

моделей для пополнения словаря оценочной лексики. Научноисследовательские публикации. 2017. № 3. С. 6-13.

- 12. Сбоев А.Г., Воронина И.Е., Гудовских Д.В., Селиванов А.А. Продвинутые нейросетевые модели для решения задачи определения тональности. Вестник Воронежского государственного университета. Серия: Системный анализ и информационные технологии. 2016. № 4. С. 178-183.
- 13. Смелик Н.Д., Фильченков А.А. Мультимодальная тематическая модель текстом и изображений на основе использования их векторного представления. Машинное обучение и анализ данных. 2016. Т. 2. № 4. С. 421-441.
- 14. Черноусов Е.О., Чикунов Н.С. Исследование и разработка интеллектуальной системы поддержки принятия решений для службы удаленной технической поддержки на основе методов WORDEMBEDDING. Инновационная наука. 2017. № 12. С. 66-70.
- 15. Щербаков Д.А. Синтез и ранжирование ответов в поисковых системах типа вопрос-ответ, основанных на онтологической реккурентной структуре связанных данных. Инновационная наука. 2015. № 12-2. С. 153-160.

Е.В. Старкова, С.А. Прохоров

ИССЛЕДОВАНИЕ МЕТОДОВ КЛАССИФИКАЦИИ ТЕКСТОВ НА ЕСТЕСТВЕННОМ ЯЗЫКЕ

(Самарский университет)

На сегодняшний день в условиях стремительного роста текстовой информации в электронном виде и в связи с потребностью в ней ориентироваться, все более актуальной становится проблема построения универсального классификатора текстов, предоставляющего возможность распределения исходного набора статей по нескольким заранее установленным тематикам в соответствии с их смысловым содержанием [1]. Использование такого классификатора позволит сократить трудозатраты на поиск необходимой информации, представленной электронными текстами, а также ограничить поиск относительно небольшим подмножеством документов.

Различные решения данной задачи находят свое практическое применение в таких областях, как составление тематических каталогов, фильтрация спама, классификация сайтов по тематическим каталогам, обработка документооборота и т.д. В настоящее время примерами классификатов текстов являются такие системы как NNCS (Neural Network Classification & Search), TextAnalyistPro, TextCat, CBTReader, а также проект ДИАЛИНГ, который был разработан специалистами факультета лингвистики РГГУ. Однако все они имеют ряд недостатков: во-первых, это коммерческие проекты, стоимость которых достаточно высока, а во-вторых, эти проекты рассчитаны на профессионального пользователя, следовательно, только обучение использованию предлагаемых пакетов займет слишком много времени.

Наиболее распространенными методами решения данной задачи являются методы машинного обучения и методы, основанные на знаниях. Перспективным направлением на сегодняшний день также считается использование метода опорных векторов и метода деревьев решений в качестве основы подобного рода классификатора [2]. Основным преимуществом данных методов является возможность выявления зависимостей, не поддающихся обнаружению при использовании других подходов обработки информации. Методы опорных векторов и деревьев решений в анализе текстовой информации обладают достаточным быстродействием и не зависят от языка предметной области, но при этом, в отличие от многих алгоритмов обработки текстов дают хорошие результаты.

Целью данной работы является исследование возможностей метода деревьев решений и метода опорных векторов в решении задачи классификации текстов в соответствии с их смысловым содержанием, проектирование и реализация классификатора текстов на естественном языке, а также сравнение результатов, полученных при реализации данных методов.

В качестве входных данных для каждого метода классификации было выбрано 7 тематик, содержащих 150 текстовых фрагментов.

Подход к решению задачи классификации текстов без предварительной обработки данных дает плохие результаты, так как задача обладает рядом особенностей:

- 1. разреженность пространства;
- 2. высокая размерность пространства;
- 3. нестатистический характер данных;
- 4. большой объем данных.

В данной работе была выполнена предобработка входных векторовдокументов в виде векторизации данных TF-IDF, что позволило учесть описанные выше особенности пространства и сделать признаки более информативными.

