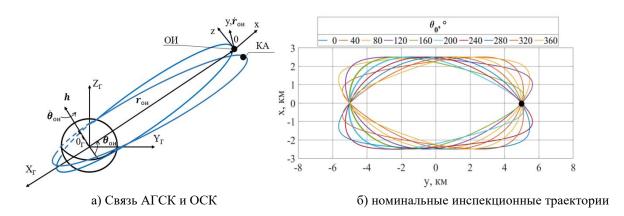
К ВОПРОСУ ОБЕСПЕЧЕНИЯ ИНСПЕКЦИОННОГО ДВИЖЕНИЯ НА ВЫСОКОЭЛЛИПТИЧЕСКИХ ОРБИТАХ

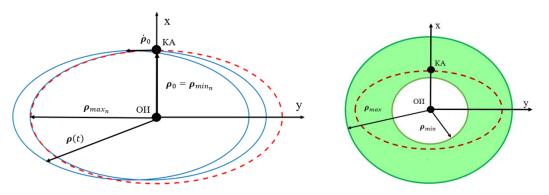
М.С. Щербаков, Д.П. Аваряскин

Самарский национальный исследовательский университет имени академика С.П. Королева

tsherbakov.ms@ssau.ru

Рассматривается движение космического аппарата по инспекционной траектории, в результате которого совершается облет не кооперируемого объекта инспекции в общей орбитальной плоскости. Для описания движения КА и ОИ используются абсолютная геоцентрическая система координат (АГСК) ОХҮХ и орбитальная система координат (ОСК) Охух, начало которой связано с центром масс ОИ. Инспекционное движение рассматривается в ОСК. На рисунке 1а приведена связь АГСК и ОСК. Номинальная инспекционная траектория выбирается из обеспечения условия равенства орбитальных энергий в предположении отсутствия возмущающих факторов за счет выбора начальной скорости движения КА в ОСК [2]. Форма инспекционной траектории зависит от положения КА и аргумента широты ОИ в начальным момент времени реализации инспекционного движения. В качестве примера на рисунке 16 приведена зависимость формы номинальной инспекционной траектории от аргумента широты ОИ. Начальное положение КА показано черной точкой.




Рисунок 1 – Используемые системы координат и форма номинальной инспекционной траектории

На рисунке 1 используются обозначения: \boldsymbol{h} – константа интеграла площадей, $\boldsymbol{\theta}_{\text{ои}}$ – аргумент широты ОИ, $\dot{\boldsymbol{\theta}}_{\text{ои}}$ – угловая скорость ОИ.

В работе рассматриваются два возмущающих фактора, влияющих на инспекционное движение, это нецентральность гравитационного поля Земли и влияние Луны. Для учета указанных возмущений используется математическая модель движения КА и ОИ в АГСК:

