and processed 

stating from line 19. 

This information contains the completed set of data for a creation of a diagram wave number - 

frequency 

 

2.2.4  Producing he estimation of rotation velocity 

 

It is necessary to do the following calculations processing the data from output file 

independently. For each latitude and each maximum of spectral density of wave number spectrum it is 

necessary to select spectral density maximums of a frequency spectrum which have negative values of 

frequency. It corresponds to the wave motion in the direction of rotation of the Sun. this data is in file 

lines describing maximums of frequency spectrum. In the example in the part ``Output set of data'' 

these are line 24, 25 and similar to them. For a wave number 0.043 frequency maximums are: -0.39 

-0.23 -0.03 0.17 0.3 0.45 0.130258 0.137045 0.221468 0.128913 0.130603 0.129564 

In the first line frequencies are shown and in the second one the values of spectral density are 

shown. Only three the first frequencies are selected among the frequencies for the analysis. They have 

negative values: -0.39, -0.23, -0.03. The maximum value of spectral density among these frequencies 

is a peak with -0.03. This peak is to be selected for the analysis of a dispersion curve. There can be 

some exceptions from this rule if there appear a maximum of a frequency spectrum in the negative 

side of a range which has a bit less value of the spectral density than the major maximum, but it fits to 

the dispersion curve better. This situation is possible because we do not analyze meridian components 

of waves. So under some conditions it can turn out that the major maximum refers to a wave having a 

considerable meridian component of a wave number. For a wave number 0.082 the list of frequencies 

is : -0.45 -0.15 0.04 0.21 0.36 0.132586 0.179725 0.152298 0.13264 0.131843. 

In this case there are only two suitable frequency peaks: -0.45 and -0.15. Only one (-0.15) is 

chosen and it has the maximum value of spectral density 0.179725. 

When looking through lists of frequency peaks for each wave number at a given latitude one 

can form sequences of pair numbers Mjfk jj ,1,= ),,(  . Here jk  is a wave number and jf  is a 

frequency of a major peak. For such set of pair numbers it is possible to make an estimation of phase 

velocity C  at given latitude with the help of linear regression method in accordance to the model:  

 .= 0kCfk jj   

With that phase velocity is estimated by formulae given in the chapter Linear regression:  
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Here fk  ,  are the average values of wave number and frequency. 

Such estimation can be realized for each latitude separately. As the result a set of pair numbers 

appear:  

 .,=  ),,( llnC nn   

Here nC  is an estimation of phase velocity at latitude with number n  and n  is the latitude where 

the phase velocity estimated. 

After the formation of such set of estimations a model of differential rotation should be 

created. The model should be chosen either in a standard form:  
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 ).sin(sin=)( 2 ABV  

or in any other form corresponding to a definite model of differential model. In case of a standard 

model coefficients BA  ,  are estimated with the help of least-squares method. 

 

Representation of results 
 

The results of an independent estimation of differential rotation parameters should be 

represented in a form of phase velocity estimation for each latitude placed in a table and errors of these 

estimations shown. Parameters of a differential rotation curve in a used model should be represented 

independently and estimated with the help of least squares method with errors shown. 

Task. 
 1. Choose a sequence of 5-6 images from a database of solar magnetograms received from 

satellites SOHO (SDO or Hinode). 

2. Use the program Cosmophysics and perform a sequence of calculations to obtain a set of 

data on the distribution of phase velocities by latitude. 

3. Graph the dependence of phase velocity of the latitude. Explain the result. 

4. Produce a model of the differential rotation of the Sun. Explain the result. 

5. Do the same calculations for another time period and compare obtained results.  

 

 

 

 

2.2.5  Charged particles motion in the interplanetary magnetic field. 

Parker's spiral 
 

Solar cosmic rays (SCR) and solar wind are one of the most important elements of the cosmic 

space near the Earth. Solar wind is a flow of charged particles with relatively low energy. This flow 

continuously flows from the solar corona. The solar magnetic field is trapped into solar wind and is 

transported with it. This makes a so-called Parker's spiral, representing magnetic lines of force bend in 

a spiral form, which obeys the Archimedes formula:  

 ,)(= 00 r
u

r 


  

here 0  is the initial angle of the spiral at the distance 0r  from the Sun, u  is the speed of solar 

wind,   is angular velocity of the Sun, r  and   are polar coordinates in ecliptic plane with the 

center on the Sun which correspond to the magnetic field observation position. Unlike the solar wind 

more energetic but rare particles of SCR follow the magnetic lines of force, i.e. they move along the 

Parker's spiral. Moreover, is the solar wind constantly ``blows'' from the Sun, SCR flows grow during 

solar flares. That is why effects of Parker's spiral formation and SCR motion along it could be 

observed simultaneously during solar flares. This work is devoted to the exploration of these two parts 

of the whole charged particles flow ejected by the Sun during solar flares. 

