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INTRODUCTION 

 

 Problem of rigid bodies motion and its practical engineering applications such as gyroscopes, 

gyrostats and dual-spin-spacecraft attitude dynamics and control are very important for modern science.  

 Despite classical analytical research results and exact solutions this problem is still far from 

complete due to the existence of chaos phenomena. Among the basic directions of modern research 

within the framework of the indicated problem it is possible to highlight the following points: deriving 

exact and approximated analytical and asymptotic solutions, investigation into stability of motion, the 

analysis of motion under an influence of external regular and stochastic disturbance, research into 

dynamic chaos and study of non-autonomous systems with variable parameters.  

 

 This book gives a description of above mentioned scientific problems on the base of research 

results corresponded to the following scientific works (references are indicated in the original 

language): 

Part I: 

1. A.V. Doroshin, Modeling of chaotic motion of gyrostats in resistant environment on the base 

of dynamical systems with strange attractors. Communications in Nonlinear Science and 

Numerical Simulation, Volume 16, Issue 8 (2011) 3188–3202.  

Part II: 

1. A.V. Doroshin, Analysis of attitude motion evolutions of variable mass gyrostats and coaxial 

rigid bodies system, International Journal of Non-Linear Mechanics, Volume 45, Issue 2 

(2010) 193–205.  

2. Аншаков Г.П., Асланов В.С., Балакин В.Л., Дорошин А.В., Квашин А.С., Круглов Г.Е., 

Юдинцев В.В. Динамические процессы в ракетно-космических системах // Вестник 

Самарского государственного аэрокосмического университета. Самара: СГАУ, №1, 

2003 г. 

3. A.V. Doroshin, Synthesis of attitude motion of variable mass coaxial bodies, WSEAS 

Transactions on Systems and Control, Issue 1, Volume 3 (2008) 50-61.  

4. Балакин В.Л., Дорошин А.В., Крикунов М.М. Синтез динамических режимов 

пространственного движения космического аппарата с твердотопливным ракетным 

двигателем // Самолетостроение России. Проблемы и перспективы: материалы 

симпозиума с международным участием / Самарск. Гос. аэрокосм. Ун-т.-Самара: 

СГАУ, 2012.-440с. //С.54-55 

Part III: 

5. A.V. Doroshin, Attitude Control of Spider-type Multiple-rotor Rigid Bodies Systems. 

Proceedings of the World Congress on Engineering 2009, London, U.K. Vol II, pp.1544-

1549.  

 

http://www.sciencedirect.com/science/article/pii/S1007570410005502
http://www.sciencedirect.com/science/article/pii/S1007570410005502
http://www.sciencedirect.com/science/article/pii/S1007570410005502
http://www.sciencedirect.com/science/article/pii/S0020746209001905
http://www.sciencedirect.com/science/article/pii/S0020746209001905
http://www.sciencedirect.com/science/article/pii/S0020746209001905
http://www.iaeng.org/publication/WCE2009/WCE2009_pp1544-1549.pdf
http://www.iaeng.org/publication/WCE2009/WCE2009_pp1544-1549.pdf
http://www.iaeng.org/publication/WCE2009/WCE2009_pp1544-1549.pdf


5 

 

 

PART I. 

 

MODELING OF CHAOTIC MOTION OF GYROSTATS IN RESISTANT 

ENVIRONMENT ON THE BASE OF DYNAMICAL SYSTEMS WITH 

STRANGE ATTRACTORS
1
 

1 Introduction 
 

 Problem of rigid bodies motion and its practical engineering applications such as gyroscopes, 

gyrostats and dual-spin-spacecraft are very important for modern science. Despite classical analytical 

research results and exact solutions this problem is still far from complete due to the existence of chaos 

phenomena [1-13]. Among the basic directions of modern research within the framework of the 

indicated problem it is possible to highlight the following points: deriving exact and approximated 

analytical and asymptotic solutions, investigation into stability of motion, the analysis of motion under 

an influence of external regular and stochastic disturbance, research into dynamic chaos and study of 

non-autonomous systems with variable parameters.  

 Recently, chaotic dynamic has becomes one of the major part of nonlinear science. Applications 

of dynamical systems with chaotic behavior and strange attractors are seen in many areas of science, 

including space-rocket systems [7-12]. E. N. Lorenz and O. E. Rössler systems [1, 2] represent classical 

dynamical systems with strange attractors. R. B. Leipnik and T. A. Newton [3] found two strange 

attractors in rigid body motion. Since Leipnik and Newton's work, the chaotic dynamics of rigid body 

motion investigates in many works. J. C. Sprott [4, 5] examined 19 systems of three-dimensional 

autonomous ordinary differential equations with strange attractors; also critical points, Lyapunov 

exponents and fractional dimensions of systems were found. 

 Work [7] contains the analysis of chaotic behavior of a spacecraft with periodic time-dependent 

moments of inertia during its free motion. The equations of variable mass coaxial bodies system were 

developed in papers [10] where also the attitude motion of coaxial bodies system and double rotation 

spacecraft with time-dependent moments of inertia were analyzed on the base of special method of 

phase trajectory curvature analysis. The results [7-12] can be used for the analysis of attitude motion of 

a gyrostat-satellites and dual-spin spacecraft including motion with an active solid-propellant rocket 

engine. 

In this paragraph more attention is focused on chaotic attractors in phase space of angular velocity of 

gyrostat and on perturbed gyrostat motion in resistant environment with energy dissipation/excitation. 

 Conditions of correspondence of mathematical models of gyrostats in resistant environment and 

dynamical systems with strange attractors (Lorenz, Rössler, Newton-Leipnik and Sprott) are defined. 

To confirm the system chaotic behavior numerical computer simulations are used. These simulations 

are performed by means of numerical integration of the equations of motion with the help of several 

numerical tools: time history of phase coordinates, gyrostat longitudinal axis vector hodograph, 

Poincaré map, fast Fourier transform power spectrum. This characterizes the dynamical behavior of the 

gyrostat in resistant environment as regular or chaotic.  

                                                           
1
  - Material corresponds to preprint version of article: A.V. Doroshin, Modeling of chaotic motion of gyrostats 

in resistant environment on the base of dynamical systems with strange attractors. Communications in 

Nonlinear Science and Numerical Simulation, Volume 16, Issue 8 (2011) 3188–3202. 

http://www.sciencedirect.com/science/article/pii/S1007570410005502
http://www.sciencedirect.com/science/article/pii/S1007570410005502
http://www.sciencedirect.com/science/article/pii/S1007570410005502
http://www.sciencedirect.com/science/article/pii/S1007570410005502
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2 Mathematical model 
 

 Let us consider a gyrostat attitude motion about fixed point in resistant environment with energy 

dissipation/excitation (fig.1). Assume resistant environment effect corresponding to action of external 

forces moments that are constant  e

constM , linear  e

linM  and nonlinear  e

quadM  in main body angular 

velocity projections onto body frame axes x1x2x3   , ,
T

p q rω . 

 

 
Fig.1 – Inertial    and gyrostat main body  1 2 2x x x  frames 

 

 The motion equations follow from angular moment’s law: 

  e e e

const lin quad+ × + = + +K ω K R M M M      (1) 

where 

   1 2 3 1 2 3

2 2 2

; , , ; , , ; ;

, , ; ; ;

; ; ; ; , 1..3

T Te e

const lin

T
e

quad ij ij

ij ij i i

= = R R R = d d d =

= p q r = a b

a const b const R const d const i j

 

          

    

K I ω R M M A ω

M B A B   (2) 

 

 K – angular moment of gyrostat main body with “frozen” internal rotor; I – inertia tensor of 

main body with “frozen” internal rotor; R – constant angular moment of relative rotor motion (in body 

frame); A, B – constant matrixes. 

 Matrix structure of external forces moments (2) can describe an action of viscous drag, 

hydro(aero)dynamic lift, nonuniform lift and friction in fluid flow 
 0V

 of main body with roughened 

surface and propeller elements.  

Assume coincidence of gyrostat center of mass, rotor center of mass and fixed point. Also let us 

consider case of spherical inertia tensor of rotor and gyrostat general inertia tensor 
 diag , ,A B CI

 

In this case scalar form of eq. (1) can be write as follows 
2 2 2

11 12 3 13 2 11 12 13 1

2 2 2

22 23 1 21 3 21 22 23 2

2 2 2

33 31 2 32 1 31 32 33 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

Ap B C rq a p a R q a R r b p b q b r d

Bq C A pr a q a R r a R p b p b q b r d

Cr A B qp a r a R p a R q b p b q b r d

          


          
           







  (3) 

 

Dynamical system (3) is supplemented with kinematical system for Euler type angles 
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      1 2 3about about aboutx x x   
: 

 

 

1
sin cos ; cos sin ;

cos

sin
cos sin .

cos

p q p q

r p q

     



  



   

  

 


   (4) 

In considered case gyrostat kinetic energy takes on form: 

     2 2 2 2 2 2

1 2 3 1 2 3

1 1

2 2
T Ap Bq Cr pR qR rR R R R

J
           (5) 

where J is axial inertia moment of the rotor. 

 

3 Links between gyrostat chaotic motion and strange attractors 

 

It is well known fact that unpredictable chaotic long-term solutions can exist for simple 

nonlinear deterministic systems. The study of nonlinear dynamics has brought new excitement to one of 

the oldest fields of science and, certainly, mechanics. So, many papers and, for example, works [3, 11, 

12] describe chaotic motion of rigid body and gyrostats as modes corresponded to strange attractors in 

phase space. The paper [4] also contains several interesting and important chaotic dynamical systems 

with strange attractors. 

In this paragraph we will find conditions of reduction of gyrostats motion equations (3) to 

Lorenz, Rössler, Newton-Leipnik and Sprott dynamical systems. General form of indicated dynamical 

systems of three autonomous first-order ordinary differential equations (ODE) can be write as: 

 

     , , ; , , ; , ,x y zx f x y z y f x y z z f x y z         (6) 

 

The system (6) has strange attractors in many cases including classical dynamical systems, which 

presented in table 1 [4]. Cases A-S correspond to Sprott systems [4, 5], and LOR, ROS, NL – to Lorenz, 

Rössler, Newton-Leipnik systems. 

 It is possible to write condition of equivalence of dynamical systems (3) and A-NL (tabl.1), 

where variables change take place  , ,p x q y r z   . 

First of all we take notice about signature (+/-) in table 1. Signature "+" means possibility of 

reduction of systems A-NL immediately to system (3): it implies definition of corresponded 

components values of vectors  e

constMR,  and matrix  IBA ,, . Signature "-" means unrealizability of 

this reduction without presence of additional special control torque of gyroscopic type in right parts of 

systems (1) and (3): 

 , , ; ; , 1..3
Tgyro

control ijqr pr pq g i j     M G G     (7) 

This artificial forces moment (7) can be formed with the help of special technical actuators and 

thrusters. 

 

Now we can present following conditions of reductions of A-NL systems to system (3), and vice 

versa. These conditions establish connections between external and internal parameters (mass-inertia, 

gyrostat rotor angular moment, roughened surface and propeller elements properties, friction in fluid 

flow etc.). 
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           Table 1 

Case fx fy fz Signature 

A y -x+yz 1-y
2
 - 

B yz x-y 1-xy + 

C yz x-y 1-x
2
 - 

D -y x+z xz+3y
2
 - 

E yz x
2
-y 1-4x - 

F y+z -x+y/2 x
2
-z + 

G 2x/5+z xz-y -x+y - 

H -y+z
2
 x+y/2 x-z + 

I -y/5 x+z x+y
2
-z + 

J 2z -2y+z -x+y+y
2
 + 

K xy-z x-y x+0.3z - 

L y+3.9z 0.9x
2
-y 1-x + 

M -z -x
2
-y 1.7(1+x)+y

2
 + 

N -2y x+z
2
 1+y-2x + 

O y x-z x+xz+2.7y - 

P 2.7y+z -x+y
2
 x+y + 

Q -z x-y 3.1+y
2
+0.5z + 

R 0.9-y 0.4+z xy-z - 

S -x-4y x+z
2
 1+x + 

LOR -s(x-y) 

s=10 

-y+wx-xz 

w=28 

-vz+xy 

v=8/3 

+ 

ROS -y-z x+ky 

k=0.2 

v+(x-w)z 

v=0.2, w=5.7 

- 

NL -kx+y+wyz 

k=0.4, w=10 

-x-my+5xz 

m=0.4 

vz-5xy 

v=0.175 

- 

 

LOR-case conditions: 

0

11 0 12 0 3 13 2

21 0 3 22 0 23 1

31 2 32 1 33

2 ; 0

2 ; 2 ;

; ;

; ;

ij i ijA C B B b d g

a B s a B s R a R

a B w R a B a R

a R a R a vC

     


     


    
     

    (8.LOR) 

If we use substitution of coefficient (8.LOR) into system (3), then we obtain classical Lorenz 

equations.  