$$\begin{cases} \ddot{X}_{\text{OM}} = -\frac{\mu_3}{r_{\text{OM}}^3} X_{\text{OM}} + \frac{3}{2} J_2 \frac{\mu_3}{r_{\text{OM}}^2} \left(\frac{R_3}{r_{\text{OM}}}\right)^2 \left(5 \frac{Z_{\text{OM}}}{r_{\text{OM}}^2} - 1\right) \frac{X_{\text{OM}}}{r_{\text{OM}}} + \mu_{\pi} \left(\frac{X_{\pi} - X_{\text{OM}}}{(r_{\pi} - r_{\text{OM}})^3} - \frac{X_{\pi}}{r_{\pi}}\right), \\ \ddot{Y}_{\text{OM}} = -\frac{\mu_3}{r_{\text{OM}}^3} Y_{\text{OM}} + \frac{3}{2} J_2 \frac{\mu_3}{r_{\text{OM}}^2} \left(\frac{R_3}{r_{\text{OM}}}\right)^2 \left(5 \frac{Z_{\text{OM}}}{r_{\text{OM}}^2} - 1\right) \frac{Y_{\text{OM}}}{r_{\text{OM}}} + \mu_{\pi} \left(\frac{Y_{\pi} - Y_{\text{OM}}}{(r_{\pi} - r_{\text{OM}})^3} - \frac{Y_{\pi}}{r_{\pi}}\right), \\ \ddot{Z}_{\text{OM}} = -\frac{\mu_3}{r_{\text{OM}}^3} Z_{\text{OM}} + \frac{3}{2} J_2 \frac{\mu_3}{r_{\text{OM}}^2} \left(\frac{R_3}{r_{\text{OM}}}\right)^2 \left(5 \frac{Z_{\text{OM}}}{r_{\text{OM}}^2} - 3\right) \frac{Z_{\text{OM}}}{r_{\text{OM}}} + \mu_{\pi} \left(\frac{Z_{\pi} - Z_{\text{OM}}}{(r_{\pi} - r_{\text{OM}})^3} - \frac{Z_{\pi}}{r_{\pi}}\right), \\ \ddot{X}_{\text{KA}} = -\frac{\mu_3}{r_{\text{KA}}^3} X_{\text{KA}} + \frac{3}{2} J_2 \frac{\mu_3}{r_{\text{KA}}^2} \left(\frac{R_3}{r_{\text{KA}}}\right)^2 \left(5 \frac{Z_{\text{KA}}}{r_{\text{KA}}^2} - 1\right) \frac{X_{\text{KA}}}{r_{\text{KA}}} + \mu_{\pi} \left(\frac{X_{\pi} - X_{\text{KA}}}{(r_{\pi} - r_{\text{KA}})^3} - \frac{X_{\pi}}{r_{\pi}}\right), \\ \ddot{Y}_{\text{KA}} = -\frac{\mu_3}{r_{\text{KA}}^3} Y_{\text{KA}} + \frac{3}{2} J_2 \frac{\mu_3}{r_{\text{KA}}^2} \left(\frac{R_3}{r_{\text{KA}}}\right)^2 \left(5 \frac{Z_{\text{KA}}}{r_{\text{KA}}^2} - 1\right) \frac{Y_{\text{KA}}}{r_{\text{KA}}} + \mu_{\pi} \left(\frac{Y_{\pi} - Y_{\text{KA}}}{(r_{\pi} - r_{\text{KA}})^3} - \frac{Y_{\pi}}{r_{\pi}}\right), \\ \ddot{Z}_{\text{KA}} = -\frac{\mu_3}{r_{\text{KA}}^3} Z_{\text{KA}} + \frac{3}{2} J_2 \frac{\mu_3}{r_{\text{KA}}^2} \left(\frac{R_3}{r_{\text{KA}}}\right)^2 \left(5 \frac{Z_{\text{KA}}}{r_{\text{KA}}^2} - 1\right) \frac{Y_{\text{KA}}}{r_{\text{KA}}} + \mu_{\pi} \left(\frac{Z_{\pi} - Z_{\text{KA}}}{(r_{\pi} - r_{\text{KA}})^3} - \frac{Z_{\pi}}{r_{\pi}}\right), \\ \ddot{Z}_{\text{KA}} = -\frac{\mu_3}{r_{\text{KA}}^3} Z_{\text{KA}} + \frac{3}{2} J_2 \frac{\mu_3}{r_{\text{KA}}^2} \left(\frac{R_3}{r_{\text{KA}}}\right)^2 \left(5 \frac{Z_{\text{KA}}}{r_{\text{KA}}^2} - 3\right) \frac{Z_{\text{KA}}}{r_{\text{KA}}} + \mu_{\pi} \left(\frac{Z_{\pi} - Z_{\text{KA}}}{(r_{\pi} - r_{\text{KA}})^3} - \frac{Z_{\pi}}{r_{\pi}}\right), \\ \ddot{Z}_{\text{KA}} = -(\mu_3 + \mu_{\pi}) \frac{X_{\pi}}{r_{\pi}^3}, \ddot{Y}_{\pi} = -(\mu_3 + \mu_{\pi}) \frac{Y_{\pi}}{r_{\pi}^3}, \ddot{Z}_{\pi} = -(\mu_3 + \mu_{\pi}) \frac{Z_{\pi}}{r_{\pi}^3}, \\ \ddot{Z}_{\text{A}} = -(\mu_3 + \mu_{\pi}) \frac{X_{\pi}}{r_{\pi}^3}, \ddot{Z}_{\pi} = -(\mu_3 + \mu_{\pi}) \frac{X_{\pi}}{r_{\pi}^3}, \\ \ddot{Z}_{\text{A}} = -(\mu_3 + \mu_{\pi}) \frac{Z_{\pi}}{r_{\pi}^3}, \\ \ddot{Z}_{\text{A}} = -(\mu_3 + \mu_{\pi}) \frac{Z_{\pi}}{r_{\pi}^3}, \\ \ddot{Z}_{\text{A}} = -(\mu_3$$