 

Task. 
 

I. Using the known speed of the solar wind registered in the near-Earth space find: 

(www.spaceweather.com): 

1. Its radial component and the direction of arrival to the Earth (angle from the direction to the 
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Sun). 

2. Propagation time from the Sun to the Earth of the registered solar wind. 

3. Define the source of the arrived registered solar wind on the Sun. 

4. Denote the assumptions taken in the work. Estimate their influence on the obtained result. 

II. Knowing the time and coordinates of the solar flare (the information can be taken from the 

same site): 

1. Find the time of the beginning of geomagnetic storm in dependence on the radial 

propagation speed of the ejected flare matter; 

2. Graph the dependence of the registered solar wind speed on the time of its registration in the 

near-Earth space. 

3. Denote the assumptions taken in the work. Estimate their influence on the obtained result. 

III. Knowing the moment of the beginning of a strong geomagnetic storm and the speed of the 

solar wind by that moment (the information can be taken from the same site): 

1. Estimate coordinates of the solar flare position able to initiate this storm; 

2. Estimate the time of that solar flare. 

3. Denote the assumptions taken in the work. Estimate their influence on the obtained result 

IV. Look though the solar x-ray radiation monitoring data for previous three days before the 

time of the beginning of the geomagnetic storm pointed out by a teacher and then single out the 

moments corresponding to sharp growth of x-ray radiation flux (by factors of ten). The information 

about the integral x-ray radiation flux from the solar disk obtained by a satellite GOES and placed on 

site: http://sec.noaa.gov/Data/goes.html. 

1. For each burst of x-ray radiation calculate radial velocity of the corresponding ejection of 

solar matter. 

2. According to a model of solar matter motion along the Archimedes' spiral find the area on 

the Sun and the flare able to cause the storm. 

3. Plot the found position of the map of the Sun. If possible find out whether this area was 

active at the moment and was a flare developing in that area. (archive of a site 

www.spaceweather.com can be useful) . 

For the completion of this task it is recommended that materials corresponding to low solar 

activity are used. It is possible to use satellite date concerning the arrival of solar plasma flow to the 

Earth instead of a geomagnetic storm. 

 

3  Mathematical algorithms of data processing 

 

      

 

3.1  Method of least squares 

 

 

3.1.1  The method of least squares 

 

An empirical model most frequently used in the analysis of data is the model in which some 

parameters, called independent, are related to some parameters, called dependent, with the help of 

functions of a given form. With that the problem is to calculate unknown parameters of the given 

function and prove the existence of such dependence. Such problems can be solved with the help of 

different variants of the method of least squares. 

Suppose there is a model of the examined process in the general form:   
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 where sA  are the parameters of the model, )(tfs  - strictly given functions of time, )(t  - random 

deviations of the process )(ty  from the model. Suppose it is necessary to find out the model  (3.1) 

which should describe a set of measured quantities of the process )(ty  at any moment of time 

Niti ,1,= ,   in the best way. Denote measured quantities of the process as iy  and i  denotes the 

deviations )( it  at moments it  with that it is supposed that deviations i  are independent random 

quantities with zero mean and the same variance. That means the following conditions are true:   

 .>=<  ;=  0,>=<  0;>=< 22  ijii ji   (3.2) 

 Here brackets <>  mean statistical average (mathematical expectation) of the corresponding 

quantities. 

The general principle of the method of least squares is that as the best model a model  (3.1) 

should be chosen parameters of which (0)

sA  satisfy the condition that the function:  
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reaches minimum with (0)= ss AA . This problem can be reduced to the solution of a set of linear 

equations in the following common form:   
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 Calculating derivatives we obtain:  
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This set of equations can be written as:  
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Or in matrix form:   

 ,= FQA  (3.4) 

 where ),,,(= 21 MAAAA  , matrix Q  and vector F  have the following elements:  
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i

kj tfyFtftfQ   

The solution of  (3.4) can be written as:  

 .= 1FQA   

Or in component form this relation looks like:   

 ,,1,=  )),((=
1=1=

MjifyRA ki

N

i

jk

M

k

j   (3.5) 

 here ikR  - are matrix elements of matrix 1= QR , inverse to Q . 

