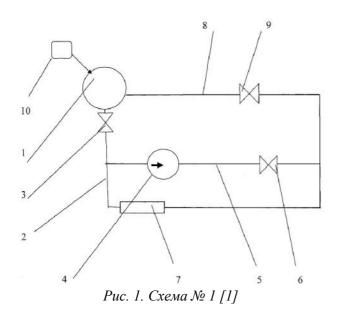
УДК 621.65.01

ЭСКИЗНОЕ ПРОЕКТИРОВАНИЕ СТЕНДА ДЛЯ ГИДРАВЛИЧЕСКИХ ИСПЫТАНИЙ НАСОСОВ


Малов Д. В., Шаблий Л. С.

Самарский государственный аэрокосмический университет имени академика С. П. Королёва (национальный исследовательский университет), г. Самара

Как известно, в современных маршевых жидкостных реактивных двигателях (ЖРД) подача компонентов топлива — окислителя и горючего — осуществляется насосами, которые приводятся во вращение газовой турбиной. Применение компьютерных технологий при создании топливно-насосного агрегата (ТНА) и его элементов позволяет автоматизировать процесс разработки, повысить качество проектируемых изделий, сократить сроки их создания и т.д. Но испытание агрегатов является не менее важным процессом в создании работоспособного изделия. Следовательно, создание качественных стендов для испытания насосов всегда актуально.

Целью данной работы является обзор схем стендов для гидравлических испытаний насосов, выбор схемы, основных параметров насоса и геометрических параметров нового стенда.

На рис. 1 и 2 представлены принципиальные схемы стендов ЗАО "НПО "Гидроаппарат" [1] и Научно-производительного объединения прикладной механики [2]. Оба стенда предназначены для испытания насосов и насосных установок.

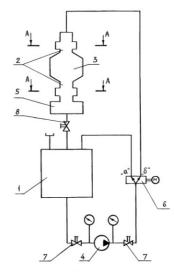


Рис. 2. Схема № 2 [2]

Каждый стенд состоит из бака с водой 1, всасывающего трубопровода, подводящего воду к входному патрубку испытуемого насоса 4. Особенностью первого стенда (рис. 1) является сброс воды с линии нагнетания во всасывающий трубопровод 2, который постоянно соединён с баком 1, но из которого вода поступает на вход насоса 4 только тогда, когда открывается вспомогательный трубопровод 8. Мерный бак стенда на рис. 2 выполнен в виде последовательно расположенных входной, измерительной, выходной камер, разделённых каналами с сечением меньше сечения камер. В каналах установлены поплавковые датчики, выполненные в виде поршеньков. Такой стенд позволяет повысить точность замера расхода, но мерный бак такой конструкции технологически сложен в изготовлении, расположение поплавковых датчиков в мерном баке усложняет проведение профилактических и ремонтных работ, применение контактных датчиков нежелательно при использовании

легковоспламеняющихся рабочих жидкостей и при испытаниях на отрицательные температуры из-за возможности обмерзания контактных поверхностей датчиков. Исходя из этого, схема стенда, представленная на рис. 1, является более подходящей для учебного стенда, поскольку более простая в исполнении и надёжная при эксплуатации.

Далее выбирались основные параметры как отдельных агрегатов, так и стенда в целом. За основу были взяты варианты, предложенные сотрудниками Санкт-Петербургского государственного архитектурно-строительного университета.

Производительность (подача) Q (м³/с) определяется объёмом жидкости, подаваемой насосом в нагнетательный трубопровод в единицу времени. Напор H (м) (давление p (Па)) характеризует энергию, которая сообщается насосом единице массы перекачиваемой жидкости. Мощность (Вт) различают полезную N_n , мощность на валу насоса N_e , мощность, потребляемую двигателем $N_{\partial\theta}$ и установочную мощность N_{ycm} . Полезная мощность N_n затрачивается на сообщение жидкости энергии и равна произведению массового расхода (ρQ) на приращение удельной энергии жидкости в насосе (H), т.е. $N_n = \rho Q H$. Мощность на валу N_e больше N_n из-за потерь энергии в насосе, которые учитываются коэффициентом полезного действия (КПД) насоса η , т.е. $N_e = N_n/\eta$. КПД характеризует совершенство конструкции и экономичность эксплуатации насоса. Различают объёмный КПД, который учитывает утечки жидкости через зазоры, сальники и т.п., гидравлический КПД, который учитывает потери напора при движении жидкости через насос, и механический КПД, характеризующий потери мощности на механическое трение в насосе (подшипники, сальники и др.).

Разместить стенд предполагается в учебной лаборатории, не занимая всего её пространства. Предположительно, стенд должен располагаться на столе размером 1.5×0.7 м. Объём бака должен составлять около 1 м^3 , так как для учебных целей будет достаточно расхода 1 л/c при времени проведения эксперимента 5 минут. Предполагается использовать электронасос производителя серии МХА [3]. Электродвигатель насоса — асинхронный двухполюсный, частота вращения 2800 об/мин. Допустимая на входе в насос мощность 0.63 кВт. Номинальная мощность -0.45 кВт. Температура воды от 0°C до $+35^{\circ}\text{C}$. Корпус насоса монолитный, открыт только с одной стороны, соединительная часть и основание монолитные. Водяной поток проходит вокруг ступеней, что обеспечивает низкий уровень шума.

Таким образом, была выбрана схема стенда и подобраны параметры насоса для создания учебного стенда для гидравлических испытаний насосов.

Библиографический список

- $1.\ free patent.ru$: Патентный поиск РФ [Электронный ресурс]. Режим доступа: http://www.free patent.ru/patents/2476723 , свободный.
- 2. freepatent.ru : Патентный поиск РФ [Электронный ресурс]. Режим доступа: http://www.findpatent.ru/patent/214/2140572.html , свободный.
- 3. www.dukon.ru: Сайт копании ДЮКОН [Электронный ресурс]. © ООО «НПФ Дюкон», 1991-2015. Режим доступа: http://www.dukon.ru/, свободный.