It is need to note that for LOR-gyrostat ((3) with (8.LOR)) main body is dynamically symmetric 

(B=C) and third inertia moment is twice as large (A=2B).  

 

ROS-case conditions: 

32 1,2 33, 2

11 12 3 13 2

21 3 22 23 1

31 2 32 1 33

; ; 0; 0;

0; ;

; ;

; ;

ij iji j
A B C g C g b d d vC

a a A R a A R

a B R a kB a R

a R a R a wC

 
       

       


   


    

  (8.ROS) 

For ROS-gyrostat spherical inertia-mass symmetry takes place (A=B=C). 
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NL-case conditions: 

11 22 33

11 12 3 13 2

21 3 22 23 1

31 2 32 1 33

: , , ; 0;

; 5 ; 5

; ;

; ;

; ;

ij iA B C b d diag

g wA B C g B A C g C B A

a kA a A R a R

a B R a mB a R

a R a R a vC

   


         


     
      

    

G

  (8.NL) 

For NL-gyrostat general case of inertia-mass takes place (ABC). 

A-case conditions: 

0 21 0 32 0 3 0

11 12 0 3 13 2

21 3 22 23 1

31 2 32 1 33

; ; ;

0; ;

; 0;

; ; 0

B C A A g A b A d A

a a A R a R

a B R a a R

a R a R a

      


    


    
    

     (8.A) 

where other components of , , , e

constA B G Μ  equal to zero. 

B-case conditions: 

3

11 12 3 13 2

21 3 22 23 1

31 2 32 1 33

; 2 ; 0; 0;

0; ;

; ;

; ; 0

ij ijA C B C g b d C

a a R a R

a B R a B a R

a R a R a

    


   


    
    

      (8.B) 

F-case conditions: 

31

11 12 3 13 2

21 3 22 23 1

31 2 32 1 33

; 0; 1; 0

0; ;

; / 2;

; ;

ij iA B C g b d

a a A R a A R

a B R a B a R

a R a R a C

    


    


    
     

       (8.F) 

Other cases conditions can be write by analogy (by the way of equalization of corresponding 

coefficients of sys. (3) and A-NL). So we can conclude that dynamical systems with strange attractors 

A-NL correspond to gyrostats equation ((3) with conditions (8.A), (8.B), (8.NL)…), which allow 

chaotic modes of motion.  

4 Perturbed motion examination 

4.1 Inertia moments perturbation  

 Haw we saw in previous paragraph dynamical system with strange attractors can correspond to 

system equations of gyrostat motion. Considered gyrostats possessed constant parameters (moments of 

inertia, relative rotor angular moment component, resistant environment and gyrostat outer surface 

properties, etc.). Now let us examine perturbed gyrostat motion with a time–dependent moments of 

inertia, motion of this gyrostat and influence of parameters variability on strange attractor change. It is 

need to note, that the inertia moment variability can describe small elastic vibrations in gyrostat 

construction [7].  

 LOR-gyrostat. 

 Assume following time-dependencies of inertia moments in the case of LOR-gyrostat: 

   0 0( ) ( ) 1 sin ; ( ) 2 1 sinB t C t B t A t B t           (9) 
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where  is small nondimensional parameter  10   ; other parameters in (8.LOR) are constant. Take 

into account conditions (8.LOR) and dependencies (9) we can write motion equations: 

 

  

  

1 sin

1
1 3 sin

1 sin

1
1 3 sin

1 sin

s x y
x

t

y wx y t xz
t

z t xy vz
t









  


 


    
 


     







    (10) 

In order to examine of perturbed motion several numerical techniques are used. They are based 

on the numerical integration of the equations of motion (10) by means of a Runge–Kutta algorithm. So, 

we present perturbed strange attractor (fig.2-a) in phase space {x, y, z}, x(t) time-history (fig.2-b), 

power spectrum of x(t) fast Fourier transformation (fig.2-c), kinetic energy (5) time-history (fig.2-d), 

asymptotics of Lyapunov exponents (fig.2-e) and longitudinal axis vector hodograph (fig.2-f). Fig.2 

was obtained at  = 0.1 and =100 (1/s). 

Longitudinal axis vector hodograph  te  was plotted with the help of numerical integration of 

equations (3), (4) and matrix transformation of components of a unit vector of longitudinal z-axis of 

main body  Txxx 1,0,0
321
e  into initial frame  : 

     
321

111

xxxee


       (11) 

     














 










































100

0cossin

0sincos

,

cos0sin

010

sin0cos

,

cossin0

sincos0

001
111











  

All signs of chaotic motion are shown (fig.2): complexity and irregularity of phase coordinate, 

broadly distributed power spectrum, positive Lyapunov exponents.  

Lyapunov exponents for perturbed motion LOR-gyrostat was calculated on the base of Benettin 

algorithm [14] (with Gram–Schmidt process of orthogonalizaiton) and have following values (with 

accuracy 10
-2

):  

   1 2 30: 0.89; 0; 14.56        ; 

   1 2 30.1: 0.87; 0; 14.61        ; 

   1 2 30.5: 1.04; 0; 16.73        ; 

   1 2 30.75: 1.47; 0.14; 16.71         ; 

   1 2 30.90: 3.66; 1.57; 13.51         . 
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(a) (b) 

 

      
   (c)       (d) 

 

          
   (e)       (f) 

Fig.2 – Numerical research results for LOR-gyrostat with inertia moment variability ( = 0.1) 
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The Kaplane-Yorke dimension of perturbed strange attractor increase as compared with classical 

Lorenz attractor: 

1 11

0 0.5 0.75 0.900.1

1
; sup : 0;

2.06; 2.08; 2.15.

D i

KY j j

j jD

KY KY KY KY KY

D D D i

D D D D D
   

 
  

   

   

    

 
 (12) 

 Calculation of divergence of perturbed system (10) phase flow  Tzyx fff ,,F  

  












 t

vs

sv
vs sin

1

1
11div F     (13) 

show that the perturbed system is dissipative  0div F  if 

   1 1v s v s            (14) 

In the classical case of Lorenz  28;3/8;10  wvs  from condition (14) follow limitation 

16.21941  , which guarantee the system dissipativity at 1 . Consequently, every finite (small) 

the system phase-space volume will reduce to zero value and every phase trajectory will attract to 

strange attractor. 

Comment about application of LOR-case. The Lorenz system, first of all, describes the 

convective motion of fluid [1]. This system also can be applied to the analysis of dynamos and lasers. In 

addition it is need to note that LOR-case can, for example, simulate attitude motion of the gyrostat 

  1,0,0
T

RR  with inertia-mass parameters corresponded to a thin disk-shaped body (like a coin: 

A=mR
2
/2, B=C=mR

2
/4) at presence of propeller blades  0ija   and roughness of the body surface 

 0iia  . This makes it possible to apply the LOR-case investigation results to examination of vehicles 

special motion modes in resistant environments. Also these results can be used for the description of 

gyrostat-spacecraft perturbed attitude motion with feedback control (interpreting the torques e

linM  as 

feedback control). 

 

 A-gyrostat. 

 Assume following time-dependencies of inertia moments in the case of A-gyrostat: 

         tAtCtAtBtA  sin1;sin1 00     (15) 

Other parameters in (8.A) are constant. For numerical evaluation we take =100 (1/s).  

 Take into account conditions (8.A) and dependencies (15) perturbed motion equations for A-

gyrostat can be write as follows: 

 
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sin1
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sin1
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sin1

sin2

;
sin1sin1

sin2

2y
t
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xyz
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t
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


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





























    (16) 

Lyapunov exponents for perturbed motion of A-gyrostat (with accuracy 10
-2

):  

    1 2 30: 0.01; 0; 0.01        ; 

    1 2 30.3: 0.03; 0; 0.03          

The Kaplane-Yorke dimension in this case always equals to 3; the system is conservative and phase 

space volume conservation takes place
3

1

0i

i




 
 

 
 . 
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   (a)       (b) 

      
   (c)       (d) 

       
   (e)       (f) 

Fig.3 – Numerical research results for A-gyrostat with inertia moment variability ( = 0.3) 

 



14 

 

 Integer (not fractional) dimension and presence of positive Lyapunov index means that this 

system has not strange attractor (like geometry objects with fractional dimension), but gyrostat motion 

is chaotic (positive -exponent mixes of phase trajectories).  

 Numerical modeling results are presented at figures (fig.3 – fig.6). Fig.4-5 contain Poincaré 

sections (z=0) of the system phase space for unperturbed [4] (fig.4) and perturbed (fig.5, 6) cases. It is 

needed to note, that phase trajectory intersect the plane (z=0) in different region depending on direction 

of phase point motion along phase trajectory (fig.4-b):  

1). Region    , 1 1,y     corresponds to intersection with direction 0, :z z   

2). Region  1,1y   corresponds to intersection with direction 0, :z z   

 

 

       
   (a)       (b) 

     
    (c)       (d) 

Fig.4 – Poincaré sections (z=0) in unperturbed A-gyrostat case ( = 0) [4]: 
a – general Poincaré section; b – with intersection direction control :z  ; c, d - zoom 
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   (a)       (b) 

                
   (a)       (b) 

Fig.5 – Poincaré sections (z=0) in perturbed A-gyrostat ( = 0.3): 
a – general Poincaré section; b – with initial condition from depicted rectangle; c, d - zoom 

 

How can we see, perturbation generate heteroclinic loops and corresponding meander tori at the 

Poincaré sections (fig. 5). This circumstance even more complicates the system motion dynamics. 

Also it is need to note, that time history of kinetic energy T(t) show, on the one hand, gyrostat 

chaotic motion features and, on the other hand, nonregular characteristics of external environment and 

internal forces action. Kinetic energy change law imply  

  ( ) conste iT dW dW W t     

where W(t) is total work of all external (“e”) and internal (“i”) forces. It corroborates the statement that 

deterministic chaos in dynamical system (and strange attractor like its geometrical image) can be 

explained on the base of mechanical description: presence of nonregular influence result in nonregular 

system behavior. Thus, we shall conclude that kinetic energy T(t) time history is also one of the primary 

technique for examine of chaotic motion. 
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   (a)       (b) 

Fig.6 – Poincaré sections (z=0) in perturbed A-gyrostat ( = 0.5): 
 a – general Poincaré section; b – zoom 

 

Comment about application of A-gyrostat Sprott case. The Sprott system for A-gyrostat can be 

applied, for example, to the analysis of attitude motion of the gyrostat   30,0,
T

RR  with inertia-

mass parameters of a spherical body (A=B=C), xy-propeller blades  12 21 3a a A R    , smooth body 

surface  0iia   at presence of constant z-spin-up torque (d3=A) and special feedback control (g21=-

b32=A). This makes it possible to apply the A-case investigation results to examination of gyrostat-

vehicles special motion modes in resistant environments with feedback control. 

 

4.2 Gyrostat internal rotor angular moment perturbation 

Let us investigate of gyrostat motion at presence of small harmonic perturbations in relative 

rotor angular moment R: 

   1 2 31 sin ; , , ; const
T

it R R R R    R R R     (17) 

This perturbation can be associated with existence of small harmonic disturbances in electric circuit of 

internal rotor-engine (simulation of simplest self-induction effects). Corresponding motion equations 

follow from angular moments law: 

  e e e

const lin quad+ × + = + + K ω K R M M M R       (18) 

We conduct examination of perturbed motion on the base of NL-gyrostat. Other type of gyrostat 

(A-S, LOR, ROS) can be considered by analogy. 

 Take into account conditions (8.NL) and (17) perturbed motion equations for NL-gyrostat will 

be write as follows: 

1

2

3

5

5

x kx y wyz Pert

y x my xz Pert

z vz xy Pert

    


    
   







      (19) 

where Perti are components of vector 
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 

 

 

2 3 1

3 1 2

1 2 3

sin cos

sin cos

sin cos

R z R y t R t
A

R x R z t R t
B

R y R x t R t
C







 
       

 
         
 
         

Pert     (20) 

Let us note, that perturbation vector (20) will be the same also for other type (A-NL). 