Calculate error of the regression parameters estimation. To do that, introduce the following 

determinations and designations. Denote true coefficients of regression as (0)

kA  supposing the 

considered model to take place in reality. Coefficients kA  obtained as the result of calculations and 

satisfying relations  (3.5) are to be called estimations of true regression coefficients. Substitute 
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expressions for iy  from  (3.1) into  (3.5) supposing true regression coefficients (0)

kA  to be in that 

expressions. As the result we obtain:  

 ,,1,=  ,)())((= (0)

1=1=1=

MjtftfARA ikiiss

M

s

N

i

jk

M

k

j 







   

Transforming this relation we obtain:  

 ,,1,=  ),(=
1=1=

(0)

1=1=

MjtfRAQRA ikjk

M

k

i

N

i

sksjk

M

s

M

k

j     

As far as matrixes Q  and R  are reverse to each other, i.e.:  

 ,=
1=1=

jsksjk

M

s

M

k

QR   

where Mkkk ,1,= 1,=   and skks = 0,=  , we finally obtain:   

 .,1,=  ),(=
1=1=

(0) MjtfRAA ikjk

M

k

i

N

i

jj    (3.6) 

 According to the condition  (3.2) we find:  

 .>=< (0)

jj AA  

The latter condition means that the estimation of jA  is not displaced. Therefore:  

 .>=)(=< 22(0)2

jjjj
j

A RAA    

These equations can be used for calculations in general case but it is more useful to consider specific 

models which are mentioned in this cosmophysical practical work. 

 

3.1.2  Linear regression 

 

 

Estimation of regression coefficients 
 

In the majority of laboratory works it is necessary to use the method of least squares to 

estimate inclination of the time dependence of different orbital parameters and parameters of satellites 

motion. This is the simplest variant of the model  (3.1) . 

Suppose the physical parameter y  to depend on any other parameter t  (for example the 

time) in the following way:  
 ),(=)( tBAtty   

where A  and B  are the parameters of the model. Following the general instruction we obtain:   

 0,=)(2=
),(

1=

2

iii

N

i

tBAty
A

BA








 (3.7) 

 0.=)(2=
),(

1=

2

BAty
B

BA
ii

N

i








 (3.8) 

 Introduce the following designations:   

 ,
1

=  ,
1

=
1=1=

i

N

i

i

N

i

t
N
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N

Y   

 .
1

=  ,
1

=
1=

2

1=

2
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N

i
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i

T ty
N
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N
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 Then equations  (3.7) and  (3.8) can be written as:   

 ,=2

YTT CBTA  

 .= YBAT   

 Solving the set of two linear algebraic equations we find:   

 ,=
22 T

TYC
A

T

YT






 

 .= TAYB   

 Such values of the model parameters are accepted as the best ones according to the method of least 

squares. With the help of such calculations the estimation of variation speed of the ascending node, 

perigee argument and the speed of decrease of total energy is realized in problems of this practical 

work. 

 

Calculation of the error of linear regression coefficients estimation 
 

To calculate the error of estimation of A  and B  coefficients represent their solution as:   

 ,
11

=
1=

22 ii

N

iT

ty
NT

A 


 

 .
1

=
1=

TAy
N

B i

N

i

  

 Denote as 0A  and 0B  the true values of model coefficients which unlike A  and B  are to be 

called estimations 0A  and 0B . The relation between 00  , BA  and BA  ,  can be obtained if we 

substitute iy  by values from the model taking into account random deviates )(= ii t  in the 

expression for A  and B . As the result we obtain:   

 ,
11

=
1=

220 ii

N

iT

t
NT

AA 





  

 i

N

iN
BB 

1=

0

1
=  

 It is supposed that:  

 ,
1

1
=0,=

1
= 2

1=

2

1=

i

N

i

i

N

i NN
 


 

And correlations between i  and j  with ji =  are equal to 0, i.e.:  

 0.>=< ji  

In this case it is possible to calculate the average and variance of the estimates A  and B . 

Calculations yield the following:   

 ,>=<  ,>=< 00 BBAA  (3.9) 

 .==  ,
)(

==
2

2

22

2
2

N
D

TN
D BB

T

AA










 (3.10) 

 Quantities A  and B  are the errors of the calculation of linear regression coefficients. 

