ОБ ИССЛЕДОВАНИИ ПОВЕДЕНИЯ КОНСТРУКЦИИ ЗА ПРЕДЕЛАМИ ПРОПОРЦИОНАЛЬНОСТИ В УСЛОВИЯХ КРАТКОВРЕМЕННОЙ ползучести

Kpep M.M.

Научный руководитель – д.т.н., профессор Костин В.А. Казанский государственный технический университет им. А. Н. Туполева

Решается задача уточнения диаграмм деформирования элементов конструкции, находящихся в условиях аэродинамического нагрева. Используются уравнения равновесия теории тонкостенных конструкций [1].

Представая деформацию i -го ребра в виде суммы:

 $arepsilon_i = rac{P_i}{E_i F_i} + arepsilon_{p_i} + lpha_i T_i$, где $arepsilon_{p_i}$ и $arepsilon_i T_i$ соответственно характеризуют пластические деформации и нагрев, приходим к следующему варианту систему дифференциальным уравнений равновесия [1]:

$$E_i F_i \frac{d^2 f_i}{dz^2} = \sum_{k=1}^n a_{ik} f_k + d_i^*$$

Здесь все обозначение общепринятые (т.е. E_i – модуль упругости, f_i - осевые перемещения, $^{a_{ik}(G)}$ - характеризуют сдвиг). В полученных уравнениях пластические деформации и нагрев влияют только на величину нагрузочных членов d_i^{\dagger} , т.е. эффект пластических деформаций и нагрева учитывается приложением

к идеально упругой конструкции некоторой дополнительной системы сил, которая совместно с заданной нагрузкой должно вызвать в конструкций такие же деформации, как и в действительной. Эти дополнительные нагрузки, связанные с нагревом, считаем известными, так как для их вычисления достаточно знать температуру конструкции и α_i .

Далее, следуя методике [2], решаем обратную задачу определения жесткостных параметров конструкции (E_if_i для элементов, работающих на растяжение-сжатие, и a_{ik} для элементов, работающих на сдвиг). Результатом ее решения будут являться реальные диаграммы деформирования $\sigma - \varepsilon$ продольных ребер и $\tau - \gamma$ панелей обшивки.

При решении предполагаем, что из эксперимента известны деформации ребер при различных уровнях нагрузки и температуры. Также предполагается, что при нагрузке меньшей 67% от расчетно-разрушающей, может потерять устойчивость только обшивка. Как и в [2] первоначально строится диаграмма $^{ ilde{ au}-\gamma}$ обшивки с использованием экспериментальных значений по продольным деформациям, аналитическим зависимостями [1] между ними и сдвигающими напря-

жениями. Для различных уровней нагрузки определяем секущие модули $^{G_i^s}$ и строим диаграммы деформирования $\tau - \gamma$.

Аналогично, уже с использованием уравнений равновесия, определяются се-

кущие модули E^{s}_{i} и строятся диаграммы деформирование σ – ε . Приводятся примеры для консольно закрепленных кессонов.

Литература

1. Ю. Г. Одиноков, "Расчет тонкостенных конструкций типа крыла, фюзеляжа и оперения самолета", труды КАИ, Вып. 18, 1946.

2. В. А. Костин, М. Ю. Торопов, А. П. Снегуренко, "Обратные задачи прочности летательных аппаратов", Казань: КГТУ , 2002.