 Case 1. Firstly, consider main case of the NL system with w=10. Numerical research results are 

present at fig.7 and was obtained at following parameters and initial condition values: A=B=C=1; R1=1; 

R2=1.5; R3=2; =100; =0.01; x(0)=0.349; y(0)=0.0; z(0)=-0.16. 

In this case Lyapunov exponents and Kaplane-Yorke dimension for unperturbed and perturbed 

motion of NL-gyrostat (with accuracy 10
-2

) are equal:  

    1 2 30: 0.14; 0; 0.76 ; 2.18KYD         ; 

    1 2 30.01: 0.12; 0.01; 0.74 ; 2.18KYD          . 

Consequently, the system is dissipative (negative sum of all Lyapunov index) and has attractor; the 

system is chaotic (1>0); the system attractor is strange (fractional DKY). 

 Case 2. Now consider case with w=1; other parameters are the same, like previous case. 

Numerical research results are present at fig.8. 

In this case Lyapunov exponents and Kaplane-Yorke dimension (with accuracy 10
-2

) are equal:  

    1 2 30: 0.01; 0.10; 0.53 ; 1.1;KYD           

    1 2 30.01: 0.01; 0.11; 0.53 ; 1.09.KYD           

The system also is dissipative, chaotic (1>0) and has strange attractor. But absolute value of 

positive 1-exponent is small (limiting close to zero with actual accuracy), therefore, trajectory mixing 

is weak. It allows conclude, that the system is quasichaotic. It is also supported by regulation trend of 

time history of phase coordinate, kinetic energy, longitudinal axes hodograph, and by chaotic but 

degenerating power spectrum (fig.8). 

Case 3. Finally, let us consider case for w=10, v=0. In this case all Lyapunov exponents are 

negative and therefore motion is regular, system is dissipative, Kaplane-Yorke dimension equal to zero 

and attractor is stationary point (corresponded to permanent rotation of main body). The system regular 

motion represents transition to permanent rotation about body z-axis (x(t)0, y(t)0, z(t)z*=const). 

Numerical research results (fig.9) demonstrate signs of regular motion.  

Comment about application of NL-gyrostat case. The Newton-Leipnik system describes attitude 

motion of spacecraft with linear feedback control [3]. NL-gyrostat results can be applied to simulation 

of perturbed attitude nonregular motion of gyrostat-spacecraft.  
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   (a)       (b) 

      
   (c)       (d) 

          
   (e)       (f) 

Fig.7 – Numerical research results for NL-gyrostat chaotic motion with rotor relative angular moment 

variability ( = 0.01,  w = 10) 
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   (a)       (b) 

               

   (c)       (d) 

             
   (e)       (f) 

Fig.8 – Numerical research results for NL-gyrostat quasichaotic motion with rotor relative angular 

moment variability ( = 0.01,  w = 1) 
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   (a)       (b) 

          
   (c)       (d) 

              
   (e)       (f) 

Fig.9 – Numerical research results for NL-gyrostat regular motion ( = 0,  w = 1,  v = 0) 
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5 Conclusion 
 

Links between mathematical models of gyrostats and dynamical systems with strange attractors 

(Lorenz, Rössler, Newton-Leipnik and Sprott systems) were established. In order to examine of 

perturbed motion several numerical techniques was used: time-history of phase coordinate, kinetic 

energy, power spectrum of fast Fourier transformation, asymptotics of Lyapunov exponents and 

gyrostat longitudinal axis vector hodograph, and Poincaré sections. Mentioned numerical techniques 

showed chaotic and quasichaotic behavior of motion. Cases for perturbed gyrostat motion with variable 

periodical inertia moments and with periodical internal rotor relative angular moment were considered. 
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PART II. 

 

ANALYSIS OF ATTITUDE MOTION EVOLUTIONS OF VARIABLE MASS 

GYROSTATS AND COAXIAL RIGID BODIES SYSTEM
2
 

 

1.   Introduction 

 

Research of attitude motion of a system of coaxial rigid bodies and gyrostats always was and 

still remains one of the important problems of theoretical and applied mechanics. The dynamics of the 

attitude motion of rotating rigid bodies and gyrostats is a classic mechanical research object. Basic 

aspects of such motion were studied by Euler, Lagrange, Kovalevskaya, Zhukovsky, Volterra, 

Wangerin, Wittenburg. The main results of the attitude motion research can be found in appropriate 

treatises [1-5].  

However, the study of the dynamics of rotating bodies and gyrostats is still very important in 

modern science and engineering. Among the basic directions of modern research within the framework 

of the indicated problem it is possible to highlight the following points: deriving exact and 

approximated analytical and asymptotic solutions [1-5, 25, 28], research of a stability of motion 

conditions [6-16], the analysis of motion under the influence of external regular and stochastic 

disturbance, research of dynamic chaos [17-22], research of non-autonomous systems with variable 

parameters [23-30].  

N. Ye. Zhukovsky studied the motion of a rigid body containing cavities filled with 

homogeneous capillary liquid. The research showed that the equations of motion in such case can be 

reduced to the equations of the attitude motion of a gyrostat. Also analytical solutions of some special 

modes of motion of a gyrostat were found. 

The ordinary differential equations of a gyrostat attitude motion with constant angular 

momentum were solved analytically by Volterra. Volterra solution has generalized a similar analytical 

solution for a rigid body in case of Euler. In the works of Wangerin and Wittenburg solution of Volterra 

is reduced to the convenient parameterization expressed in elliptic integrals. 

The analytical solution for attitude motion of heavy dynamically symmetric gyrostat, colligating 

a classic solution for a heavy solid body in the case of Lagrange, is given in a paper [25]. In the 

indicated published works solutions for all Euler angles (precession, nutation, and intrinsic rotation) are 

found in elliptic functions and integrals. Also modes of motion with constant and variable relative 

angular momentum of gyrostat rotor are considered. 

The issues of the rotational motion dynamics of a gyrostat are very important for numerous 

applications such as the dynamics of satellite-gyrostats, spacecrafts and aircrafts. 

The attitude dynamics of gyrostat satellites and dual-spin (double-rotation) satellites has been 

studied by a number of scientists [6-22]. Most of these efforts were aimed on finding the equilibrium 

states in the presence of external disturbance torques [6-9], on analysis of the stability of spinning 

satellites under energy dissipation [10-16]. Some authors recently have investigated bifurcation and 

chaos in the gyrostat satellites [17-22]. 

                                                           
2
 - Material corresponds to preprint version of article: A.V. Doroshin, Analysis of attitude motion evolutions of 

variable mass gyrostats and coaxial rigid bodies system, International Journal of Non-Linear 

Mechanics, Volume 45, Issue 2 (2010) 193–205 

http://www.sciencedirect.com/science/article/pii/S0020746209001905
http://www.sciencedirect.com/science/article/pii/S0020746209001905
http://www.sciencedirect.com/science/article/pii/S0020746209001905
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Despite above-mentioned wide spectrum of research results the stated problem still remains 

actual, especially for the variable structure rigid bodies systems and variable mass dual-spin spacecrafts.  

The possibility of change in some mass and inertia parameters and the structure variability can 

be explained by the fact that a spacecraft (SC) performs active maneuvers with the use of the jet engine. 

Any SC in orbit is affected by external disturbances of different kind, e.g. the solar radiation 

pressure, the gravity gradient torque, the magnetic torque caused by the Earth’s magnetic field, or the 

aerodynamic torque due to the action of a resisting medium like the Earth’s atmosphere. However all 

these external disturbances are not large in comparison with the jet engine thrust of the SC on the active 

motion stage (e.g. inter-orbital transfer, orbit correction, attitude reorientation). Moreover, variability of 

mass parameters (mass and moments of inertia) has a considerable influence on attitude dynamics. The 

change of the moments of inertia entails change of angular momentum, which is the basic characteristic 

of attitude motion. Thereupon mass (structure) variation is one of the primary factors determining 

attitude motion of a SC.  

For the purposes of better understanding the essence of this problem it is important to give a 

brief overview of the main considered engineering peculiarities of SC’s active motion. An SC in order 

to perform an active maneuver (e.g. inter-orbital transfer) should create a jet engine thrust and thus 

obtain acceleration or braking momentum V  (reorbit/ deorbit burn). 

This momentum should be generated exactly in a pre-calculated direction. Engine thrust is 

usually focused along the SC’s longitudinal axis, therefore it is necessary to stabilize the longitudinal 

axis in order to ensure the accurate momentum generation. Stabilization of the longitudinal axis can be 

carried out in a gyroscopic mode when SC spins around the longitudinal axis which is oriented in the 

calculated direction. 

Momentum generation is not instantaneous, it demands a continuous operation of the jet engine 

within several seconds (or minutes). During this period of time a SC performs two motions: trajectory 

motion of a center of mass and an angular motion around it. Such angular motion obviously changes the 

location of the longitudinal axis and, hence, a direction of thrust. 

The time history of thrust direction strongly affects the value and direction of a transfer 

momentum deviation. Consequently, the transfer is performed to the orbit different from the desired 

one. There is a "scattering" of thrust (Fig. 1). Therefore, it is very important to take SC angular motion 

into account during the analysis of the powered trajectory motion. 

It is necessary to obtain the angular motion which ensures that SC’s longitudinal axis (and the 

thrust vector) performs precessional motion with monotonously decreasing nutation angle. Thus the 

longitudinal axis travels inside an initial cone of nutation and the thrust vector naturally comes nearer to 

an axis of a precession which is a desired direction of transitional momentum output ("is focused" along 

a necessary direction). 

When the angular motion does not provide a monotonous decrease in nutation angle the 

longitudinal axis moves in a complicated way. In such case the thrust vector also performs complicated 

motion and "scatters" the transitional momentum. A transfer orbit scatters as well. 

Among the works devoted to the rigid bodies systems with variable mass and inertia parameters 

it is possible to mark the following [17, 18, 23, 24, 28, 30]. The work [18] contains the analysis of 

chaotic behavior of a spacecraft with a double rotation and time-dependent moments of inertia during 

it’s free motion. The main investigation results of variable mass system dynamics should be found in 

the monographies [23, 24]. These results include Ivan V. Meschersky theory of motion of bodies with 

variable mass, theory of “short-range interaction” and “solidification (freezing)”. 

The equations of variable mass dynamically symmetrical coaxial bodies system were developed 
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in papers [28]. Also in [27] the attitude motion of coaxial bodies system and double rotation spacecraft 

with linear time-dependent moments of inertia were analyzed and conditions of motion with decreasing 

value of nutation were found. The results [27] can be used for the analysis of attitude motion of a dual-

spin spacecraft with an active solid-propellant rocket engine. 

Current material represents continuation of the research described in [27-30] and is devoted to 

the dynamics of variable mass coaxial bodies systems, unbalanced gyrostats and dual-spin spacecrafts. 

The paragraph has the following structure: Section 1 – introduction of the primary theoretical 

and physical background, Section 2 – mathematical definition of the coaxial bodies attitude motion 

problem in terms of the angular momentum, Section 3 – main equations of attitude motion of two 

variable mass coaxial bodies system and unbalanced gyrostat, Section 4 – development of research 

method for the attitude motion of variable mass coaxial bodies and unbalanced gyrostat, Section 5 – 

examples of analysis of the attitude motion of variable mass unbalanced gyrostat, Section 6 – 

conclusion.  

 

2.   Problem Definition 

 

Below we will derive the equations of motion of a system of k coaxial rigid bodies of variable 

mass with respect to translating coordinate frame OXYZ. The motion of the system is analyzed with 

respect to the following coordinate systems (Fig. 2): P  is a system of coordinates, fixed in absolute 

space, OXYZ is a moving coordinate system with origin at the point O, the axes of which remain 

collinear with the axes of the fixed system during the whole time of motion, and 
iii zyOx  are systems of 

coordinates with a common origin, rigidly connected to the i-th body (i = 1, 2, ... , k), rotating with 

respect to the system OXYZ. OXYZ system has its origin in a point lying on the common axis of rotation 

of the bodies and matching with the initial position of the centre of mass  0 :t t C O  . Points in the 

different parts of the system are distinguished by the body they belong to, and in all expressions they 

are indicated by the subscript 
i (where i is a number of an appropriate body). 