 

3.1.3  Square regression 

 

In a similar way it is possible to make the estimation of square regression parameters. The 
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square regression model has the following form:   

 ).(=)( 2 tCBtAtty   

 Equations  (3.3) in this case look like:   

 ,= 2234 YCTBTAT   

 ,= 1123 YCTBTAT   

 .= 120 BTATYC   

 Excluding C  we come to:   

 ,=  ,= 220101 FBMAMFBMAM   (3.11) 

 where   

 ,=  ,=  ,= 2130

2

122

2

241 TTTMTTMTTM   

 ,=  ,= 01120221 YTYFYTYF   

 And quantities mT  and nY  are determined as:  

 0,1,2.=  ,
1

=  1,2,3,4,=  ,
1

=
1=1=

nty
N

Ymt
N

T n

ii

N

i

n

m

i

N

i

m   

The solution of relations  (3.11) has the following form:   

 .=  ,=
2

021

2110

2

021

2012

MMM

FMFM
B

MMM

FMFM
A








 (3.12) 

 Parameter C  can be found from the relation 120= BTATYC  . 

This model can be used to estimate the deviation of the longitude of ascending node from 

secular motion. 

 

3.1.4  Model of a harmonic process 

 

In applied problems of analysis of different physical and other processes it is often necessary 

to single out harmonic processes and estimate their basic parameters. A model of one-dimension 

harmonic process )(ty  with the natural frequency   has the following form:   

 ).(sincos=)( tCtBtAty    (3.13) 

 According to the general principle of the method of least squares the condition of minimum of 

function   has the form:   

 0,=22)(1= 122

2

ySCSBSCA
A





 

 0,=22)(1= 122

2

ySCCASCB
B





 

 0,== 11

2

YBCASC
C





 

 where   

 ,2sin
1

=  ,2cos
1

=
1=

2

1=

2 i

N

i

i

N

i

t
N

St
N
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1
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 .cos
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1=1=1=
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Y    

 After the exclusion of C  the equations for harmonic's amplitudes A  and B  take again the form of 

equations  (3.11) where coefficients should be calculated from:   

 ,21=  ,21= 2

122

2

121 CCMSCM   

 ,2= 1120 SCSM   

 ].2[=  ],2[= 1211 YCCFYSSF yy   

 The solution of  (3.11) will have the same form  (3.12) . Parameter C  should be calculated as:   

 .= 11 YBCASC   

 The total amplitude of a harmonic and the estimation of the initial phase have the following form:  

 .=  ,= 22

0
A

B
BAA   

This model can be used to estimate parameters of secular motion, perigee argument and mean 

anomaly estimation. 

 

3.1.5  Calculation of measurement error of complicated parameters 

 

One of the targets of this practical work is the problem of errors calculation of quantities which 

are the functions of quantities measured directly in the experiment. Such quantities are to be called 

complicated. In problems concerning the measurement of parameter 2J , parameters measured 

directly in the experiment are the parameters of orbital motion of a satellite: perigee argument, 

longitude of ascending node etc. Parameter 2J  is a function of these parameters. 

Suppose a measured parameter p  to be some function of directly measured quantities iX , 

Li ,1,=  , i.e.:  

 ).,,,(= 21 LXXXPp   

Then suppose these directly measured quantities iX  to be characterized by the estimation of mean 

values iX  and the total statistical and instrument inaccuracy equal to i , i.e. 2

i  is a variance of 

scattering generated by uncontrolled outer reasons and inaccuracy of an instrument. Then as a p  

parameter estimation a value is chosen:  

 ),,,,(= 21 LXXXPp   

In case of independence of random variances of single quantities iX  the absolute error of p  

parameter measurement is determined by:   
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 (3.14) 

 Relative error is calculated from:  
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Calculation of measurement errors for 2J  parameter 
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As the example let's consider the calculation of measurement error for parameter 2J  by the 

data on longitude of ascending node. The corresponding equation for the estimation of 2J  is:   

 .
)(1

cos

2

3
=

22

2

23 e

i

p

R
J

a

GM

dt

d E









 (3.15) 

 Notice that directly measured parameters are included: i  - inclination, p  - focal parameter, n  - 

mean motion and the inclination of the linear regression curve anlR . The Earth radius is supposed to 

be a constant value measured with a perfect accuracy. The same is about the eccentricity e  which is 

supposed to be zero. That refers to a circular orbit. Notice that in the considered approximation 

quantities npi  , ,  are supposed to be constant. But analysis of the data shows that within a period of 

time when parameters of linear regression are estimated all these parameters evolve considerably 

especially if rather long periods of time are considered. So in this approximation these variations of 

parameters must be considered as random (unpredictable) ones and to estimate parameter 2J  by the 

relation  (3.15) the average values of the given period of time should be taken. For small orbit 

eccentricities 0e , which are examined in this practical work, quantities p  and n  are dependent 

and are connected by the relation:  

