

International Scientific Conference "Advanced Information Technologies and Scientific Computing"

проект представлен на региональную, всероссийскую, международную конференцию молодях исследователей.

В докладе описан опыт реализации матричной структуры на факультете информационных систем и технологий СГАСУ, а системы научного консультирования проектов школьников — в рамках Международной ассоциации строительных вузов.

С.А. Пиявский, Р.Б. Шаталов

ИНФОРМАЦИОННО-АНАЛИТИЧЕСКАЯ СИСТЕМА ОДАРМОЛ. ПОМОЩЬ ОБЩЕОБРАЗОВАТЕЛЬНЫМ ОРГАНИЗАЦИЯМ В ПОИСКЕ И РАЗВИТИИ ОДАРЕННЫХ СТАРШИХ ШКОЛЬНИКОВ

(Самарский государственный архитектурно-строительный университет)

Настоящая работа выполнялась в соответствии с договором между ООО «ЭкоДоминанта» и ФГБОУ ВПО Самарский государственный архитектурно-строительный университет в рамках Государственного контракта Минобрнауки РФ «Программа и сетевой график проведения мониторинга реализации проектов в 2011-2012 гг., направленных на формирование системы взаимодействия университетов и учреждений общего образования по реализации общеобразовательных программ старшей школы, ориентированных на развитие одаренности у детей и подростков».

Задача работы с одаренной молодежью очень важная. Однако события последнего времени:

- утверждение Президентом РФ 3.04.12 «Концепции общенациональной системы выявления и развития молодых талантов» [1],
- утверждение Президентом РФ 7.05.12 Указа «О мерах по реализации государственной политики в области образования и науки»
- ввод в действие 2.06.12 Федерального государственного образовательного стандарта среднего (полного) общего образования

создают предпосылки и одновременно требуют перевести эту работу на более высокий уровень. Базируясь на выполняемых проектах ФЦПРО, необходимо перейти к формированию в стране в течение 2013-2015 годов ЦЕЛОСТНОЙ СИСТЕМЫ РАБОТЫ С ОДАРЕННЫМИ СТАРШИМИ ШКОЛЬНИКАМ.

Федеральная целевая программа развития образования на 2011- 2015 годы (далее ФЦПРО) по обеспечению формирования системы взаимодействия университетов и учреждений общего образования по реализации общеобразовательных программ старшей школы, ориентированных на развитие одаренных детей, предусмотренных в рамках мероприятия 2. «Распространение на всей территории Российской Федерации современных моделей успешной социализации детей», подмероприятия 2.2. «Создание, основанной на информационнокоммуникационных технологиях, системы управления качеством образования, обеспечивающей доступ к образовательным услугам и сервисам», задачи 1

«Модернизация общего и дошкольного образования как института социального развития» ФЦПРО (номер открытого конкурса: 02.02–023–п–Ф- 282).

Министерством образования и науки России была поставлена задача - разработать информационную систему мониторинга, которая должна обеспечить контроль выполнения заданий госконтрактов, а также отображать взаимодействие университетов-исполнителей с общеобразовательными учреждениями по тематике проектов ФЦПРО.

Шаталов Р. Б. был приглашен в качестве одного из двух участников рабочей группы, которые обеспечили разработку программного обеспечения системы мониторинга и техподдержку эксплуатации системы.

Научная новизна работы — при обработке полученной информации нужно упорядочивать объекты, эффективность которых оценивается вектором критериев — это субъекты $P\Phi$, общеобразовательные организации и университеты, входящие в ACB.

Целью данной работы является увязание в единый целостный процесс развитие одаренной молодежи, а также:

- 1) ввод университетами, входящими в АСВ обобщенных тематик (предложений):
- 2) выявление одаренных учащихся и их ОУ;
- 3) устаноёвление связи общеобразовательная организация университет (именно для школьника, чтобы иметь возможность получать научные консультации от крупных ученых университетов);
- 4) активное сопровождение учащегося (в плане его научно исследовательского проекта);
- 5) представление выполненных учащимся работ на Всероссийские конкурсы и конференции, а также их независимая объективная оценка;
- 6) дифференциация различных форм поддержки одаренной молодежи в зависимости от ее успехов.

В этой цепочке много задействованных лиц и организаций. Поэтому, основная **цель работы** — обеспечить их взаимное оперативное информирование, чтобы они могли эффективно работать.

На данный момент работа проходит в рамках участия в ней Ассоциации строительных вузов и носит роль инструмента помощи для общеобразовательных организаций по поиску и развитию одаренных старших школьников. Основной концепцией этой работы является:

- 1) выявление в ОУ одаренных старших школьников (например, путем агетирования, проведения выездных уроков или докладов);
- 2) выбор школьником (также можно вместе с учителем, который будет руководить выполнением проекта) обобщенной тематики будущего индивидуального проекта исследовательской направленности;
- 3) регистрация в системе ОДАРМОЛ (через ОУ или самостоятельно);
- 4) получение научного консультанта от ВУЗа;
- 5) выполнение индивидуального проекта с помощью консультанта от ВУЗа;

International Scientific Conference "Advanced Information Technologies and Scientific Computing"

6) представление проекта на различных олимпиадах, конкурсах, конференциях и т.п.

Самым главным мероприятием для школьника из всего вышесказанного является формирование индивидуального портфолио, которое может сыграть значительную роль при поступлении в ВУЗ, а также понять и осознать дальнейший жизненный путь.