где R_3 — экваториальный радиус Земли, μ_3 , μ_{π} — гравитационные параметра Земли и Луны соответственно, J_2 — коэффициент второй зональной гармоника гравитационного потенциала Земли, индексы «ОИ», «КА», «Л» обозначают принадлежность параметра соответственно к объекту инспекции, космическому аппарату или Луне. Возмущенное движение КА и ОИ моделируется в АГСК с помощью математической модели (1). Для перехода от АГСК к ОСК используется методика из [2]. Под воздействием возмущающих факторов инспекционная траектория начинает деформироваться. На рисунке 2а показана возмущенная (синяя линия) и исходная (красная пунктирная линия) инспекционные траектории. На рисунке 2б зеленым отмечена допустимая область движения КА.

а) Исходная и возмущенная инспекционные траектории

б) Допустимая область движения КА

Рисунок 2 – Инспекционные траектории и допустимая область движения КА

На рисунке 2 приняты обозначения: $\boldsymbol{\rho}_{max_n}$, $\boldsymbol{\rho}_{min_n}$ — максимальный и минимальный векторы исходной инспекционной траектории, $\boldsymbol{\rho}_0 = [x_0, y_0, z_0]^T$, $\dot{\boldsymbol{\rho}}_0 = [\dot{x}_0, \dot{y}_0, \dot{z}_0]^T$ — векторы начального положения и скорости КА в ОСК, $\boldsymbol{\rho}_{max}$, $\boldsymbol{\rho}_{min}$ — вектора, описывающие область допустимого смещения.

Оценка возмущенной инспекционной траектории проводится с помощью условий допустимой деформации и опасного сближения:

$$\begin{cases}
\bar{\Delta}(i_0, \theta_0, p_0, e_0, \boldsymbol{\rho}_0, \dot{\boldsymbol{\rho}}_0) = \frac{|\boldsymbol{\rho}(t)| - |\boldsymbol{\rho}_{max_n}|}{|\boldsymbol{\rho}_{max_n}|} \leq \bar{\Delta}_{max}, \\
|\boldsymbol{\rho}(t)| > \rho_{min}
\end{cases} (2)$$

где i_0 , θ_0 , p_0 , e_0 — наклонение орбиты, аргумент широты, фокальный параметр и эксцентриситет ОИ в начальный момент времени; $\rho(t)$ — текущий вектор положения КА в ОСК.

Верхняя граница области допустимого смещения (ho_{max}) рассчитывается по формуле:

$$|\boldsymbol{\rho}_{max}| = |\boldsymbol{\rho}_{n}| \cdot (1 + \bar{\Delta}_{max})$$

Нижняя граница ρ_{min} описывает область опасного сближения КА и ОИ.

Интервал времени, на котором соблюдаются оба условия (2) (при $\bar{\Delta}_{max}=0.05$) называется временем технической устойчивости t^* – время нахождения КА в области допустимого смещения.

Проведено исследование по определению t^* в зависимости от θ_0 при реализации инспекционного движения на ВЭО типа Молния и геопереходной орбите (ГПО). Параметры орбит приведены в таблице 1.