 .=

1/3

2 








n

GM
p  

So to calculate the error of 2J  only n  and i  variance should be substituted into  (3.14) ).  (3.15) 

also includes parameter anlR  of the linear regression of a curve of the longitude of ascending node 

secular variation. To estimate its error it is necessary to use  (3.10) for the estimation of A parameter 

of the linear regression. 

As the result we obtain the following relation for the estimation of the relative error of 2J :   

 .
cos
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9

49
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22

2

2

2

2

2

2

i

i

nRJ

in

anl

anl
RJ 

  (3.16) 

 It follows that i  variations can lead to considerable errors in measurement of 2J  for satellites on 

near-polar orbits when 1<<cos i . 

For perigee argument error can be calculated as:   
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49
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ii
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 (3.17) 

 And for a mean anomaly:   

 ,
)cos3(1

sincos
9

9

49
=
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222
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ii

nRJ

in

anl

anl
RJ





 (3.18) 

 Here i  and n  are the errors of inclination and mean motion including statistical variance of 

measurement of these quantities, 
aan

R
arp

R
anl

R    ,  ,  - errors of the method of linear regression for 

corresponding parameters. 

 

3.1.6  Time series filtration 

 

Time series filtration is understood as a linear transformation allowing change of Fourier 
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spectrum of this series deleting a part of harmonic components. Suppose there is a discrete time series 

of measurements Nuuuu ,, , , 210   of a parameter )(tu  taken in equal periods of time t :  

 .,0,1,2,=  ,=   ),(= Nktkttuu kkk   

In this case the linear smoothing (low frequency transmission band) filtration is understood as the 

transformation:   

 .,,=  ,=
=

PNPkuWU jkj

P

Pj

k 



   (3.19) 

 Here real not negative numbers PPjW j ,,=  0,   are called filter coefficients and integer 

number P  is called half-width of the filter window. Numbers jW  must satisfy normalizing 

conditions:  

 1,=
=

j

P

Pj

W


 

And symmetry conditions:  

 .,,=,= PPjWW jj   

Except smoothing and low-frequency filtration a high-frequency filtration is also used. It allows to 

delete trends and band filtration. High-frequency filtration is a linear transformation including the 

transformation  (3.19) and the consequent subtraction of the obtained series from the initial:   

 .,,=   ,= PPkUuV kkk   (3.20) 

 Here numbers kU  are determined by  (3.19) . Band filtration represents the application of 

sequential transformations of low-frequency filtration with a window half-width P  and 

high-frequency filtration with a window half-width PQ > . in case of high-frequency filtration the 

obtained series contains frequency components higher than some characteristic cut-off frequency of a 

filter and in case of band filtration - in some limited band of frequencies. 

Using filters it is necessary to take into account that their usage is connected with the decrease 

of the initial series length by the value of the window width P2 . It is clear from the determinations of 

their linear transformations. It is very important when using high-frequency filters, which have a big 

window half-width that leads to a considerable decrease of the initial series length and as the result to 

the loss of accuracy and the reliability of statistical estimation based on them. 

Depending on the choice of filter coefficients kW  there are a lot of different types of 

smoothing filters which determine quantity of different ways of blanking of high-frequency 

components of the incoming signal spectrum. We examine only three of them. Other types are 

described in different books devoted to data processing. [13, 14, 15]). Notice that for the purpose of 

problem 3 there is no difference which filter to apply. Choice of the window half-width plays an 

important role for the obtaining quite reliable focal parameter derivative values. Choice of the 

half-width is realized during the work with the certain time series. 

 

Rectangular filter 
 

Rectangular filter is determined by the choice of coefficients according to the following rule:   

 .,,=  ,= 0 PPkwWk   (3.21) 

 Basing on the normalizing condition we obtain that the number 0w  must be related to the window 

half-width as:  
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 .
12

1
=0

P
w  

Curves of filter weight factor are shown in Tab. 2.1 (a,b,c). 