To construct the equations of motion we use the "short-range" hypothesis – particles which 

obtain a relative velocity when separated from the body no longer belong to the body and have no effect 

on it. In such case the theorem on the change in the angular momentum of a system of variable mass 

[23], written with respect to the fixed system of coordinates P, has the following form: 

1

,

,i

i i
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k
e R eP
P P i

i

e

i

d

dt

dm

dt



 



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 





K
M M S

S r v

       (1) 

where ,
i i v r  

i
m is mass of appropriate point,  e

PM  is the principal moment of the external forces, 

R

PM  is the principal moment of the reactive (jet) forces, and e

iS  is the sum of the angular momentum of 

the particles of body i, rejected in unit time in their translational motion with respect to the fixed system 

of coordinates. The angular momentum of a system of k bodies in coordinates system P  (Fig. 2) is 

defined by the following expression: 
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where  

, , ,

,
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i i

i O i i

C O i C

m m m   
 

   

  

 K ρ ω ρ

v v ω ρ

 

iCρ  is the radius vector of the centre of mass 
iC  of body i in the OXYZ system and 

iω  is the absolute 

angular velocity of body i (and coordinates system
iii zyOx ).  

            In order to write the theorem of change in the angular momentum in the OXYZ coordinate 

system we need to implement some auxiliary expressions: 

 

, ,

,

,

,

i i

i i i

i

i i i

i i i

i

i i i

i

C

i i C C

C

O i C C i C

C O i C i i C

i
i i C i C

d d

dt dt

d d

dt dt

dm dm
m

dt dt










    

       

     

 
    

 


ρ ρ
ω ρ ω ρ q

v
v ω ρ w ω q

w w ε ρ ω ω ρ

ω ρ ω ρ q

    (3) 

where 
iCq  is the relative velocity of the centre of mass 

iC  due to a change in its position with respect to 

the bodies, due to the variability of their masses; 
iCw  is an acceleration of the point of body i, that 

currently matches with its center of mass, i.e. it is an acceleration of translation for a center of mass Ci , 

wO is the acceleration of point O. 

Let’s prove validity of the last expression from an expression group (3): 
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 
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d
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   

 
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 

 
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 

 
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 


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 

 





ω ρ ω ρ

ω ρ ρ

ω ρ ω ρ

ω ρ ρ ω ρ

ω ρ q ω ρ ω ρ
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


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

 
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The relative motion of center mass with a velocity 
iCq  can be illustrated with Fig. 3, which 

describes a burning process and corresponding geometric displacement of center of mass.  

Using expressions (2) and (3) it is possible to calculate the angular momentum derivative: 

 

,

1

.

i

i i i

i i

k
i O iP

O C

i

O i C i C C i O

i
C O C i O

d dmd

dt dt dt

m m

dm
m

dt




  



     


    




KK

r v

r w ω q q v

ρ v ρ w

       (4) 

Let’s transform the terms on the right hand side of the equation (1): 

 

 

 

, ,

,

i

i i i

i

i i

i

e e e R R R

P O O P O O

e i
i O O O i i C

i i
O i C i C C O

i

dm
m

dt

dm dm
m

dt dt

dm

dt



 


     

    

 
      

 

  

M r F M M r Ф M

S r v r ω q

r ω ρ q ρ v

ρ ω ρ

    (5) 

where 
1

k
e e

i

i

F F  is resultant of system of external forces, 
1

k
R R

i

i

Ф Ф  is resultant of reactive (jet) 

forces, e

OM , R

OM  are the principal moments of the external and reactive forces with respect to the point 

O. 

 Using expressions (4) and (5), after like terms cancellation we can rewrite a theorem (1) in the 

following form: 
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 
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1

1

.
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i
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i

k
i O

O i C C i O

i

e R e R

O O O O

k

i

i

d
m m

dt

dm

dt



 






 
    

 

     

  





K
r w ρ w

r F r Ф M M

ρ ω ρ

      (6) 

 From the definition of center of mass and from the theorem on the motion of the center of mass of a 

system of variable mass [23] the following expressions must hold: 

1 1

, ,

, ,

i

i i

e R

i C i i ij ij ji

j i

k k
e R

i C i C C

i i

m

m m m



 

    

  



 

w F Ф N N N

w F Ф ρ ρ

      (7) 

where 
1

( ) ( )
k

i

i

m m t m t


   is mass of the system, C is vector of center of mass С of the system, ijN  are 

internal forces of interaction between bodies. 

Using expressions (6) and (7) we can write the theorem on the change in the angular momentum 

with respect to OXYZ system [28]: 

 

,

1

1

.

i

i i

i

k
i O e R

O O

i

k

i

i

C O

d

dt

dm

dt

m



 






 

  

 





K
M M

ρ ω ρ

ρ w

     (8) 

Expression (8) corresponds to the assertion of the well-known theorem [23], taking into account the 

grouping of the terms according to the membership of the points of the body i (i = 1, ..., k).  

Using the idea of a local derivative for the angular momentum vector of each body in the system 

of coordinates 
iii zyOx connected with the body, rotating with respect to OXYZ with angular velocity iω  

Eq. (8) can be rewritten as follows: 

 

,

,

1

1

.

i i i

i

i i

i

k
i O

i i O

i
Ox y z

k
e R

O O i C O

i

d

dt

dm
m

dt



 






  
        

     





K
ω K

M M ρ ω ρ ρ w



     (9) 

The subscript outside the brackets of the local derivatives indicates a coordinate system in which they 

were taken. Equation (9) expresses a vector-based form of the theorem of the change in the angular 

momentum of bodies of variable mass with respect to the translating axes. 

 

3.   Attitude Motion of Two Variable Mass Coaxial Bodies System 
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We will consider the motion of a system of two bodies, where only 1
st
 has a variable mass. Body 

2 does not change its inertial and mass characteristics, calculated in the system of coordinates 
222 zyOx  

connected to the body, and, consequently, produces no reactive forces. This mechanical model can be 

used for research of attitude motion of dual-spin SC with operating solid-propellant rocket engine 

(coaxial body 1).  

We will write the angular velocities and the angular momentum of the bodies in projections onto 

the axes of their connected systems of coordinates: 

,, ,i i i i i i i i O i ip q r    ω i j k K I ω      (10) 

where Ii are inertia tensors of body i;  , ,i i ii j k  are the unit vectors of the system 
i i iOx y z . 

If both tensors are general then angular momentum of the bodies in projections onto the axes of 

their connected systems of coordinates is defined by 

1, 1 1 1 1 1 1 1 1 1

2, 2 2 2 2 2 2 2 2 2

( ) ( ) ( ) ,

,

O

O

A t p B t q C t r

A p B q C r

  

  

K i j k

K i j k
 

where Ai, Bi, Ci are general moments of inertia of body i, calculated in the corresponding system of 

coordinates connected to the body. 

The bodies of the system can only rotate with respect to one another in the direction of the 

common longitudinal axis, which coincides with 
2Oz  (and with 

1Oz ). Here we will denote the angle and 

velocity of twisting of body 1 with respect to body 2 in the direction of the longitudinal axis 
2Oz by  

  1 2,Ox Ox   and    respectively. The angles {, , } of spatial orientation of the coaxial 

bodies with respect to the translating system of coordinates OXYZ are indicated in Fig. 4. The ratio 

between the angular velocities and the angular accelerations of two bodies in vector form are defined by 

1 2 1 2, ,   ω ω ζ ε ε ζ      (11) 

where 1ζ k  is the vector of the relative angular velocity of the bodies, which has the only 

projection – onto common axis of rotation 
2Oz . The ratio between the components of the angular 

velocities for the two bodies is expressed by the following equations: 

1 2 2

1 2 2

1 2

cos sin ,

cos sin ,

.

p p q

q q p

r r

 

 



 

 

 

      (12) 

The theorem on the change in the angular momentum (9) in translating system of coordinates OXYZ can 

be rewritten in the form: 
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1
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,
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M M ρ w
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    (13) 

where  

1 1 1 11 1 1.x y z     ρ i j k  

 By projecting the expression inside the square brackets (Eq. (13)) onto the axes of the system 

111 zyOx  and using expressions (10) we obtain: 
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  

  

    (14) 

 During the simplification of equation (14) terms containing the derivatives of time-varying 

moment of inertia cancel out with terms following from the sum in square brackets (vector L). This is 

vividly reflected in the projection of L onto the connected axis 
1Ox : 
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 
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If tensors of inertia remain general for each moment of time  1, ( ) 0,ijI t i j  , then vector L may be 

rewritten: 

   1 1 1 1 1 1 1 1 1( ) .A t p B t q C t r  L i j k        (15) 

Taking expressions (14) and (12) into account, we can write Eq. (13) in terms of projections onto the 
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axis of 
222 zyOx system, connected with body 2. When changing from system 

1 1 1Ox y z  to system 
222 zyOx  

we will use an orthogonal matrix  δ  of rotation by angle . As a result we obtain: 

  
1 1 1

2 2 2

1 1,

2,

2 2,

,

O Ox y z

O

O

Ox y z

e R

O O C O

d

dt

m

 

 
    
 
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δ L ω K

K
ω K

M M ρ w


     (16) 

where  

 

cos sin 0

sin cos 0

0 0 1

 

 

 
 


 
  

δ . 

From the theorem on the motion of the centre of mass of a system of variable mass [23] the 

following expressions must hold: 

1
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1 2

1 1 1 12

2 2 21
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1 2 12 21
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 

  

   

w F Ф N

w F N

w w F Ф

F F F N N

    (17) 

where e
F  is resultant of system of external forces, 1

R
Ф  is reactive (jet) force, ijN  are internal forces of 

interaction between bodies (j, k=1, 2).  

The motion of center of mass of body 1 is easier to analyze as compound motion, where the 

motion of body 2 is translational. Considering the last remark, expressions for the acceleration of the 

center of mass will have the following form 

 

2 2 2

1

1 1

1 1

1

2 2 2

2 2 2

2

,

,

,

,

2 ,

C O C C

e r c

C

e

O C C

r

C C

c

C
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  

     

    
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w w ε ρ ω ω ρ

w w w w

w w ε ρ ω ω ρ

w ζ ρ ζ ζ ρ

w ω ζ ρ



     (18) 

where w
e
 – acceleration of translation, w

r
 – relative acceleration, w

c
 – Coriolis acceleration. 

 Expressions (18) imply:  



31 

 


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From last relation and (17) expression for acceleration wO follow: 
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1 2 2 2
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C C C

m m
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m t
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w F Ф ε ρ ω ω ρ
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     (19) 

The  C Om ρ w  vector is represented using Eq. (19): 


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ε ρ ω ω ρ
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ω ζ ρ


    (20) 

If the change of mass of body 1, which has general tensors of inertia, is uniform along the whole 

volume, then tensors of inertia remain general tensors of inertia and the centre of mass of body 1 

remains on a common axis of rotation 
2Oz . Thus we will consider, that the body 2 also has general 

tensors of inertia. The following expressions will take place in this case in terms of projections onto the 

axes of 
222 zyOx : 
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   (21) 

 Let's transform the moments of external and reactive  

(jet) forces in expression (16): 

1

,

.

e e e

O C C

R R R

O C C

  
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M ρ F M

M ρ Φ M
 

Taking the expressions (21) into account, we will write Eqs. (16) in the matrix form: 
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0
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     (22) 

Components of  1 1 1, ,p q r  in Eq. (22) must be expressed via  2 2 2, ,p q r  using (12). 

We will add an equation describing the relative motion of the bodies to the Eq. (16). A theorem 

on the change in the angular momentum projected onto the axis of rotation for the first body will have 

the following form: 

 
1

1
1

1 1, 1,

1 ,

e R

O Oz zOz

C O
Oz

M M M

m

    

   

L ω K

ρ w
    (23) 

where M  is the moment of the internal interaction of the bodies (e.g. action of internal engine or 

bearing friction), ,

e

i OzM  is the moment of external forces acting only on body i. 