TF — отношение числа вхождения некоторого слова к общему количеству слов документа. Таким образом, оценивается важность терма t в пределах отдельного документа d.

IDF — инверсия частоты, с которой некоторый терм встречается в документах коллекции. IDF учитывает тот факт, что если терм встречается во многих документах множества, то он не может являться существенным критерием принадлежности документа рубрике и наоборот [3].

В модели TF-IDF каждому терму t документа d ставится в соответствие величина:

$$TF * IDF = TF(d, t) \cdot \log_2 \left(\frac{N}{df(t)}\right)$$

где tf(d,t) — это частота терма t в документе d, N — число документов в корпусе, df(t) — количество документов в которых встречается терм t.

В данном исследовании классификатор на базе деревьев решений представляет собой дерево, узлами которого являются термы t_k , каждое ребро обо-

значено условием $\ge v_k$ или $< v_k$, а листья помечены как c_i или \bar{c}_i . Чтобы классифицировать документ d_i в категорию c_i или \bar{c}_i необходимо пройти по узлам дерева начиная с корня, сравнивая веса терма в документе w_{kj} со значениями v_k на ребрах (рис. 1).

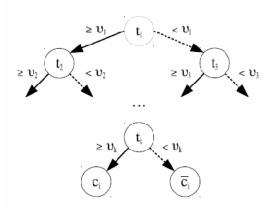


Рис. 1. Дерево решений для категории c_i

В данном методе был применен алгоритм CART для усечения дерева, чтобы уменьшить эффект переобучения. В данном алгоритме каждый узел дерева решений имеет двух потомков. На каждом шаге построения дерева правило, формируемое в узле, делит заданное множество примеров на две части — часть, в которой выполняется правило и часть, в которой правило не выполняется [4]. Для выбора оптимального правила используется функция оценки качества разбиения. В алгоритме CART идея неопределенности формализована в индексе Gini:

$$Gini = 1 - \sum_{i=1}^n p_i^2,$$

где Т — текущий узел, а рі — вероятность класса і в узле Т.

В таблице 1 приведены результаты точности классификации в зависимости от настраиваемого параметра данного метода — глубины дерева.

Tr ~	1 7	1
Гаолина	I. Зависимость точности класси	ификании от глубицы лерева

Глубина дерева	Средняя точность классификации, %
15	32
30	40
45	54
60	59
90	61
100	63
115	64
130	62

Из таблицы видно, что наилучшие результаты для данной выборки текстов были получены при значении глубины дерева 115. При дальнейшем увеличении глубины наблюдается эффект переобучения.

Метод опорных векторов (SVM) заключается в нахождении гиперплоскости в пространстве признаков, разделяющей его на две части: положительные

примеры в одной и отрицательные в другой — у которой минимальное расстояние до ближайших примеров максимально [5]. Некоторая выборка линейно разделима, если в ней возможно получить линейный пороговый классификатор:

$$\operatorname{sign}(\sum_{i=1}^{m} w_i * x^i - w_0) = \operatorname{sign}(\langle w, x \rangle - w_0),$$

где $x = (x^1, ..., x^n)$ – признаковое описание объекта x; вектор $w = (w^1, ..., w^n) \in \mathbb{R}^n$ и скалярный порог $w_0 \in \mathbb{R}$ являются параметрами алгоритма. Таким образом, задача состоит в том, чтобы подобрать значения вектора w такие, при которых функционал, определяющий число ошибок, равен нулю:

$$\sum_{i=1}^{n} [y_i(\langle w, x_i \rangle - w_0) \le 0] = 0.$$

Наилучшие результаты при использовании метода опорных векторов были получены при установлении предельного параметра ошибки в 1, в качестве ядра была выбрана радиальная базисная функция, коэффициент ядра равен 2. При указанных параметрах средняя точность классификации составила 79%.