 

Cosine filter (Tukie) 
 

Cosine filter is specified by the relation   

 .,,=  ,)(cos1
2

1
= PPk

P

k

P
Wk 











 (3.22) 

 

 

Triangular filter 
 

Triangular filter is specified by the relation: 

  

 .,,=  |),|(2
1

=
2

PPkPkP
P

Wk   (3.23) 

 

 

3.1.7  Piecewise-linear regression and piecewise-cubic interpolation with 

smoothing 

 

Although the usage of filters in order to obtain smoothed estimation of time dependence of a 

focal parameter is the simplest way of this problem solution, it is interesting to consider other types of 

smoothing. The main problem of smoothed estimation obtaining with the help of smoothing filters is 

mentioned above decrease of the filtered series length in comparison to the initial one. Method of 

piecewise-linear regression and smoothing cubic spline described in monograph [12] are methods 

allowing to escape this problem. Consider them separately [12]
9
). Consider them separately. 

 

Piece-wise regression 
 

In problem 3 the main problem is the obtaining of a stable estimation of time variation speed of 

a focal parameter. Method of piecewise -linear regression enables to solve this problem with the help 

of least-square method used with a linear model applied to separate small pieces of a time series, in 

our case to focal parameter measurements. To do that the whole series should be divided into some 

number K  of segments containing KkNk ,1,=  ,   points so that the total number of points of N  

series is equal to the sum of segment points:  

 .=
1=

k

K

k

NN   

Numbers kN  can differ, but the simplest way of the choice is their equality 

]/1)[(=1,,1,=  ],/[= KNKNNKkKNN Kk  , where ][ f  denotes an integer part of a real 

number f . After the definition of segment edges Kktt kk ,1,=  ],,[ 1   linear regression parameters 

kk BA ,  should be calculated for measured parameter values (focal parameter) in each segment:  

                                                 
9
G.I. Marchuk. Methods of computational mathematics. M.: Nauka, 1977. 454 P. 
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 .,1,=  ],,[  ,= 1 KktttBtAu kkkk   

Coefficient kA is an estimation of the variation speed of parameter u  in each segment. Attributing 

this value to all points of a segment we obtain piecewise constant approximation of parameter u  

variation speed. In this case the degree of ``smoothing'' depends on the number of segments and their 

length. The more segments are chosen the shorter their length on the average and the less become 

smoothing and stability or reliability of the derivative estimation decrease. So the number of segments 

should be relatively small. The optimal number of segments is selected from the experiment for each 

series separately. That is a considerable disadvantage of this method. But the simplicity of its 

realization is its relative advantage. 

 

Cubic splines 
 

To escape difficulties related both to filtration (decrease of a series length) and piecewise 

linear regression it is useful to apply methods of spline interpolation. One of the simplest spline 

interpolation methods is a cubic splines method and its modification - method of smoothing cubic 

spline-function. 

Suppose in a segment ],[ ba  of a real line there is an array bxxxxa N =<<<<= 210   in 

nodes of which values of a function )(= kk xuu  are specified. The cubic spline functions method 

realizes the idea of interpolation of )(xu  function values into intermediate points of an array with the 

help of flexible elastic ruler passing all the points ),(= kkk uxP  of a plane ux, . British draughtsmen 

of the beginning of the XX century called such ruler spline. 

Elastic ruler curved under the law )(= xgg  in such way to pass all given points ),(= kkk uxP  

delivers a minimum to a functional of a thin band curvature. This functional can be written as:   

 ,)(= 2 dxgE

b

a

  (3.24) 

 where  

 .=
2

2

dx

gd
g   

It is necessary find the minimum of functional  (3.24) under the condition, that it passes all points kP

, in order to find the shape of a ruler )(xg  called spline-function. As the result with the help of 

Lagrangian coefficients we come to a problem of an absolute extremum of a functional:  

 ),)(()(=
1=

2

1 kkk

K

k

b

a

uxgdxgE     

where k  are Lagrangian coefficients. 

The solution of this problem is equal to a function )(xg  representing a cubic polynomial of 

the following form in each segment ],[ 1 kk xx  :   

 ].,[  ,=)( 1

23

kkkkkkk xxxqxpxnxmxg   (3.25) 

 With that the conditions should be satisfied at the edges of segments:   

 ),(=)(  ),('=)(  ),('=)( 111 kkkkkkkkkkkk xgxgxgxgxgxg 
  (3.26) 

 i.e. in general )(xg  is a function of class 2Ñ , i.e. it has continuous derivatives up to the second 

order. 

The solution of that problem is described in [12]. We just show the final result of this problem 
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solution. 
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