If tensors of inertia of body 1 remain the general ones for every moment of time and the centre 

of mass of body 1 remains on a common axis of rotation 
2Oz , then Eq. (23) can be rewritten in the 

follow form: 

     1 1 1 1 1 1 1,( ) .e R

Oz zC t r B t A t q p M M M          (24) 

We will supplement the dynamic equations (16) and (23) (or their simplified analogs (22) and 

(24)) by the following kinematic equations (Fig.4): 

 

 

2 2

2 2

2 2 2

; sin cos ,

1
cos sin ,

cos

sin
cos sin .

cos

p q

p q

r p q

    

  



  



  

 

  

 





     (25) 

Let’s analyze the motion of a system of two dynamically symmetrical bodies, equations (22) and (24) 

will be written in the following form: 
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 

 

 

2 2 2

1 2 ,

2 2 2

1 2 ,

2 1 ,

1 1,

( ) ( ) ( )

( ) ,

( ) ( ) ( )

( ) ,

( ) ( ) ,

( ) ,

e R

C x x

e R

C y y

e R

C z z

R e

z Oz

A t p C t A t q r

C t q M M

A t q C t A t p r

C t p M M

C t r C t M M

C t r M M M









 

  

 

  

  

   





 

 

    (26) 

where 2

1 2 1 2( ) ( ) ( ) ( ), ( ) ( ) .CA t A t A m t t C t C t C      

 

Systems (26) and (25) together form a complete dynamic system for the research of attitude 

motion of dynamically symmetrical unbalanced gyrostat with variable mass.  

 

4.   Research method of attitude motion of variable mass coaxial bodies and unbalanced gyrostat 

 

Let's refer to a motion of coaxial bodies (unbalanced gyrostat) of variable mass under an action 

of dissipative and boosting external moments depending on components of angular velocities. Let the 

gyrostat consists of dynamically symmetrical main body (coaxial body 2) of a constant mass and a rotor 

(coaxial body 1) of the variable mass, which remains dynamically symmetrical during modification of a 

mass (Fig. 4).  

The fixed point O coincides with an initial geometrical position of a system’s center of mass. 

The unbalanced gyrostat has a varying relative angular velocity of rotor rotation around the main body. 

It is possible in connection with the existence of internal moment M  acting between coaxial bodies. 

Let’s assume there is a moment of jet forces only around a longitudinal axis Oz1  0 .R R

x yM M    

Let's implement the new variables corresponding to the magnitude G of a vector of transversal 

angular velocity and angle F between this vector and axis Oy2: 

2

2

( )sin ( ),

( )cos ( ).

p G t F t

q G t F t




      (27) 

Equations (26) will be rewritten in new variables as follows: 

   

 

2 1

2,

2

2

1, 2,

1 2 1 2

1
( ) ( ) ( ) , ,

( )

,
, ,

( )

( )
.

( ) ( )

F

e

OzG

R e e

z Oz Oz

F C t A t r C t f G F
A t

M Mf G F
G r

A t C

M M MC t M

C t C C t C










       


 

 

 
   




 



    (28) 

In equations (28) the following disturbing functions describing exposures take place: 
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   

   

, ,

, ,

, sin cos ,

1
, cos sin .

e e

G C x C y

e e

F C x C y

f G F M F M F

f G F M F M F
G

 

 
 

 We will consider a case when the module of a transversal angular velocity of main body is small 

in comparison to relative longitudinal rotation rate of the rotor: 

2 2

2 2 1.p q         (29) 

From spherical geometry the formula for a nutation angel   (an angle between axes OZ and Oz2) follow 

cos cos cos .    

 We will assume angles   and   to be small      OO  , .  Then the nutation angle will 

be defined by the following approximated formula: 

2 2 2.           (30) 

 Using the expressions (22) and kinematic equations (20) we can write (second order 

infinitesimal terms are omitted): 

2

cos ( ), sin ( ),

, , ( ) ( ) ( ).

G t G t

r t F t t

 

   

   

    

 


                (31) 

Function ( )t  is a phase of spatial oscillations. 

Precession motion of the gyrostat with small nutation angles is obviously described by a phase 

space of variables  ,  . The phase trajectory in this space completely characterizes motion of the 

longitudinal axis Oz2 (an apex of the longitudinal axis). Therefore our further researches will be 

connected to the analysis of this phase space and chances of behaviors of phase curves in this space. 

We can develop a special qualitative method of the analysis of a phase space. Main idea of the 

method is the evaluation of a phase trajectory curvature in the phase plane  ,  . 

On the indicated plane the phase point will have following components of a velocity and 

acceleration: 

, , , .V V W W              

With the help of expressions (26) the curvature of a phase trajectory (k) is evaluated as follows: 

   
322 2 2 2 2 .k G                (32) 

 If curvature magnitude increase, there will be a motion on a twisted spiral trajectory similar to a 

steady focal point (Fig. 5, case “a”) and if decreases - on untwisted. On twisted spiral trajectory motion 

condition can be noted as: 

20 0.k kk G G                (33) 
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For the analysis of the condition realization it is necessary to study a disposition of zero points (roots) 

of a following function: 

2( ) .P t G G            (34) 

Function (34) will be defined as a function of phase trajectory evolutions. 

Different qualitative cases of phase trajectory behaviors are possible depending on function P(t) 

zero points of (Fig.5). In the first case (Fig. 5, case “a”) the function is positive and has no zero on a 

considered slice of time  0,t T , thus the phase trajectory is spirally twisting. In the second case (Fig. 

5, case “b”) there exists one zero point and there is one modification in a monotonicity of the trajectory 

curvature. The Cornu spiral, also known as clothoid, take place in case “b”. The third case (Fig. 5, case 

“c”) represents a number of zero points and the trajectory has alternation of untwisted and twisted 

segments of motion; also there are some points of self-intersection. 

 

5.   Research of attitude motion. 

5.1. Example 1. 

 

As an first example we will refer to a motion of coaxial bodies of variable mass under the 

influence of constant internal moment ( M const  ) and constant moment of jet forces ( R

zM const ). 

The analysis of a phase space is conducted using a developed method of curvature evaluation. 

We will suppose that the mass and moments of inertia are linear functions of time: 

1

1 1 2

1 1 2

( ) ,

( ) ( ), ,

( ) ( ), ,

r

m

m

m t m kt

A t m t A A const

C t m t C C const





 

  

  

     (35) 

where mr is initial mass of rotor, k is rate of mass change, and ,  are constants.  

Dependencies (35) are valid for a dual-spin SC when one of coaxial bodies is a solid-propellant 

rocket engine with packed and roll shaped grains. A linear law of mass change provides a constant 

thrust.  In the rocket engines of a described type the grain usually burns uniformly over the whole 

volume, the grain density changes uniformly as well (Fig.3-c). The center of mass of an engine-body 

will show no displacement relative to the body, therefore 
1

.C rl const    Center of mass of the main 

body does not move as well, because the body doesn’t change its mass, therefore 
2

.C ml const    Let’s 

mark that constants lr and lm are in fact the distances between the bodies’ center of masses and the point 

O (Fig.4): 
2nl OC , 

1rl OC . For example, if body1 is solid cylinder, then the constants  and  are  

2 2 2 212 4 , 2,rH R l R      

where H is the height of a cylinder and R is the radius. 

Magnitude С(t) will be defined by a linear-fractional form: 

2 1

2 1

( )
( ) .

( )

m r
C

l m l m t
t

m m t






      (36)

 
At t=0 the system’s center of mass C and the point О are matching, therefore  
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1 2(0) 0, (0) ,

0, 0.

C r m

m r

l m l m

l l

   

 
 

On base (36) and (35) we will write time-dependences for A(t) and C(t): 

2 2 2

( ) ,

( ) ,

rk l t
A t A at

m kt

C t C ct

  


 

      (37) 

where  

1 1

1 1

, (0), (0),

, (0), (0).

r m r

r m r

A A A A A a m

C C C C C c m





   

   
 

In a considered case equations (28) will obtain the following form: 

 

2

0,

1
( ) ( ) ( ) ,

( )

( )
, .

( )

r

R

z

m r m r

G

F C t A t r C ct
A t

M C t M M
r

C C ct C C ct

 







      

   
 





 

     (38) 

Analytical solutions for angular velocity r2(t) and  t  are derived from equations (38): 

 

 

2 0 0 1 2 1

1 2 1

, ln 1 ,

1
, , / .

m

R

m z r

M
r r t s t s c t

C

s M C s M M c c C
c



 

      

    

   (39) 

Kinematic equations (31) can be used to receive a solution for the angle  : 

2

0 0 .
2 m

M
r t t

C

     

Expression for a time derivative of a spatial oscillations phase   can be obtained using (31), (39) and 

(38): 

  

  

1 0

0 1 2 1

1 0

1
( ) ( )

( )

( ) ln 1

.

r

C t A t s t r
A t

C ct s t s c t

s t r



   


     



 



    (40) 

 Formula (40) make it possible to receive an explicit expansion for evolution function (34), but 
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this expression is difficult to analyze. It is reasonable to expand this expression into a series: 

0

( ) .ii

i

P t f t




          (41) 

Writing formula (41) on the basis of (34) we don’t take into account a constant multiplier G0.  

Further we will investigate the simplest case when the expansion for P(t) has only linear part 

(other terms of expansion are not taken into account). On the basis of expressions (40) we can get a 

polynomial of the first degree for the phase trajectory evolutions function (34): 

0 1( ) ,P t f f t        (42) 

where 
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c c M M M
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

 



 


  

 
   

 

    
  

 

 There is a unique zero point of function P(t): 
1 0 1/ .t f f   For implementation of a condition (33)

of twisted spiral motion it is necessary for the polynomial to be steady ( 1 0t  ) and positive for all 0t  . 

It is possible only in case the following conditions fulfills: 

0 10, 0.f f        (43) 

We will consider a case when following contingencies are correct: 

0 00, 0, 0.R

zr M    

In this case value f0 will be positive if following condition is true: 

 0, .R

r r zc C a A cA aC AM       (44) 

In order f1 to be also positive the following conditions must be satisfied: 

 

2 2

0

2

0

0

,
2

3 .

Rr r
z

R

zR

z

C k l
c M
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M
M c M

c







 
  

 
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      (45) 
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Also f1 > 0 if following conditions hold true: 

2 2 2 , 3 0.R

r r zC k l acm M M        (46) 

Figure 6 illustrates the results of evolution function and appropriate phase trajectories numeric 

calculations. 

Figures Fig.6-a and Fig.6-b demonstrate the situation when (44) and (45) are satisfied, fig.6-c 

show the opposite case. Point indicates the beginning of phase trajectories. In case “a” evolution 

function has two roots and phase trajectory has three evolutions: twisting-untwisting-twisting. In case 

“b” evolution function has no root and single evolution of phase trajectory takes place – this evolution 

is spiral twisting. System parameters and initial conditions for obtained solutions are listed in table 1.  

 

Table 1              

Value of the system parameters for figure 6  

 

Quantity a b c 

M, Nm 1 -10 200 

M
R

z, Nm 15 10 0.35 

0, radian/sec 10 1 16 

G0, radian/sec 0.2 0.2 0.2 

Am, kgm
2
 2.5 2.5 2.5 

Ar, kgm
2
 2.5 1.5 2 

Cm, kgm
2
 1 1 1 

Cr, kgm
2
 1.5 1.5 2 

а, kgm
2
/sec 0.08 0.05 0.1 

c, kgm
2
/sec 0.08 0.08 0.08 

lr, m 0.5 0.4 0.6 

k, kg/sec 1 1 1.2 

m1(0), kg 35 25 45 

m2, kg 35 35 35 

 

Conditions (44) and (45) can be used for the synthesis of dual-spin spacecraft parameters. In 

order to enhance the accuracy of SC’s longitudinal axis positioning it is necessary to realize precession 

motion with a decreasing nutation angle. This motion is realized when the conditions (44) and (45) are 

satisfied. 

For realization of more accurate researches, certainly, it is necessary to take higher degrees 

polynomials P(t) (34) into account. However it was shown that an implemented analysis provides an 

adequate description of the precessional motion evolutions of variable mass coaxial bodies. 

Examined above case of investigation does not take into account many important aspects of 

variable mass coaxial bodies motion. However the introduced example has illustrated the approach to a 

research of non-autonomous dynamical systems of indicated type. 

 

5.2.   Example 2. 

 

Let’s refer to the other mode of motion with the following external and internal dissipative force 

moments: 
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 

, ,

2, 1,

, ,

, .

e e

C x C y

e e

Oz Oz

M p M q

M r M r

 

  

   

    
     (47) 

Constants , ,  describe the influence of resisting substance on a gyrostat and the dissipation of 

energy.  