В таблице 2 приведены результаты сравнения точности классификации методов опорных векторов и деревьев решений в зависимости от заданных тематик при оптимальных параметрах для каждого метода.

Тематика	Деревья решений	SVM
Внешняя экономика	58%	80%
Налоги	54%	69%
Медицина	70%	83%
Туризм	68%	95%
Недвижимость	64%	71%
Наука	47%	58%
Финансы	69%	97%

Таблица 2. Результаты классификации текстов

Полученные результаты позволяют сделать вывод, что метод опорных векторов показал лучшие результаты, чем метод деревьев решений.

Также по результатам исследований было установлено, что один и тот же уровень точности классификации достигается за счет соблюдения баланса между величиной обучающих текстов и их количеством. Чем меньше по размеру обучающие тексты, тем больше их должно быть в обучающем множестве, соответственно, чем фрагменты больше — тем меньшим их количеством можно обойтись.

Литература

- 1. Леонтьева, Н. Н. Автоматическое понимание текстов: системы, модели, ресурсы [Текст]: учеб. пособие для вузов/ Н. Н. Леонтьева М.: Издательский центр «Академия», 2006. 304 с.
- 2. Владимир В.В. Математические основы теории машинного обучения и прогнозирования. МЦМНО, 2013. 390 с.
- 3. Губин, М. В. Модели и методы представления текстового документа в системах информационного поиска [Текст]: дис. канд. физ.-мат. наук: защищена 22.03.05: утв. 15.12.05/ М. В. Губин М., 2005. 95 с.

- 4. Деревья решений CART математический аппарат [Электронный ресурс]. https://basegroup.ru/community/articles/math-cart-part1(дата обращения 19.03.2018).
- 5. Воронцов, К.В. Математические методы обучения по прецедентам [Электронный ресурс]. http://www.ccas.ru/voron/download/SVM.pdf (дата обращения 20.03.2018).

А.В. Сурков, В.Г. Литвинов

АВТОМАТИЗИРОВАННАЯ СИСТЕМА МОНИТОРИНГА И ПРОГНОЗИРОВАНИЯ МЕТЕОРОЛОГИЧЕСКИХ ПОКАЗАТЕЛЕЙ

(Самарский университет)

В настоящее время искусственные нейронные сети используются во множестве сфер человеческой деятельности и показывают весьма впечатляющие результаты. Одной из задач, которую можно решать с помощь этого инструмента является предсказание погоды для разных временных промежутков. Конкретная задача интересна как с научной точки зрения, так и с коммерческой.

Существует несколько основных методов прогнозирования погоды:

- 1. Синоптический метод составления прогнозов погоды основан на анализе карт погоды. Сущность этого метода состоит в одновременном обзоре состояния атмосферы на обширной территории, позволяющем определить характер развития атмосферных процессов и дальнейшее наиболее вероятное изменение погодных условий в интересующем районе. Осуществляется такой обзор с помощью карт погоды, на которые наносятся данные метеорологических наблюдений на различных высотах, а также у поверхности земли, производимых одновременно по одной программе в различных точках земного шара. На основе подробного анализа этих карт синоптик определяет дальнейшие условия развития атмосферных процессов в определенный период времени и рассчитывает характеристики метеоэлементов температуру, ветер, облачность, осадки и т.д.
- 2. Численные (гидродинамические) методы прогноза погоды основаны на математическом решении системы полных уравнений гидродинамики и получение прогностических полей давления, температуры на определенные промежутки времени. Точность численных прогнозов зависит от скорости расчета вычислительных систем, от количества и качества информации, поступающей с метеостанций. Чем больше данных, тем точнее расчет.
- 3. Статистические методы прогноза позволяют по прошлому и настоящему состоянию атмосферы спрогнозировать на определенный будущий период времени состояние погоды, т.е. предсказать изменения различных метеоэлементов в будущем. Часто выбирается комплексный подход использование сразу нескольких частных методов прогноза одной и той же характеристики состояния атмосферы с целью выбора окончательной формулировки прогноза.