

А.Г. Елфимов, Е.В. Симонова

ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ ГРАФОВЫХ БАЗ ДАННЫХ ПРИ РЕАЛИЗАЦИИ РЕКОМЕНДАТЕЛЬНЫХ СЕРВИСОВ В МУЛЬТИАГЕНТНОЙ СИСТЕМЕ УПРАВЛЕНИЯ ПРОЕКТАМИ

(Самарский университет)

Введение

В настоящее время руководители крупных компаний сталкиваются с проблемами в управлении проектами, порождаемыми высокой динамикой процессов управления: частая смена планов; сложность расчёта эффективности работы сотрудника; срыв сроков выполнения задач; отсутствие единой точки сбора информации; сложность удаленного взаимодействия сотрудников; потеря массы полезной информации в беседах по телефону и письмах; отсутствие возможности оптимизировать загрузку персонала в реальном времени; планы теряют актуальность сразу после составления.

Для управления проектами существует ряд программных продуктов: SAP Resource and Portfolio Management [1], Microsoft Office Project Server [2], PrimaVera [3] и ряд других, однако они не обеспечивают автоматизированного составления расписания работ, не содержат средств базы знаний, не способны самообучаться и не предоставляют возможностей адаптивного перепланирования работ.

Одним из путей повышения эффективности систем управления проектами является использование рекомендательных сервисов. Рекомендательные системы — программы, которые пытаются предсказать, какие объекты будут интересны пользователю, имея определенную информацию о его профиле [4]. С развитием рекомендательных систем возрастают предъявляемые к ним требования: точность рекомендаций, скорость их выдачи, работа с большим объемом данных. Также необходимо учитывать особенности предметной области.

Традиционно используются следующие подходы к созданию рекомендательных систем: контентная и коллаборативная фильтрация, а также гибридные подходы, которые совмещают обе эти концепции. При этом рекомендательные системы далеко не всегда оптимально справляются с предъявляемыми к ним требованиями.

Постановка задачи

Для управления проектами в компании «Разумные решения» была разработана система Smart Project, основанная на использовании онтологий и мультиагентных технологий [5, 6]. Мультиагентная система (МАС) управления проектами предназначена для поддержки принятия решений по оперативному распределению ресурсов в проектах. В МАС управления проектами каждой задаче, операции, сотруднику и прочим ресурсам ставится в соответствие программный агент, выступающий от их имени. Задачи, выполняемые в

системе планирования проектов, имеют различный характер, должны быть запланированы и затем выполнены в заданные сроки.

Онтологический подход позволяет сформировать базу знаний для построения моделей ситуаций в проектах и настройки на специфику работы предприятий, учитывая индивидуальные характеристики задач и ресурсов, которые хранятся в базах данных.

В составе МАС могут быть реализованы рекомендательные сервисы.

Рекомендательные сервисы могут быть разработаны с использованием различных источников данных. Обычно используют реляционные или нереляционные базы данных. Однако при использовании реляционных баз данных повышается сложность написания запросов, несмотря на наличие явных отношений между таблицами, а сами запросы получаются громоздкими. При использовании нереляционных баз данных информацию обычно хранят в формате триплетов, которые имеют вид «субъект — предикат — объект», что не избавляет от сложности написания запросов.

Возможным решением этих проблем является использование графовой базы данных в качестве ядра рекомендательной системы. Особенность ее использования заключается в простоте написания запросов на языке SPARQL, а также в возможности нахождения похожих объектов, которые не имеют явной связи друг с другом.

Данные, используемые для выработки рекомендаций, должны соответствовать определенным требованиям: актуальность, точность (правильность), уникальность, полнота, структурированность и т.д. Только при наличии качественных данных возможно принятие решений, наиболее полно отвечающих потребностям пользователей.

В МАС управления проектами использование рекомендательной системы позволит принимать качественные решения по оперативному распределению ресурсов в проектах, опираясь на предыдущий опыт и уже имеющиеся данные.

Подсистема выдачи рекомендаций в составе MAC управления проектами используется на разных этапах выполнения задачи. Эти этапы представлены в таблице 1.

Таблица 1. Рекомендации на этапах выполнения задачи

Формализация	Оценка	Планирование	Исполнение	Проверка	Изучение
					уроков
Входы	Трудоемкость	Исполнители	Лучшие практики	Чек-лист	KPI
Выходы	Сроки	Требования	Ближайшие доку-	Критерии	Метрики
Параметры	Риски		менты / аналоги	Тесты	_
Условия			Советы		
			Люди (эксперты)		

Семантическая сеть онтологии управления проектами для выдачи рекомендаций представлена на рисунке 1.

International Scientific Conference Proceedings "Advanced Information Technologies and Scientific Computing"

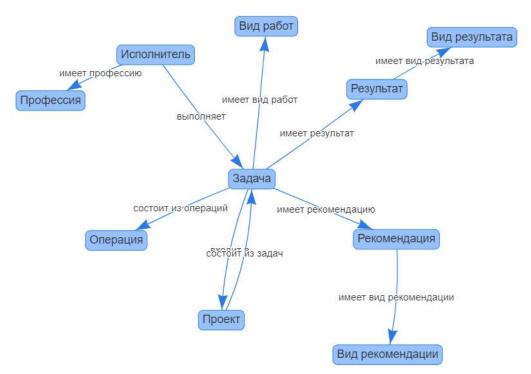


Рисунок 1 – Семантическая сеть онтологии управления проектами

Требуется провести исследование эффективности использования той или иной базы данных в качестве ядра рекомендательной системы для мультиа-гентной системы управления проектами.