Таблица 1 – Параметры ВЭО Молния и ГПО

Орбита	$H_{0\pi}$, км	e_0	$i_0,^\circ$	$\Omega_0,^\circ$	$\omega_{\pi},^{\circ}$	$ heta_0,^\circ$
Молния	497	0,74	63,4	0	270	0360
ГПО	200	0,73	51,6	0	0	0360

Начальные положение КА принимается ρ_0 (5 км, 0,0), а начальная скорость рассчитывается исходя из условия равенства орбитальных энергий [3]. Начальные параметры движения Луны относительно Земли соответствует ее положению на 30 января 2023 года в 0 часов 00 минут. Для каждой орбиты было проведено два цикла расчетов для определения продолжительности t^* в зависимости от начального аргумента широты ОИ, с учетом и без учета притяжения Луны. Результаты моделирования приведены на рисунке3 (3а для ВЭО Молния и 3б для ГПО).

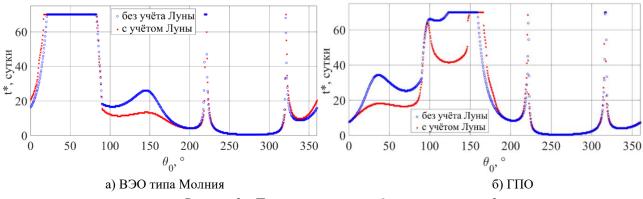


Рисунок 3 – Продолжительность t^* в зависимости от θ_0

Из рисунков 3а и 3б следует, что существуют области продолжительного времени допустимой деформации инспекционной траектории t^* имеющих неравнозначное значение. Тенденция зависимости t^* от θ_0 сохраняется как в случае движения ОИ по круговой орбите [1]. Также существуют четыре области, в которых наблюдается увеличение продолжительности t^* . Для ВЭО Молния характерные области наблюдаются в окрестности: $\theta_{0_1}^* = 40,2$; $\theta_{0_2}^* = 139,8^\circ$; $\theta_{0_3}^* = 319,8^\circ$; $\theta_{0_4}^* = 220,2^\circ$. Различие значений t^* в ключевых областях объясняется несимметричностью формы инспекционной траектории и ее сложной деформацией под действием разности гравитационных ускорений. Моделирование показало, что притяжение Луны оказывает в большей степени негативное влияние на продолжительность t^* , но существует и обратный эффект.

Одноимпульсная коррекция реализуется следующим образом [4]. Определяется момент времени нарушения условия (2). Затем рассчитываются инспекционные траектории, соответствующие $\theta_{0_{1-4}}^*$ и выбирается одна для перевода на нее КА. Когда аргумент широты ОИ примет значение выбранного θ_0^* прикладывается корректирующий импульс, который рассчитывается по формуле:

$$\Delta V(\theta_0^*) = \dot{\boldsymbol{\rho}}_{\scriptscriptstyle \mathrm{H}}(\theta_0^*) - \dot{\boldsymbol{\rho}}_{\scriptscriptstyle \mathrm{B}}(\theta_0^*)$$

где $\dot{\boldsymbol{p}}_{\rm B}(\theta_0^*)$ и $\dot{\boldsymbol{p}}_{\rm H}(\theta_0^*)$ – векторы скорости КА при движении по возмущенной и обновленной инспекционной траекториям в точке приложения ΔV в момент времени, когда $\theta(t) = \theta_0^*$.

Рассмотрено поддержание инспекционной траектории при использовании каждой их четырех точек $\theta_{0_{1-4}}^*$ для приложения ΔV при движении ОИ по ВЭО Молния. Положение КА в ОСК задается вектором ρ_0 (5 км, 0,0), начальная скорость $\dot{\rho}_0$ рассчитывается исходя из условия равенства орбитальных энергий [3]. Результаты моделирования представлены на рисунке 4. Красной линией обозначена номинальная инспекционная траектория, синей — возмущенная, зеленой — оскулирующая траектория относительного движения, на которую переходит КА после приложения ΔV . Зелеными точками обозначены точки приложения корректирующего импульса.