Let the mass and inertial parameters be described by polynomial functions of time: 

 

2

2 1

0

1
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( ) ( ) ( ) ( ) ,

,

n
i

C i
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m
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i

A t A A t m t t a t

C t c t


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

   






    (48) 

Dynamical equations of motion will have the following form (26): 

   

   

 

   

2 2 2 1 2 2

2 2 2 1 2 2

2 1 2 2

1 2 2

( ) ( ) ( ) ,
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 

 

   

  

    

    

    

    





 

 

    (49) 

where 
2 1( ) ( ).C t C C t   

The last equation in (49) provides an equation and a general solution for an absolute longitudinal 

angular velocity of rotor : 

 

   

   
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1

1
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



 

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  

    



    (50) 

where 

 
2

10

, ( ) .

t

C

dt
r J t

C t
           (51) 

Using expressions (50) we can notice that the third equation in (49) gives an equation and a general 

solution for a longitudinal angular velocity of the main body: 

 

2 2 2

2 0

2

,

exp .

C r M r

M Mt
r t r

C



 





 

  

  
    
   



     (52) 

In the case involved disturbing functions will have the form: 
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   , , , 0,G Ff G F G f G F        (53) 

thereby first two equations can be rewritten the following way: 

 2 2 1 2

,
( )

1
( ) ( ) .

( )

G
G

A t

F C r C t A t r
A t


 

   




     (54) 

This implies a solution for the amplitude of the transverse angular velocity: 

   0 exp ( ) ,AG t G J t        (55) 

where  

 
0

0

1
( ) , 0.

t

AJ t G
A t

        (56) 

 The value of integrals contained in expressions (50) and (55) can be calculated analytically: 
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

     (57) 

where ,i i    are the roots of 1( ), ( )A t C t  polynomials, which contain no real roots within a considered 

interval  0,t T , because the moments of inertia are strictly positive quantities. Let’s mark that 

formulas can be checked by differentiation.  

Expressions (50), (52) and (55) provide final analytic solutions for the longitudinal angular 

velocities and the amplitude of transverse angular velocity of the gyrostat. Using the first equation in 

(54) we can obtain an expression for the evolution function: 

2 21
( ) .

2 ( )

d
P t G

dt A t

  
  

 

 
      (58) 

 Let’s consider a case when there are no moments of internal interaction and jet forces and the 

main body has no initial longitudinal angular velocity [26 – 29]: 

00, 0.R

zM M r         (59) 

Let’s perform some supplementary transformations of quantities presented in expression (58). 

Replacing derivatives ,    with corresponding right hand sides of equations (54), (50) and considering 

that ( ) 0r t  , we can write the following expressions: 
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Now function (58) will have the following form: 

 
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1
1 1 13
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P t C A AC A C
A

 


        (61) 

Solutions (55) and (50) imply that 0, 0G    , therefore a multiplier, placed before brakets in 

(61), is strictly positive over the whole interval  0,t T . Considering the last remark, function P(t) may 

be replaced by the following expression: 

1 1 1( ) .P t C A AC A C          (62) 

Expressions (62) and (48) imply, that function P(t) – is a polynomial with a degree of N=m+n-1, 

that is why a theoretically valid number of phase trajectory evolutions can not exceed N+1.  

 Using function (62) we can obtain the following limitations for the moment of inertia functions, 

providing the twisted-in phase trajectory and therefore the decreasing amplitude of nutation angle: 

( ) ( ) ( ) ( ), ( ) ( ) .C t A t C t A t C t A t        (63) 

This limitations particularly result in the condition for the linear functions of moments of inertia in the 

absence of dissipative moments ( = =0), given in articles [27, 28]: 

.ra A c C  

 In general case, when constraints (59) are not satisfied, conditions similar (63) have not been 

found. It is possible in this case to receive numerical results for the evolution function and phase 

trajectory (Fig. 7). The following parameters and polynomial time-dependences of inertia moments 

have been used for computation: 

4 3

2

4 3

2

2

2

2

2 2

0 0 0

( ) 0.0001 0.0064

0.1053 0.4491 3,

( ) 0.0001 0.0027

0.0344 0.1997 1.92,

1.5 (kg×m ); 24 (sec);

0.02, 0.01, 0.03 (kg×m / sec);

11, 21 (kg×m / sec );

0.1, 15, 10 (rad / sec).

R

z

A t t t

t t

C t t t

t t

C T

M M

G r



  

  

  

 

  

 

  

   

   

 

It can be noticed (Fig. 7) that function P(t) has five roots on examined time-interval and consequently 

phase trajectory has six evolutions. 
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5.3.   Example 3. 
 

 Omitting the solution details we consider the numerical simulation of previous example when 

inertia moments are simplest harmonic function: 

1 0 0 1

1 1 0 0 1

( ) sin , 0,

( ) cos , 0.

A t a t a a a

C t c t c c c





   

   
     (64) 

For this case solutions (50) and (55) remain valid, but expressions for integrals (51) and (56) take on a 

value: 

   

 

0 1

2 2 2 2

0 1 0 1

0 1

2 2 2 2

0 1 0 1

tan 22
( ) arctan

div ,
2 2

tan 22
( ) arctan

div ,
2 2

C

A

c c t
J t

c c c c

t

a t a
J t

a a a a

t





 
 





 
 

  
  

   

  
    

  

  
  

   

  
    

  

    (65) 

where operation (x div y) corresponds to evaluation of integer part of division x/y.  

Evolution function take on form: 

  
2

3 2

2

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ,

z z

R

z

K t K t
P t G t A C t

A t A t

M r t

 




       




  



 

   (66) 

where 

2 2( ) ( ) .zK t C r C t    

Though quite simple analytical description of evolution function (66), the phase trajectory 

behavior in considered case can be complex. Phase trajectory can be regular (Fig.8-a), or can 

demonstrate unpredictable forms, which typical in chaotic dynamics (Fig.8-b, c). 

On Fig.8 three cases of phase trajectories are shown. These trajectories are calculated for 

parameters from table 2; constants for inertia moments dependences (64) are equal a0=c0=2, a1=c1=1 

(kg×m
2
),  = 3 (1/sec). 

Case “a” correspond to motion without reactive and internal forces moments  0R

zM M   . In 

this case quasi-periodic evolution function (with slow damped amplitude) take place and phase 

trajectory is also quasi-periodic and regular.  

In presence reactive and internal forces moments (cases “b” and “c”) evolution function become 

nonperiodic with complex changing amplitude rate. In these cases phase trajectories become nonregular 
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and similar to chaotic. Cases “b” and “c” correspond to a positive  , , 0     and negative  , , 0     

dissipation. 

It is necessary to note, what all calculations were conduct in MAPLE 11 [31] with use of 

numerical solution of stiff initial value problem (absolute error tolerance is equal 0.0001). 

Table 2  

Value of the system parameters for figure 8  

 

Quantity a b c 

M, Nm 0 0.1 0.5 

M
R

z, Nm 0 0.1 0.03 

r0, radian/sec 15 -1 1 

Ω0, radian/sec -18 -10 -10 

G0, radian/sec 0.01 0.01 0.01 

C2, kgm
2
 2.5 2.5 2.5 

ν, kg×m
2
/sec 0.00001 0.001 -0.001 

μ, kg×m
2
/sec 0.00001 0.001 -0.002 

λ, kg×m
2
/sec 0.00001 0.001 -0.003 

T, sec 50 470 500 

 

 

6.   Conclusion 

The material described a research of the phase space of non-autonomous dynamical system of 

coaxial bodies of variable mass using a new method of phase trajectory curvature analysis. 

Developed method allows to estimate the phase trajectory form.  

System motion can be both simple regular and very complicated nonregular (chaotic).  

Regular motions are realized at evolution functions with finite number of roots (polynomial) or 

at periodic evolution functions. Complicated non-regular motions arise at nonperiodic alternating 

evolution functions with infinite number of roots. 

Results of the research have an important applied value for the problems of space flight 

mechanics and especially for coaxial spacecrafts.  
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Fig.1. Scattering of thrust and transfer orbit 
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Fig.2. Coaxial bodies system and coordinates system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Change of center of mass position with respect to the bodies, due to the variability of their masses (cases of body burn): a – right to 

left burn,  b – left to right burn, c – burn with uniform reduction of body density 
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Fig.4. Two coaxial bodies system, coordinates systems and 

Euler’s type angels 

 

 

 
 

 

 

 

 

 

 

 

 
 Fig. 5. Cases of phase trajectory behaviors 
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Fig.6. Evolution function and  cases of phase trajectory evolutions depends on conditions (44) and (45) fulfillment: 

In cases “a” and “b” conditions are satisfied and first evolution of phase trajectory is spiral twisting; 

In case “c” condition are unsatisfied and first evolution is untwisting 
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Fig.7. Numerical simulation results for the evolution function and phase trajectory 
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Fig.8. Evolution functions and phase trajectories in case with harmonic inertia moments 



 

 

52 

 

 

PART III. 

 

ATTITUDE CONTROL OF SPIDER-TYPE MULTIPLE-ROTOR  

RIGID BODIES SYSTEMS
3
 

 

1. Introduction  

 

 Most research into attitude motions of rigid bodies systems always has been and still remains 

one of the most important problems of theoretical and applied mechanics. Dynamics of the attitude 

motion of such systems is a classical mechanical research topic. Basic aspects of this motion were 

studied by Euler, Lagrange, Kovalevskaya, Zhukovsky, Volterra, Wangerin, Wittenburg. However, the 

study of the dynamics of rigid bodies is very important in modern science and engineering.  

 Among the basic directions of modern research into the framework of the indicated problem it is 

possible to highlight the following points: mathematical modeling and analysis of multibody systems 

motion [1], multibody spacecraft (SC) attitude dynamics and control [2]-[18], multibody systems 

approach to vehicle dynamics and computer-based technique [19], simulation of multibody systems 

motion [21], multibody dynamics in computational mechanics [20]. 

 If we speak about practical use of system of rigid bodies dynamics research results we have to 

note first of all SC with momentum wheels, reaction wheels and control moment gyroscopes (dual-spin 

satellites, gyrostats, space stations, space telescopes, etc.) [1-18]. Let us briefly describe current rotor-

type systems for attitude control of SC. 

 

 Reaction wheel is a spinning wheel that can be moved to change the orientation of SC to which 

the wheel is attached. Reaction wheels are used in many satellites, including the Hubble Space 

Telescope, to allow precise pointing. By attaching an electric motor to a heavy wheel, and spinning the 

wheel one way quickly, a satellite rotates the other way slowly by conservation of angular momentum. 

This method can provide very precise orientation, and does not require any fuel. The problem is that if 

there is some small continuous torque on a satellite, e.g., radiation pressure, the wheels end up spinning 

all the time, faster and faster, to counteract it. The solution of the problem is to have some way of 

dumping momentum. The usual technique is utilizing a set of electromagnets that can be used to exert a 

weak torque against the Earth’s magnetic field.  

 

 Momentum wheels are a different type of actuator, mainly used for gyroscopic stabilization of 

SC: momentum wheels have high rotation speeds and mass, while reaction wheels work around a 

nominal zero rotation speed. 

 

 A control moment gyroscope (CMG) is an attitude control device which consists of a spinning 

rotor and one or more motorized gimbals that tilt the rotor’s angular momentum. As the rotor tilts, the 

changing angular momentum causes a gyroscopic torque that rotates the spacecraft. Certainly, a CMG is 

a very powerful device which differs from reaction wheels. The latter applies torque simply by 

changing rotor spin speed, but the former tilts the rotor's spin axis without necessarily changing its spin 

                                                           

 
3
 - Material corresponds to preprint version of article: A.V. Doroshin, Attitude Control of Spider-type Multiple-

rotor Rigid Bodies Systems. Proceedings of the World Congress on Engineering 2009, London, U.K. 

Vol II, pp.1544-1549. 

http://www.iaeng.org/publication/WCE2009/WCE2009_pp1544-1549.pdf
http://www.iaeng.org/publication/WCE2009/WCE2009_pp1544-1549.pdf
http://www.iaeng.org/publication/WCE2009/WCE2009_pp1544-1549.pdf
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speed. CMGs are also far more efficient. For a few hundred watts and about 100 kg of mass, large 

CMGs have produced thousands of newton meters of torque. CMG has got “gyroscopic power 

increase”. A reaction wheel of similar capability would require megawatts of power. 

Thus, we have a wide choice of devices for SC attitude control. Nevertheless, it is still possible to 

evolve new equipment for changing SC orientation. This paper sets out to develop a new multiple-rotor 

system which also can be used for attitude control of a SC. The new multirotor system differs from 

typical attitude control devices. It has no disadvantages of a reaction wheel, and on the contrary, it 

possesses the advantages of a control moment gyroscope. Due to the large number of rays with rotors, 

we called new systems a “Rotor-type hedgehog” and a “Rotor-type spider”.  