Для исследования были выбраны реляционная база данных Microsoft SQL Server, нереляционная база данных MongoDb и графовая – Neo4j.

Предлагаемое решение

Для решения поставленной задачи разработан модуль выдачи рекомендаций на разных этапах выполнения задачи. На рисунке 2 представлена структурная схема этого модуля и его интеграция с внешней системой управления проектами.

Алгоритм работы поиска рекомендации заключается в следующем:

- 1. Исходными данными для работы алгоритма являются данные ракетно-космического предприятия с проектами и задачами, которые назначены на сотрудников и привязаны к результатам.
- 2. Для текущей задачи подобрать аналогичные задачи по виду работ и виду результата.
- 3. Для текущей задачи подобрать методики, требования/стандарты исходя из аналогичных задач.
- 4. Для текущей задачи, входящей в состав проекта, подобрать всех исполнителей (пользователей), которые ранее выполняли другие задачи, имеющихе такой же вид работ и вид результата.
 - 5. Выдать список рекомендаций.

Полученные рекомендации необходимо подвергать ранжированию. Метрикой подобия, которой мы воспользуемся в данной реализации, является коэффициент подобия Жаккара или индекс Жаккара, также известный как пересечение над объединением. Индекс Жаккара измеряет сходство между двумя наборами со значениями в диапазоне от 0 до 1. Значение 0 указывает, что два набора не имеют общих элементов, в то время как значение 1 означает, что эти два набора идентичны [7]. Для двух наборов А и В индекс Жаккара вычисляется по следующей формуле:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} \tag{1}$$

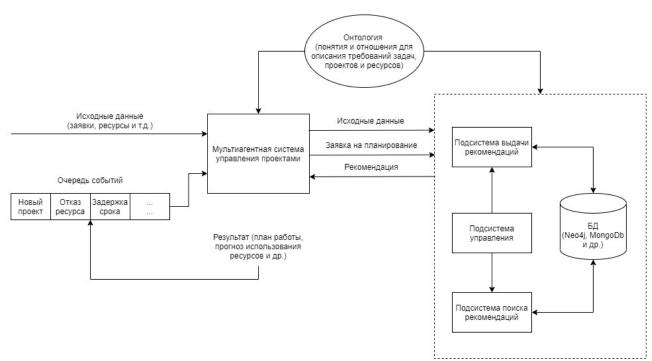


Рисунок 2 – Структурная схема модуля выдачи рекомендаций

Результаты измерений времени выполнения алгоритма отображены в таблице 2.

Таблица 2. Результаты эффективности поиска рекомендаций в зависимости от используемой базы данных и объёма исходных данных

	100 исполнителей	1000 исполнителей	5000 исполнителей
MongoDb	4.1 сек.	17.2 сек.	61.2 сек.
Microsoft SQL Server	4.9 сек.	18.5 сек.	59.4 сек.
Neo4j	5.3 сек.	22.1 сек.	55.2 сек.

В ходе исследования эффективности было выявлено, что рекомендации, формируемые с использованием графовой базы данных Neo4j, с увеличением объема исходных данных являются самыми быстрыми, однако проигрывают реляционной и неряляционной базам данных (Microsoft SQL Server и MongoDb соответственно) при работе с малым числом пользователей.

Заключение

В ходе исследования было произведено сравнение эффективности использования графовых (Neo4j), реляционных (Microsoft SQL Server) и нереляционных баз данных (MongoDb) при реализации рекомендательных сервисов в мультиагентной системе управления проектами.

По результатам исследования можно сделать вывод о высокой эффективности использования графовых баз данных в рамках поставленной задачи, так как это позволит быстрее обрабатывать большие объемы данных и выдавать пользователю рекомендации.

В дальнейшем будут проведены исследования по большему числу критериев: объем занимаемой оперативной памяти, объем дискового пространства, занимаемого базой данных, а также точность и полнота полученных рекомендаций.

Литература

- 1. SAP Resource and Portfolio Management [Электронный ресурс]. Режим доступа: http://www.sap.com/solution/lob/r-and-d/software/portfolio-project-management/index.html
- 2. Microsoft Office Project Server [Электронный ресурс]. Режим доступа: https://products.office.com/ru-ru/project/enterprise-project-server
- 3. Primavera Enterprise Project Portfolio Management [Электронный ресурс]. Режим доступа: http://www.oracle.com/us/products/applications/primavera/overview/index.html?orig ref=http://ru.wikipedia.org/wiki/Primavera
- 4. Ремоендательные системы [Электронный ресурс]. Режим доступа: https://neerc.ifmo.ru/wiki/index.php?title=Рекомендательные системы
- 5. Е.М.Клейменова, П.О. Скобелев, В.Б. Ларюхин, И.В.Майоров, Д.С.Косов, Е.В. Симонова, и др. Интеллектуальная система «Smart Projects» для оперативного управления ресурсами в проектах НИР и ОКР в реальном времени // Информационные технологии. − 2013. №6. − С. 27−36.
- 6. P. Skobelev, S. Kozhevnikov, I. Mayorov, D. Poludov & E. Simonova. Smart Projects: Multi-Agent Solution for Aerospace Applications // International Journal of Design & Nature and Ecodynamics. WIT Press, vol. 12(2017), is. 4. P. 492-504. DOI 10.2495/DNE-V12-N4-492-504.
- 7. Jaccard index [Электрон. ресурс]. Режим доступа: https://ru.qwe.wiki/wiki/Jaccard_index