Аналитические исследования

Ниже приведены данные наполнения информационной базы ОДАРМОЛ и данные, полученные от наиболее активных школьников, пользующихся своими персональными журналами (таблицы 1-5).

Таблица 1. Количество наиболее активных школьников, оценивших взаимодействие с научным консультантом от ВУЗа

Качество взаимодействия	Количество выбравших
хорошее	56
среднее	40
слабое	65

Таблица 2. Количество наиболее активных школьников, отметивших готовность своего индивидуального проекта

Готовность проекта	Количество отметивших
получена тема проекта	140
составлен обзор литературы	30
сформулирована рабочая гипотеза	9
составлен план выполнения проекта	30
выполнена теоретическая часть	22
выполнена экспериментальная часть	4
проведено исследование	7
сделаны предварительные выводы	22
оформлен предварительный вариант проекта	14
получены замечания тьютора от университета	2
учтены замечания тьютора	2
подготовлена презентация к докладу по проекту	7
окончательно оформлена пояснительная записка к проекту	2
проект успешно защищен в свой школе	75

Таблица 3. Количество введенных предложений университетами ACB по видам документа

Вид документа	Количество введенных предложений
О направлениях исследований	614
Об университетах	18
О кафедрах	47
О лучших работах школьников	0

Таблица 4. Количество введенных предложений университетами АСВ по отраслям наук

Отрасли науки	Количество введенных предложений университетом АСВ
Нет	0
Все направления	14
Математические	180
Физические	210
Химикобиологические	112
Естественнонаучные	87
Технологические	423
Гуманитарные	160

Таблица 5. Количество введенных предложений университетами АСВ

Вуз АСВ	Количество введен- ных предложений
Самарский государственный архитектурно- строительный университет	163
Московский государственный строительный университет (Национальный исследовательский университет)	106
Воронежский государственный архитектурно- строительный университет	54
Белгородский государственный технологический университет имени В.Г. Шухова	201
Пензенский государственный университет архитектуры и строительства	19
Нижегородский государственный архитектурно- строительный университет	96
Томский государственный архитектурно-строительный университет	25

Количество наиболее активных школьников, выбравших обобщенную тематику индивидуального проекта (одно из предложений, введенных университетами ACB) – **144**.

Количество наиболее активных школьников, участвующих в различных конференциях — 129.

Внедрение информационной системы в действие

Разработанная система была внедрена в работу с 1 сентября 2012 года и успешно функционирует на сегодняшний день. Ежедневно портал посещают около 50-70 различных пользователей из 66 регионов РФ, более 350 общеобразовательных учреждений, 20 университетов, входящих в АСВ. А также система посещается 1122 учащимися из различных общеобразовательных учреждений. Ежедневно в техподдержку поступают запросы с оказанием различной технической помощи. На данный момент – общее количество удовлетворенных пользовательских обращений – 128.

International Scientific Conference "Advanced Information Technologies and Scientific Computing"

Литература

- 1. Концепция общенациональной системы выявления и развития молодых талантов [Электронный ресурс] //Режим доступа: http://kremlin.ru/news/14907
- 2. Методика мониторинга 2012 года [Электронный ресурс] //Режим доступа: http://odarmol.ru/owerview/Методика мониторинга 2012 года.pdf
- 3. Рабочая концепция одаренности (под редакцией Д.Б.Богоявленской), М., 2003. 93 с.
- 4. Бюллетень мониторинга за ноябрь 2012 года [Электронный ресурс] //Режим доступа: http://odarmol.ru/owerview/Бюллетень мониторинга ноябрь 2012 год.pdf

А.Е. Семенов

РЕАЛИЗАЦИЯ ПОДСИСТЕМЫ ГЕНЕРАЦИИ ТЕСТОВЫХ ЗАДАНИЙ ДИСТАНЦИОННОЙ ОБУЧАЮЩЕЙ СИСТЕМЫ «3DUCATION»

(Самарский государственный аэрокосмический университет им. академика С.П. Королёва (национальный исследовательский университет))

Последние тенденции развития современных информационных технологий все сильнее связаны с понятиями «Интернет», «трехмерная графика» и «виртуальная реальность». Современные мультимедийные технологии и 3D-графика позволяют в значительной степени увеличить эффективность и качество обучения, благодаря интерактивности процесса обучения и представления его в игровой форме.

Одной из разновидностей дистанционных обучающих систем являются системы виртуальной реальности, а основной формой применения таких систем на занятиях становится освоение теоретического материала с последующей проверкой полученных знаний в виде прохождения итогового или контрольного тестирования.

Одно из требований использования тестов в учебном процессе – их множественность, то есть наличие большого, в идеале – неограниченного количества тестов по каждой тематике с адекватной сложностью каждой группы однотипных тестов. Как показывает практика, учащиеся быстро приспосабливаются к конечному набору заданий, в результате чего происходит простое механическое запоминание ответов, из-за этого эффективность процесса обучения может снизиться. Выполнение требования множественности позволяет применять тесты без опасений «списывания» или возможности поиска тестов с ответами в Интернете.

Создание контрольных измерительных материалов – актуальная, творческая задача в любой дисциплине, в то же время чрезвычайно трудоемкая при «ручной» подготовке. Разработка множества вариантов тестовых заданий требует высокой квалификации преподавателя и значительных затрат времени.