The paragraph has the following structure: Section 1 is an introduction of the problem background, 

Section 2 comprises  mechanical and mathematical models of the new multiple-rotor system, Section 3 

is devoted to development of a new reorientation method of the multiple-rotor system, Section 4 

contains analytical solution of multiple-rotor system attitude motion, Section 5 include numerical 

simulation of the method implementation, Section 6 is conclusion.  

 

2. Mechanical and Mathematical Models of Multiple-Rotor Systems 

 We shall investigate an attitude motion about fixed point O of multirotor systems which are 

depicted in Fig.1. 

 Fig.1 contains mechanical models of multirotor systems: cases (a) and (b) correspond to “Rotor-

type spider” systems; case (c) corresponds to “Rotor-type hedgehog”.  

 Firstly we consider rotor-type spider with six rotors which spin about general orthogonal axis of 

main (central) body (Fig.1-a). Let’s assume symmetry of rotors disposition with respect to point O and 

equivalence of their mass-inertia parameters. Angular momentum of the system in projections onto the 

axes of frame Oxyz connected with main body is defined by 

m r K K K        (1) 

 
1 2

3 4

5 6

4 2 ,m r

Ap p

Bq J I q I

Cr r

 

 

 

     
     

         
         

K K







     (2) 

where 
mK  is angular moment of a main rigid body with resting (“frozen”) rotors; rK  is relative angular 

moment of rotors; ω=[p, q, r]
T
 is vector of absolute angular velocity of main body; i  is relative 

angular velocity of i-th rotor with respect to main body; , ,A B C  are general moments of inertia of main 

body; I is longitudinal moments of inertia of single rotor; J is equatorial moments of inertia of single 

rotor calculated about point O. 

 Motion equations of the multirotor system can be obtained with help of law of changing of 

angular momentum in frame Oxyz  

ed

dt
  

K
ω K M       (3) 
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(a) 

 

 
 

(b) 

 

 
 

(c) 

 

Fig.1. Multirotor systems 
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where e
M  is principal moment of the external forces. Eq. (3) can be rewritten as  

   

   

   

12 56 34

34 12 56

56 34 12

e

x

e

y

e

z

Ap I C B qr I q r M

Bq I A C pr I r p M

Cr I B A pq I p q M
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  

  

      



     


     

 

 

 

    (4) 

In the last equations following terms take place 

, 4 2

4 2 , 4 2

ij

i j A A J I

B B J I C C J I

      

     




     (5) 

We need to add equations for rotors relative motion. These equations can also be written on the base of 

the law of the change in the angular momentum  

   

   

   

1 1 1 2 2 2

3 3 3 4 4 4

5 5 5 6 6 6
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i e i e

x x

i e i e

y y

i e i e

z z

I p M M I p M M

I q M M I q M M

I r M M I r M M

 

 

 

      
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   

    (6) 

where i

jM  is a principal moment of the internal forces acting between main body and j-th rotor; 

, ,e e e

jx jy jzM M M  are principal moments of external forces acting only at j-th rotor. 

 Equation systems (4) and (6) together completely describe the attitude dynamics of the rotor-

type spider (Fig.1-a). 

 Motion equations (4) and (6) corresponding to the spider with six rotors can be generalized for 

description of attitude dynamics of rotor-type spider with 6N rotors (Fig.1-b). As presented in Fig.1-b 

multirotor system has got N rotors on every ray - N rotor layers (levels). Similarly to previous case we 

can obtain the same equation system (4) for attitude motion of the multirotor system with N rotor layers 

(levels), but equations (4) will receive the following new terms  

 
1 1

1 1

, 4 2

4 2 , 4 2

N N
ij

il jl l

l l
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l l
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 

 





     (7) 

where kl  is the relative angular velocity of the kl-th rotor (Fig.1-b) with respect to main body; Jl  is 

equatorial moments of inertia of the kl-th rotor (correspond to the l-th layer of rotors) calculated about 

point O. 

 Equations of rotors’ relative motion are given by  
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3 3 3 4 4 4
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;

;

i e i e
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   

   

   (8) 

where 1..l N and therefore we have got N systems like (8) for each kl-th rotor. 
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 Equation system (4) with terms (7) and N systems like (8) completely describe of attitude 

dynamics of the rotor-type spider with 6N rotors (Fig.1-b). 

 Thus, we have dynamic equations of attitude motion. Let’s define kinematic parameters and 

corresponding kinematic equations. We will use well-know [23] Euler parameters  0 1 2 3, , ,     

describing a finite rotation of main body by an angle   about an arbitrary unit vector 

 cos ,cos ,cos
T

  e  in inertial fixed frame OXYZ which coincides with the initial position of Oxyz 

(Fig.2).  

 

 
Fig.2. Finite rotation 

 

 The Euler parameters are defined by 

0 1

2 3

cos ; cos sin
2 2

cos sin ; cos sin
2 2

 
  

 
   


 


  


    (9) 

Following system of kinematical equation takes place for Euler parameters  

2  λ Θ λ       (10) 

where 

0

1

2

3

0

0
,

0

0

p q r

p r q

q r p

r q p









     
   


    
   
   

  

λ Θ     (11) 

Set of dynamic and kinematic equations completely describe of attitude motion of multirotor systems.  

 

3. A New Method of Attitude Reorientation of Multiple-Rotor System 

 

 First of all, we will give a series of definitions.  

 Def.1. Conjugate rotors are pair rotors located in the same layer on the opposite rays. For 

example, rotor 3N and rotor 4N (Fig.1-b) are conjugate rotors (also rotor 12 and rotor 22, etc.).  

 Def.2. Conjugate spinup mean a process of spinning up conjugate rotors in opposite directions 

up to a desired value of relative angular velocity with help of internal forces moments from main body. 
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Velocities of conjugate rotors will equal in absolute value and opposite in sign.  

 Def.3. Rotor capture is an immediate deceleration of  rotor relative angular velocity with help of 

internal forces moment from the main body. So, rotor capture means an “instantaneous freezing” of 

rotor with respect to the main body. The capture can be performed with help of gear meshing, large 

friction creation or other methods. 

 Now we provide an explanation of essence of an attitude reorientation method.  

 Let’s consider conjugate spinup of conjugate rotors 1 and 2 (Fig.1-a) in the absence of external 

forces moments  0e e e

x y zM M M    assuming initial rest of main body and all rotors and mass-inertia 

symmetry of the system  

       0 0 0 0; : 0 0ip q r i           (12) 

A B C D          (13) 

In simplest case we can use following piecewise constant spinup internal forces moments 

12 12

1

12 12

2

, 0,

0,

, 0,

0,

s

i

s

i

M if t t
M

otherwise

M if t t
M

otherwise

     


      


      (14)  

where 12

st  is the time point of spinup stopping of rotors 1 and 2; 
12 const 0M   .  

After the conjugate spinup rotors 1 and 2 will reach an absolute value 
12 12 12

sS M t   of relative angular 

velocity  1 12 2 12,S S     but the main body will remain in rest; angular momentum of system will be 

equal null as before.  After the conjugate spinup we will capture rotor 1 at time point  1 1 12

c c st t t  and 

then the relative angular velocity  of the rotor 1 will be null  1 0   , but main body will take absolute 

angular velocity p and rotor 2 will change relative angular velocity up to 
2.   Conservation of angular 

momentum of full system makes it possible to write  

2 0Ap I         (15) 

Similarly, conservation of angular momentum of rotor 2 makes it possible to write  

 2 12I p IS         (16) 

Numerical values for angular velocities after caption of rotor 1 are obtained from expressions (15) and 

(16) 

12 12
2;

IS AS
p

A I A I
   

 
     (17) 

At the time  2 2 1

c c ct t t  we will capture of rotor 2 and then all of system’s bodies (main body and 

both conjugate rotors) will return to the absolute rest.  

Thus we can conclude that conjugate spinup and two serial captures of conjugate rotors bring to 

piecewise constant angular velocity of main body 

  1 2

12
1 2

0, 0, ,

, ,

c c

c c

t t t

p IS
P t t t

A I

   
 

     

     (18) 

It can be used for main body angular reorientation about corresponding axis. In our case the main body 

performed the rotation about Ox axis by finite angle 
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 12 2 1

c c

x

IS t t

A I






      (19) 

 In the next section we will put forward this method of attitude reorientation and solve the 

equation of motion.   

 

4. Analytical Solutions  

 

 The research results presented in previous section showed that angular velocity of main body is 

piecewise constant value at realization of conjugate spinup and serial capture of one pair of conjugate 

rotors (rotors 1 and 2).  

 Similarly we can explain the same process at realization of conjugate spinup and serial capture 

of another one pair of conjugate rotors. For example, for the rotors 3 and 4 we will write 

  3 4

34
3 4

34
4 34 34 34

0, 0, ,

, ,

;

c c

c c

s

t t t

q IS
Q t t t

B I

BS
S M t

B I


   
 

     

    


      (20) 

where s

ijt is during (ending time point) of spinup of conjugate rotors i and j; c

it is time point of rotor i 

capture; ijM is absolute value of principle momentum of internal forces for spinup of conjugate rotors i 

and j; ijS is absolute value of relative angular velocity of conjugate rotors  i and j after spinup; i   is 

relative angular velocity of rotor i after capture of its conjugate rotor i* 

 *,

i i

c c

i it t t

 


 

Assuming 
1 3 2 4,c c c ct t t t   with help of (20), (17), and (13) we can prove following auxiliary expression 

at 
1 2,c ct t t  

 

34 12

4 2 0p q p q             (21) 

Expression (21) show that gyroscopic term in the third equation (4) equals null at concurrent execution 

of spinups and captures of conjugate rotors {1, 2} and {3, 4}. Therefore angular velocity r will remain 

constant.  Also we can prove equality to zero of all gyroscopic terms and equality to constant of all 

angular velocity components at every set of concurrent spinups and captures.  

Thus, angular velocity components are constant at concurrent execution of spinups and between 

conjugate captures of rotors 

; ;p P q Q r R         (22) 

Let’s assume synchronical capture of all conjugate rotors {1, 2}, {3, 4}, {5, 6} and coincidence of 

frame Oxyz initial position and fixed frame OXYZ (Fig.2).  

       
1 3 5 2 4 6

0 1 2 3

;

1; 0

c c c c c c c c

start finish

c c c c

start start start start

t t t t t t t t

t t t t   

     

   
    (23) 

Now we can solve kinematic equation (10) 
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 
 

 
 

 
 

 
 

0 1

2 3

2 2 2

cos ; sin
2 2

sin ; sin
2 2

; , ;

c c

start start

c c

start start

c c c c

start finish finish start

t t t tP
t t

t t t tQ R
t t

P Q R t t t T t t

 

 

   
 



   
 
 

        

    (24) 

Solutions (24) show that at the time point c

finisht  the main body performed finite rotation about vector e 

by angle χ (Fig.2) 

 

cos , cos , cos

T
P Q R

T

  



 
       

 

e      (25) 

 So, solutions (24) illustrate an opportunity of practical use of the multirotor system for attitude 

reorientation of spacecraft. How we can see, attitude reorientation of SC by desired finite rotation was 

performed with help of conjugate spinup and serial captures of rotors into the SC.  

 Above we have considered the case of motion with zero initial value (12) angular momentum of 

system with equal inertia moments (13).  It is easy to show that without external forces at zero initial 

value angular momentum of system the main body with different inertia moments also has piecewise 

constant components of angular velocity in frame Oxyz. First of all, in this case vector of angular 

momentum identically equals zero in every coordinate frame including moving frame Oxyz connected 

with the main body  

 

 

 

0

, ,

, ,

0

0

0 , ,

OXYZ

T

OXYZ X Y Z

T

Oxyz x y z

OXYZ

X Y Z x y z

Oxyz Oxyz

x y z

K K K

K K K

K K K K K K

K K K A B C

  



   

 

     

  

   

e
M Κ const

K

K

Κ 0

K = -ω×K -ω×0 0

    (26) 

Then we can write  

    

    

    

1 2 12 1 2

1 2 2 1 2

3 4 34 3 4

3 4 4 3 4

5 6 56 5 6

0, 0 0, ,
0

const, 0, ,

0, 0 0, ,
0

const, 0, ,

0, 0 0, ,
0

c c

x c c

c c

y c c

c c

z

p S if t t t
K

p P if t t t

q S if t t t
K

p Q if t t t

r S if t t t
K

r R

 

  

 

  

 

         
  

        

         
  

        

       
 

  5 6 6 5 6const, 0, ,c cif t t t  





      

 

 Last expression proves that main body has piecewise constant components of angular velocity in 

case zero value of system angular momentum. 

