

П.А Богуренко, В.Д. Зубков, М.Е. Бурлаков

ФИЛЬТРАЦИЯ RSSI METOДОМ СКОЛЬЗЯЩЕГО СРЕДНЕГО

(Самарский национальный исследовательский университет имени академика С.П. Королёва)

Введение. Определение расстояния по Wi-fi сигналу, является очень важной и необходимой задачей. Один из способов — это метод триангуляции на основе RSSI сигналов от точек доступа. Но для получения наиболее точных данных, необходимо фильтровать RSSI сигнал от посторонних шумов. Иначе это приведет к погрешности при позиционировании объектов, а также к большим колебаниям позиции объекта.

Параметр RSSI, как основа для позиционирования в Wi-Fi сетях. RSSI (Received Signal Strength Indicator) — показатель уровня принимаемого сигнала. Данная величина измеряется в децибелах и представляет собой полную мощность принимаемого приемником сигнала. Данный параметр является основным для нахождения расстояния до базовой станции. Расстояние вычисляется при помощи формулы:

$$RSSI = -10nlog_{10}\left(\frac{d}{d_0}\right) + A_0, \qquad (1)$$

где:

- d расстояние от устройства до передатчика, м;
- d_0 расстояние от устройства до точки, на которой выполнялось измерение мощности сигнала A_0 устройства, м;
- A_0 —мощность сигнала устройства, измеренная на единичном расстоянии d_0 от устройства, dBm;
- п коэффициент потерь мощности сигнала при распространении в среде, безразмерная величина (для воздуха n=2; увеличивается при наличии препятствий);

Исходя из уравнения, которое является упрощением соотношения Фрииса, можно заметить, что при увеличении расстояния до маяка или станции — значение RSSI уменьшается логарифмически (Рис. 1).

Шумы. В предлагаемой работе проведены измерения RSSI во временном ряду на различных расстояниях. Результаты измерений нанесены на графики (Рис. 2-3)

Из представленных графиков видно, что значения имеют широкую вариативность, хотя в эксперименте объект стоял неподвижно. Это воздействие шумов на сигнал. Для приведения значений к наиболее реальной обстановке, используют фильтр скользящего среднего.

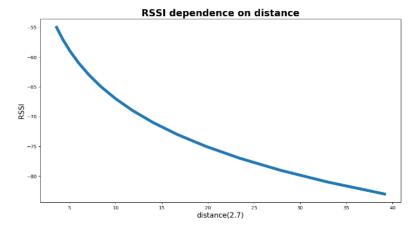


Рис. 1. График зависимости RSSI от дистанции при экспериментальном сборе данных с параметром п равном 2.7

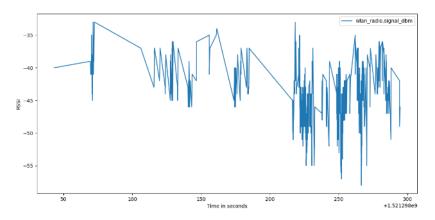


Рис. 2. Временной ряд RSSI при расстоянии в 1 м

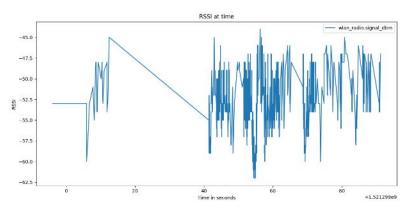


Рис. 3. Временной ряд значений RSSI при сборе показаний на расстоянии 5 м

Фильтр скользящего среднего. Различают две разновидности метода скользящего среднего – простое сглаживание и взвешенное сглаживание. Простое сглаживание вычисляется по формуле:

$$\overline{X}(k) = \frac{1}{n} \sum_{t=k}^{n+k} X(t)$$
 (2)

где n — размер окна (период сглаживания), k-номер члена ряда, значение которого заменяется средним. Размер окна зависит от характера временного ряда, целей исследования и определяется пользователем. Вообще, чем больше окно, тем сильнее сглаживание. Поэтому, если выбрать окно слишком большим, вместе со случайной составляющей возможно будут подавлены изменения, несущие полезную информацию. В пределе, если размер окна взять равным длине ряда, значения всех его членов станут одинаковыми и равными среднему значению ряда. Вся информация о динамике исследуемого процесса таким образом будет потеряна.