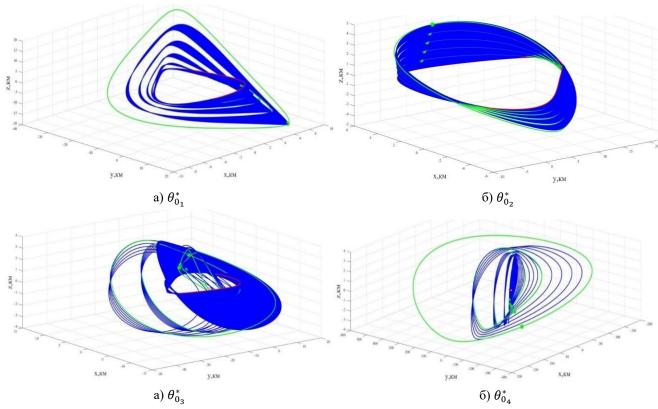


Рисунок 4 – Изменение размера инспекционной траектории

Из рисунка 4 следует, что в некоторых случаях размер инспекционной траектории значительно изменился. Для сравнения полученных результатов в таблицу 2 были внесены значения ρ_{max_n} каждой обновленной инспекционной траектории, полученной после приложения ΔV , продолжительность t^* между импульсами, суммарные затраты характеристической скорости $\sum \Delta V$ и общее время поддержания инспекционного движения $\sum t^*$.

Таблица 2 – Результаты применения импульсной коррекции при движении ОИ по ВЭО типа Молния

	$\theta_{0_1}^*$		$\theta_{0_2}^*$		$\theta_{0_3}^*$		$\theta_{0_4}^*$	
Номер Δ <i>V</i>	$oldsymbol{ ho}_{max_n},$ KM	t^* , сут	$oldsymbol{ ho}_{max_n}$, km	t^* , сут	$oldsymbol{ ho}_{max_n}$, km	t^* , сут	$oldsymbol{ ho}_{max_n},$ KM	t^* , сут
1	20,5	70	20	25,6	20	29,5	20,1	70
2	22,1	70	20,1	29,1	41,1	69	45	32
3	25,3	70	20,2	30	13,4	2	92	2
4	30	70	20,3	31	30	2,1	186	1,9
5	38,2	70	20,4	34,2	12	2,5	403	2,1
$\sum t^*$, cyt	350		149,9		106,1		108	
$\sum \Delta V$, m/c	1,7		0,26		10,2		51,4	

Притяжение Луны оказывает значительное воздействие на инспекционное движение на ВЭО. Продолжительность пассивной инспекции на ВЭО зависит от начального значения аргумента широты ОИ и совместный выбор начальных траекторных параметров движения КА и начального положения ОИ на своей орбите позволяет максимизировать продолжительность t^* . Использование одноимпульсной коррекции на основе оскулирующих траекторий относительного движения позволяет поддерживать инспекционную траекторию, но ее размер в двух случаях из четырех изменялся нестабильно, что приводит к увеличению на порядок топливных затрат и переходу КА на нерасчетную инспекционную траекторию, что необходимо учитывать при планировании миссии с использование инспекционного движения.

Работа выполнена в рамках проекта 0777-2020-0018, финансируемого из средств государственного задания победителям конкурса научных лабораторий образовательных организаций высшего образования, подведомственных Минобрнауки России.

Список литературы:

- 1. Belokonov, I. Choosing the Motion Initial Conditions, Ensuring the Technical Sustainability of Spacecraft Formation Flight / I. Belokonov [и др.] // 27th Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2020 Proceedings. 2020. URL: https://ieeexplore.ieee.org/document/9133957 (дата обращения: 02.07.2023).
- 2. Белоконов, И. Стратегия импульсного маневрирования для поддержания квазипериодического инспекционного движения наноспутника / И. В. Белоконов, Е. В. Халецкая, М. С. Щербаков // Космонавтика и ракетостроение. 2022. № 2 (125). С. 112-124.
- 3. Belokonov, I. Investigation of a Single-Axis Control Algorithm for the Inspection Motion of a Gravitationally Stabilized Nanosatellite / I. Belokonov, M. Shcherbakov, D. Avariaskin // 29th Saint Petersburg International Conference on Integrated Navigation Systems. 2022. URL: https://ieeexplore.ieee.org/document/9815445 (дата обращения: 02.07.2023).
- 4. Щербаков, М. Исследование возможности применения оскулирующих эллипсов относительного движения в задаче инспекции космических объектов [текст] / М. С. Щербаков, С. А. Медведев // Труды ФГУП "НПЦАП". Системы и приборы управления. 2023. № 2 (64). С. 42-50.