 The case of main body attitude reorientation at zero value of system angular momentum is 

inertialess and reaction-free method. This method has no disadvantages of reorientation method with 

help of reaction wheels system like a negative affect of nonlinearity of internal spinup engines, use of 

large value torque of internal spinup engines and, therefore, large energy consumption. 

 If initial angular momentum of system equals nonzero vector, then at rotors captures main body 
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angular velocity will depend on time. In this case the effect of “gyroscopic power increase” will take 

place, which means gyroscopic torque initiation. We can illustrate gyroscopic torque initiation and 

variability of main body angular velocity 

   

 

*

, ,

0 0, 0

var

OXYZ

c c

Oxyz i i

Oxyz Oxyz

x y z

t t t

K t

 

    

 



K const 0

K ω

K = -ω×K 0
     (27) 

 Gyroscopic power increase allow to use of small value of initial main body angular velocity (at 

conjugate rotors capture) to appear large value of torque which accelerate reorientation process. This 

effect is used for attitude control of spacecraft with control moment gyroscope. In addition, nonzero 

initial angular momentum can be transferred from main body on several (or one) rotors with help of 

internal forces moments (by engines): main body comes to a stop, but rotors comes to a spins. 

 We need to note that initiation of nonzero angular momentum can be performed by rocket jet 

engines. On the contrary, if this initial momentum is nonzero, then it can be reduced to null also by jet 

engines and internal dampers. So, it is possible to use both modes (with/without initial value of system 

angular momentum) of realization of attitude method. 

 

 Systems like multirotor-spider (Fig.1-b) and multirotor-hedghog (Fig.1-c) allow using sequences 

of serial rotor spinups and captures to perform compound attitude motion. In these cases we can write a 

program for realization of complex serial spinups and captures of set conjugate rotors. For rotor-type 

hedgehog this research and engineering problem is highly interesting.  

  

5. Numerical Simulation of Reorientation Process 

 

Let’s calculate two sets of results of numerical simulation of multirotor system attitude reorientation. 

We used the following internal forces moment 

     

     

*

* * * *

* const 0; 1; 1,3,5; * 2,4,6

i s c

j jj j j

i s c

j jj j j

jj

M M H t H t t H t t

M M H t H t t H t t

M j j







       
 

        
 

    

     (28) 

where H(t) is Heaviside function. In expressions (28) the first term corresponds to piecewise constant 

spinup moment and the second – to capture moment of viscous friction type. System parameters for 

calculations are presented in table I. Also the following parameters are common for all calculations: 

ν = 300 N·m·s, 3 .st s  Simulation results in Fig.3 correspond to the case of reorientation process with 

zero value of angular momentum (12) and different inertia moments of main body. These results 

demonstrate constant components of angular velocity of the body between conjugate captures. Fig.4 

corresponds to reorientation process at nonzero system angular momentum  

1 4 5(0) (0) ... (0) 0; (0) 100 1/ s      ω  

for main body with the same inertia moments. In this mode of motion we also can see that main body 

comes to permanent rotation, which illustrate redistribution of angular momentum. Certainly, it is 

possible to perform the next series of spinups and captures to new reorientation of main body and 

transfer of angular momentum back to rotors. 
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Table I   

 

2

,A

kg m
 

2

,B

kg m
 

2

,C

kg m
 

2

,I

kg m
 1 ,ct s  

2 ,ct s  
3 ,ct s  

4 ,ct s  
5 ,ct s  

6 ,ct s  12 ,M

N m
 34 ,M

N m
 56 ,M

N m
 

Fig.3 60 80 100 10 4.0 5.5 4.5 5.0 4.75 6.0 10 20 30 

Fig.4 100 100 100 10 4.0 4.75 4.0 4.75 4.0 4.75 10 20 0 
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Fig.3 

 

 
Fig.4 

 

6. Conclusion 

In the paragraph new multirotor systems and their attitude reorientation method have been 

developed. Systems like multirotor-spider and multirotor-hedghog allow using programs for 
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serial rotor spinups and captures to perform  compound attitude motion. The analysis of such 

motion is a subject of further research. 
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PART IV. 

 

EXAMPLE OF MAPLE PROGRAM FOR ATTITUDE DYNAMICS OF 

THE DUAL-SPIN-SPACECRAFT MODELING 
 

The following listing of MAPLE-program can be used for attitude dynamics of dual-spin-

spacecraft. 

 

 

> restart; 

> with(plots): 

Warning, the name changecoords has been redefined 

 

> ur1:=A*diff(p(t),t)+(C2-B)*q(t)*r(t)+C1*(r(t)+sigm(t))*q(t)=0; 

 := ur1  A 







d

d

t
( )p t ( )C2 B ( )q t ( )r t C1 ( )( )r t ( )sigm t ( )q t 0  

> ur2:=B*diff(q(t),t)+(A-C2)*p(t)*r(t)-C1*(r(t)+sigm(t))*p(t)=0; 

 := ur2  B 







d

d

t
( )q t ( )A C2 ( )p t ( )r t C1 ( )( )r t ( )sigm t ( )p t 0  

> ur3:=C2*diff(r(t),t)+C1*diff((r(t)+sigm(t)),t)+(B-A)*p(t)*q(t)=0; 

 := ur3  C2 







d

d

t
( )r t C1 















d

d

t
( )r t 







d

d

t
( )sigm t ( )B A ( )p t ( )q t 0  

> ur4:=C1*diff((r(t)+sigm(t)),t)=eps*sin(nu*t); 

 := ur4 C1 















d

d

t
( )r t 







d

d

t
( )sigm t eps ( )sin  t  

> #A2:=4;B2:=6; C2:=8;A1:=1;C1:=2;# - OBLATE GYROSTAT 

> A2:=15;B2:=8; C2:=6;A1:=5;C1:=4;# - PROLATE GYROSTAT 
 := A2 15  

 := B2 8  

 := C2 6  

 := A1 5  

 := C1 4  

> eps:=0;nu:=1; 
 := eps 0  

 :=  1  

> A:=(A1+A2);C:=C2+C1;B:=B2+A1; 
 := A 20  

 := C 10  

 := B 13  

> DELTA:=10; 
 := DELTA 10  

> p0:=0.15;q0:=0.15;r0:=0.1;sigm0:=DELTA/C1-r0; #evalf(sqrt(p0^2*((B2+A1)*(A1+A2)-

(A1+A2)^2)/(C2*(C2-B2-A1))))+0.5;sigm0:=-r0; 
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 := p0 0.15  

 := q0 0.15  

 := r0 0.1  

 := sigm0 2.400000000  

> resh:=dsolve({ur1,ur2,ur3,ur4, 

p(0)=p0,q(0)=q0,r(0)=r0,sigm(0)=sigm0},{p(t),q(t),r(t),sigm(t)},type=numeric,output=listproced

ure); 
resh t ( )proc( )  ... end proct ( )p t ( )proc( )  ... end proct, ,[ := 

( )q t ( )proc( )  ... end proct ( )r t ( )proc( )  ... end proct, ,

( )sigm t ( )proc( )  ... end proct ]
 

> TT:=30; 
 := TT 30  

> pic_ch_1:=odeplot(resh,[t,p(t)],0..TT,numpoints=1500): 

> pic_ch_2:=odeplot(resh,[t,q(t)],0..TT,numpoints=500): 

> pic_ch_3:=odeplot(resh,[t,r(t)],0..TT,numpoints=500): 

>  

> b:=evalf(sqrt(p0^2*(C2-A2-A1)*(A1+A2)/(C2-B2-A1)/(B2+A1))); 
 := b 0.2631174058  

> lambda:=evalf(sqrt(p0^2*(B2-A2)*(C2-A1-A2)/(C2)/(B2+A1))); 
 :=  0.1681345615  

> pp:=t->p0/cosh(lambda*t); 

 := pp t
p0

( )cosh  t
 

> qq:=t->b*tanh(lambda*t); 
 := qq t b ( )tanh  t  

> rr:=t->r0/cosh(lambda*t); 

 := rr t
r0

( )cosh  t
 

> pic_an_1:=plot(pp(t),t=0..TT,style=point,color=blue): 

> pic_an_2:=plot(qq(t),t=0..TT,style=point,color=blue): 

> pic_an_3:=plot(rr(t),t=0..TT,style=point,color=blue): 

>  

> display([pic_ch_1,pic_an_1]); 
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> display([pic_ch_2,pic_an_2]); 

 
> display([pic_ch_3,pic_an_3]); 

 
> >  

> urfi:=diff(fi_(t),t)-r(t)+(cos(tetta(t))/sin(tetta(t)))*(p(t)*sin(fi_(t))+q(t)*cos(fi_(t))); 

 := urfi  







d

d

t
( )fi_ t ( )r t

( )cos ( )tetta t ( )( )p t ( )sin ( )fi_ t ( )q t ( )cos ( )fi_ t

( )sin ( )tetta t
 

> urteta:=diff(tetta(t),t)-p(t)*cos(fi_(t))+q(t)*sin(fi_(t)); 

 := urteta  







d

d

t
( )tetta t ( )p t ( )cos ( )fi_ t ( )q t ( )sin ( )fi_ t  

> urpsie:=diff(psie(t),t)-(1/sin(tetta(t)))*(p(t)*sin(fi_(t))+q(t)*cos(fi_(t))); 

 := urpsie 







d

d

t
( )psie t

( )p t ( )sin ( )fi_ t ( )q t ( )cos ( )fi_ t

( )sin ( )tetta t
 

>  

> urdel:=diff(del(t),t)=sigm(t); 

 := urdel 
d

d

t
( )del t ( )sigm t  

>  

# Initial conditions – case of coincidence of vector K and axis OZ. 

> K:=sqrt(A^2*p0^2+B^2*q0^2+(C*r0+C1*sigm0)^2); 
 := K 11.18760475  

> Kz:=C*r0+C1*sigm0; 

>  
 := Kz 10.60000000  

> tetta0:=arccos(Kz/K);fi0:=evalf(Pi/2);psi0:=0; 
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 := tetta0 0.3255431246  

 := fi0 1.570796327  

 :=  0  

F:=dsolve({ur1,ur2,ur3,ur4,urteta,urfi,urpsie,urdel,p(0)=p0,q(0)=q0,r(0)=r0,sigm(0)=sigm0,tetta(

0)=tetta0,fi_(0)=fi0,psie(0)=psi0,del(0)=0},{p(t),q(t),r(t),sigm(t),psie(t),tetta(t),fi_(t),del(t)},type

=numeric,output=listprocedure); 
F t ( )proc( )  ... end proct ( )del t ( )proc( )  ... end proct, ,[ := 

( )fi_ t ( )proc( )  ... end proct ( )p t ( )proc( )  ... end proct, ,

( )psie t ( )proc( )  ... end proct ( )q t ( )proc( )  ... end proct, ,

( )r t ( )proc( )  ... end proct ( )sigm t ( )proc( )  ... end proct, ,

( )tetta t ( )proc( )  ... end proct ]

 

pp:=subs(F,p(t));qq:=subs(F,q(t));rr:=subs(F,r(t));SIGM:=subs(F,sigm(t));FIe:=subs(F,fi_(t));PPs

ie:=subs(F,psie(t));TET:=subs(F,tetta(t));DEL:=subs(F,del(t)); 
 := pp proc( )  ... end proct  

 := qq proc( )  ... end proct  

 := rr proc( )  ... end proct  

 := SIGM proc( )  ... end proct  

 := FIe proc( )  ... end proct  

 := PPsie proc( )  ... end proct  

 := TET proc( )  ... end proct  

 := DEL proc( )  ... end proct  

> plot([pp(t),qq(t),rr(t),SIGM(t)],t=-0..TT); 

 
> plot([PPsie(t),FIe(t),DEL(t)],t=0..TT); 
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> plot(TET(t),t=0..2*TT,numpoints=4000); 

 
> fw:=fopen(`angle_.txt`,APPEND); 

 := fw 0  

> h_time:=0.01;NNN:=round(2*TT/h_time); 
 := h_time 0.01  

 := NNN 6000  

> for i from 0 by 1 to NNN do t:=i*h_time:  fprintf(fw,"%f %f %f %f 

%f\n",t,PPsie(t),TET(t),FIe(t),DEL(t)): od: 

> close(fw);  