При взвешенном сглаживании значения ряда средние значения, вычисленные по окну, берутся с некоторыми весами, отражающими вклад члена ряда в отражаемые рядом закономерности исследуемого процесса. В этом случае, аппроксимация оценки значения ряда производится с помощью полинома порядка p в интервале (t-n, t+n):

$$X(t) = \sum_{i=0}^{p} a_i t^i \tag{3}$$

параметры которого, оцениваются по методу наименьших квадратов.

При использовании данного фильтра на собранных значениях, графики преобразуются к виду, как показано на Рис. 4-5.

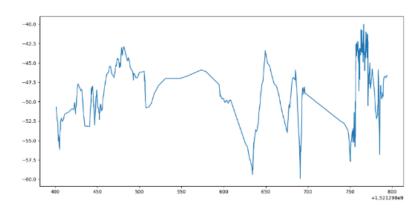


Рис. 4. Временной ряд значений RSSI на расстоянии 1 м. после фильтрации

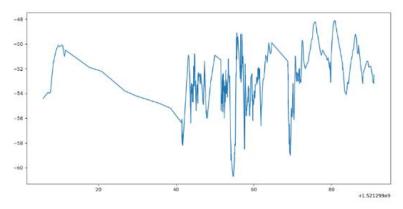


Рис. 5. Временной ряд значений RSSI после фильтрации на расстоянии в 5 м

Сравнение результатов фильтрации. Результаты фильтрации набора значений RSSI на расстоянии 1 м. от передатчика представлены в табл. 1

Окно фильтра-	Среднее значение	Стандартное от-
ции	расстояния (м.)	клонение (м.)
0	0.952894	0.326932
10	0.970465	0.169872
20	0.912260	0.116463

Также были проведены измерения для других расстояний и размеров окна. По результатам всех измерений и фильтрации видно, что чем шире окно фильтрации, тем меньшим колебаниям будет подвержена позиция клиента и, тем большая погрешность будет получаться вследствие потери информации, не относящейся к шуму.

Заключение. В заключение можно сказать, что для увеличения точности определения позиционирования и уменьшения колебания позиции объектов необходима фильтрация значений RSSI от постороннего шума, применяя к нему выше упомянутый алгоритм. Тем самым алгоритмы фильтрации являются такой же важной частью, как и алгоритмы позиционирования.

Литература

- 1. Moving Average Filters (Character 15) [Электронный ресурс] Режим доступа: http://www.autex.spb.su/download/dsp/dsp_guide/ch15en-ru.pdf, свободный. Яз. рус.
- 2. Рекурсивные фильтры скользящего среднего [Электронный ресурс] Режим доступа: https://habrahabr.ru/post/325590, свободный. Яз. рус.
- 3. Moving Average method среднего [Электронный ресурс] Режим доступа: https://basegroup.ru/community/glossary/movav-method, свободный. Яз. англ.
- 4. Смит В.С. «Научно-техническое руководство по цифровой обработке сигналов» Второе издание Фильтры скользящего среднего

М.А. Болотов, В.А. Печенин, Н.В. Рузанов, Е.Ю. Колчина

НЕЙРОСЕТЕВАЯ МОДЕЛЬ ДЛЯ ПРОГНОЗИРОВАНИЯ ОТНОСИТЕЛЬНОГО РАСПОЛОЖЕНИЯ КОНТАКТИРУЮЩИХ ПРОФИЛЬНЫХ ОБЪЕКТОВ

(Самарский университет)

Сборка изделий средней и высокой сложности является уникальной операцией в ходе которой по результатам измерений и анализа геометрии собираемых деталей изменяется ход операций. При этом, в авиадвигателестроении, как правило, выполняется несколько пробных сборок с целью определения подходящего комплекта деталей, их оптимального взаимного положения и размерных параметров, которые обеспечивают заданную конструктором точность.