АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ПО ОПРЕДЕЛЕНИЮ ОСЕВОЙ СИЛЫ НА ОПОРУ РОТОРА АВИАЦИОННОГО ГТД

<u>Терешко А. Г.</u>, Гусенко С. М., Дмитриев А. В. ОКБ им. А. Люльки, филиал ПАО «ОДК-УМПО», г. Москва, <u>anton.tereshko@lmz.umpo.ru</u>

Ключевые слова: испытания ГТД, осевая сила, тарировка тензорезисторов

Определение осевой силы на опоры ротора является необходимым условием при создании и доводке новых ГТД. Для снижения стоимости и трудозатрат ОКБ им. А. Люльки был предложен и запатентован новый способ препарирования испытуемого узла [1]. Предложенный способ позволяет измерять осевую силу на опору ротора экспериментальным путём без доработки материальной части и изготовления специальных приспособлений либо расчётов [2-4]. Тензодатчики наклеиваются непосредственно на элементы упруго-демпферной опоры ротора, в частности на упругий элемент (см. рис. 1), которые воспринимают, помимо радиальных, также и осевые нагрузки. Такой способ позволил препарировать тензодатчиками штатную материальную часть, не внося изменений в конструкцию и не изготавливая дополнительных элементов конструкции.

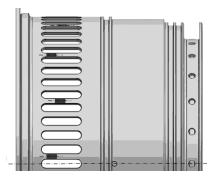


Рис. 1 – Схема размещения тензодатчиков на упругом элементе опоры ротора

В проведённом эксперименте опора ротора была препарирована тремя поясами тензорезисторов. Тарировка препарированной опоры ротора в составе промежуточного корпуса, т.е. в штатной компоновке без последующей разборки, была выполнена в статической лаборатории (рис. 2), что позволило получить характеристику датчиков в широком диапазоне сил.

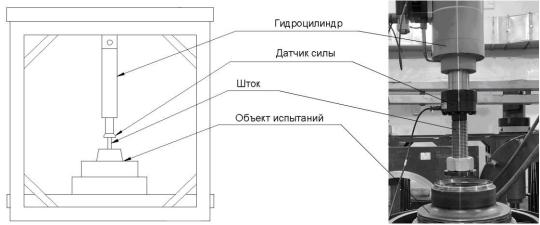


Рис. 2 – Схема установки для тарировки тензодатчиков, установленных на опору ротора ГТД

Проведенная тарировка тензодатчиков, наклеенных по разработанному способу, показала хороший отклик с препарированного упругого элемента упруго-демпферной опоры. При этом запись показаний с тензорезисторов велась на две различные системы регистрации статических

напряжений MIC-185 (Россия) и IMC Cronos (Германия), что позволило получить две независимые тарировочные зависимости (см. рис. 3) и выбрать оптимальную систему для стендовых испытаний.

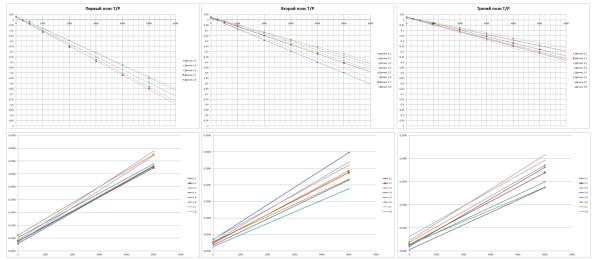


Рис. 3 – Графики тарировки показаний тензодатчиков от действия осевой силы по поясам

В представленной работе освещены вопросы как лабораторной тарировки системы замера осевой силы, так и анализ результатов стендовых испытаний в составе ГТД.

Список литературы

- 1. Гусенко С.М., Стародумов А.В., Терешко А.Г. Патент на изобретение № 2729592 Способ определения осевой силы, действующей на ротор турбомашины в процессе её работы. опубл. 11.08.2020.
- 2. Скубачевский Г.С. Авиационные газотурбинные двигатели. Конструкция и расчёт деталей. М., Машиностроение, 1969, С.27-39.
- 3. Роже Кристиан Мари Мишель. Патент на изобретение № 2160435, МПК G01L 5/12, опубл. 10.12.2000.
- 4. Канахин Ю.А., Марчуков Е.Ю. Патент на изобретение № 2426902 Способ определения осевой нагрузки, действующей на упорный подшипник ротора авиационного газотурбинного двигателя. опубл. 20.08.2011.
- 5. Гусенко С.М., Терешко А.Г. Определение осевой нагрузки на опору ротора ГТД / Сборник статей научно-технической конференции «Климовские чтения 2020: Перспективные направления развития авиадвигателестроения», 2020. С. 299-302.

Сведения об авторах.

Терешко Антон Герольдович, главный специалист по прочностным испытаниям, начальник отдела. Область научных интересов: прочностные испытания, роторная динамика.

Гусенко Сергей Михайлович, начальник бригады прочности статора. Область научных интересов: прочностные испытания, статическая прочность деталей ГТД.

Дмитриев Алексей Владимирович, начальник бригады конструкторского сопровождения испытаний. Область научных интересов: прочностные испытания деталей ГТД.

REWIEW OF EXPERIMENTAL DATA FROM AXIAL FORCE TO BEARING SUPPORT OF AIRCRAFT ENGINE

Tereshko A. G., Gusenko S. M., Dmitriev A. V.

"Lyulka Design Bureau" sub. PJSC "UEC-UEIA", Moscow, Russia, anton.tereshko@lmz.umpo.ru

Keywords: aircraft engine testing, axial force, resistance strain gage calibration.

This document consist a description of new patented method of measuring an axial force with preliminary gauges calibration, applied on the squirrel cage.