ограничений по угловым *скоростям* и *ускорениям* ГД вокруг осей подвеса, предусмотренным для *гибкой* «лавинообразной» перестройки параметра р явной функции распределения (4).

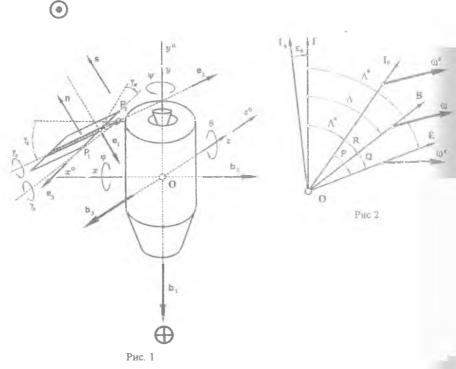
УДК 629.78 681.51

Сомов Е.Е, Бутырин С.А., Макарев В.П., Сучков Б.К.

ЦИФРОВЫЕ АЛГОРИТМЫ ПРОСТРАНСТВЕННОГО НАВЕДЕНИЯ СЕРВИСНОГО БОРТОВОГО ОБОРУДОВАНИЯ МАНЕВРИРУЮЩИХ КОСМИЧЕСКИХ АППАРАТОВ

Рассматриваются задачи синтеза непрерывных и дискретных алгоритмов косвенного (при неполном измерении) пространственного наведения сервисного боргового оборудования— панелей солнечных батарей (ПСБ), приемно-передающих антенн связи (ППА) и др., на орнентиры, заданные в различных базовых системах координат (СК) — связанной, орбитальной, инерциальной, с учетом конструктивных ограничений маневрирующих КА наблюдения.

На рис. 1 и 2 представлены компоновка КА наблюдения (без второго крыла ПСБ), СК в виде инерциальных базисов I, (гелиоцентрическая эклиптическая СК) и I (геоцентрическая экваториальная СК) и подвижных базисов I, (орбитальная СК), В = {b_i} (базовая СК корпуса КА) и Е = {e_i} (СК оборудования), а также схемы отсчета основных позиционных и скороствых динематических параметров. В наиболее общем случае орт известного требуемого направления является подвижным в инерциальном базисе. Таковым является, например, орт s направления из центра масс (ЦМ) КА О на Солнце, (рис.1). Все остальные варианты наведения произвольного орта в базисе Е в направлении орта, заданного в базисе I, либо базисе В, являются частью указанной общей задачи, которая далее представляется как задача наведения нормали п = -e₁ к плоскости ПСБ на Солнце.



Постановка задачи. Движение центра Земли вохруг Солнца происходит в плоскоств эклиптики с известным вектором орбитальной угловой скорости \mathfrak{m}_* взаимное положение инерциальных базисов \mathbf{I}_* и \mathbf{I} определяется углом ε_* между плоскостями эклиптики и земного экватора (кватернионом Λ^{ε}). Если связать с подвижным ортом \mathbf{S} некоторый ортогональный базис $\mathbf{C}_{\mathbf{S}}$, то кватернион Λ^{ε} его ориентации в базисе \mathbf{I} рассчитывается по формуле: $\Lambda^{\varepsilon} = \Lambda^{\varepsilon} \circ \Lambda^{\varepsilon}$, где Λ^{ε} является явным решением уравнения: $\Lambda^{\varepsilon} = -\frac{1}{4}\Lambda^{\varepsilon} \circ \omega_{\varepsilon}$. Движение ЦМ КА в базисе \mathbf{I} определяется совокупностью известных орбитальных нараметров $\mathbf{O}_{t} = [p_{o}, e_{o}, i_{o}, \Omega_{o}, t_{\mathbf{K}}, u(t)]$. Имеется информация об угловом положении базиса \mathbf{B} относительно инерциального \mathbf{I} либо орбитального базиса \mathbf{I}_{o} (углы ϕ, ψ, θ), об угловом положении орта \mathbf{I} относительно базиса \mathbf{B} (углы $\gamma_{\mathbf{K}}$ и γ_{ε}), а также информация о компонентах вектора абсолютной угловой скорости корпуса $\mathbf{K}\mathbf{A}$ $\omega = \{\omega_{o}, i = 1, 2, 3 = x, y, z\}$ в базисе \mathbf{B} . Имеются

условия на положение краевых точек $P_i, i=1,2$ ПСБ относительно корпуса в виде: $\phi_i(\mathbf{L},x,y,z,\gamma_x,\gamma_z) \geq 0, i=1,2$, где вектор L представляет линейные параметры подвеса ПСБ на корпусе КА. Эти условия отражают конструктивные ограничения на область допустимой вариации углов γ_x и γ_x . Модели редукторных приводов по степеням подвижности ПСБ принимаются на кинематическом уровне — управлениями считаются непосредственно ограниченые командные схорости $u_i, i=x,z$ перемещений ПСБ относительно осей подвеса:

- $\gamma_i(t) = \operatorname{Sat}(a_{\gamma}, u_i(t)), i = x, z$ для непрерывного варианта,
- $\gamma_i(t)= \mathrm{Zh}(T_{\mathtt{u}},\mathrm{Qntr}(d_{\gamma},\mathrm{Sat}(a_{\gamma},u_{\mathtt{h}}))), \quad i=x,z,u_{\mathtt{h}}\equiv u_i(t_k), t_k=kT_{\mathtt{u}}, k\in \mathbb{N}_0\equiv [0,1,2,\ldots),$ для цифрового варианта,

где $\mathrm{Sat}(a_\gamma,\cdot)$, $\mathrm{Zh}(T_u,\cdot)$ и $\mathrm{Qntr}(d_\gamma,\cdot)$ являются стандартными операторами ограничения, фиксации на периоде времени T_u и дискретизации сигнала по уровню, соответственно. Задача состоит в определении законов формирования управлений ПСБ u_i по доступным измерениям, которые при ограничениях на допустимые вариации углов γ_x и γ_x обеспечивают совмещение ортов n и s, а также устойчивый режим слежения орта n за ортом s

Жинематические соотношения. Матрица \mathbf{A}_{a}^{c} перехода от ортов базиса \mathbf{B} к ортам базиса \mathbf{E} имеет вид $\mathbf{A}_{b}^{c} = [\gamma_{x}]_{2} \cdot [\gamma_{x}]_{3}$, где $[\alpha]_{+}$ стандартная матрица элементарного поворота. При обозначениях $\mathbf{C}\gamma = \cos \gamma$ и $\mathbf{S}\gamma = \sin \gamma$ орты \mathbf{n} и \mathbf{s} представляется в базисе \mathbf{B} столбцами

$$\mathbf{n}_{b} = -\{C\gamma_{x}C\gamma_{z}, C\gamma_{x}S\gamma_{z}, -S\gamma_{x}\}; \qquad \mathbf{s}_{b}(t) = \{\mathbf{s}_{bx}(t), \mathbf{s}_{by}(t), \mathbf{s}_{br}(t)\},$$

причем компоненты $\mathbf{s}_b(t)$ определяются Λ^s , O_t (включая кватернион Λ^o) и углами ϕ , ψ , θ (кватернионом \mathbf{R}) по известным явным аналитическим соотношенням. Совпадению ортов \mathbf{n} и \mathbf{s} соответствует равенство элементов этих столбцов. Отсюда получаются явные соотношения для вычисления потребных значений углов γ_x и γ_x (а также значений $\mathrm{C}\gamma_t, \mathrm{S}\gamma_t, i=x,z$) с учетом условий: $\phi_t(\cdot) \geq 0$, t=1,2 и возможного расположения КА в тени Земли. Вектор абсолютной угловой скорости базиса E представим как $\mathrm{e}^s = \mathrm{e} + \mathrm{e}^s$, где

$$\omega = b_3 \cdot \dot{\gamma}_x + e_2 \cdot \dot{\gamma}_x = -S\gamma_x b_3 \cdot \dot{\gamma}_x + C\gamma_x b_2 \cdot \dot{\gamma}_x + \dot{\gamma}_x \cdot b_3 = -S\gamma_x e_1 \cdot \dot{\gamma}_x + e_2 \cdot \dot{\gamma}_x + C\gamma_x e_3 \cdot \dot{\gamma}_x$$
 является вектором угловой скорости базиса $\mathbf E$ *относительно* базиса $\mathbf B$ и в собственном базисе $\mathbf E$ имеет вид столбца: $\omega = \{-S\gamma_x \dot{\gamma}_x, \gamma_x, C\gamma_x \gamma_x\}$. С другой стороны в базисе $\mathbf E$ справедливо соотношение $\omega = \{-S\gamma_x \dot{\gamma}_x, \omega = \omega = A_b \cdot \omega$, и поэтому для определения *потребных* угло-

вых скоростей $\dot{\gamma}_x$ и $\dot{\gamma}_z$ перемещения ПСБ по формулам: $\gamma_s = \omega^c_{rey}, \bar{\gamma}_z = \omega^c_{ser}/C\gamma_x$ достаточно вычислить два последних элемента вектора-столбца ω^c . Вектор абсолютиой угловой скорости ω^s орта s получается s базисе s проектированием вектора s с использованием кватернионов s и s по известным соотношениям, и результат представляется столбцом s, а s базисе s — столбцом s s — s . Полагая совпадение этого вектора s вектором абсолютной производной орта s по пределяется s подвижном базисе s по формуле: s — s s — s s — s s — s s — s — s s —

Синтез непрерывных алгоритмов управления. Кватернион А^с ориентации базиса Е относительно инерциального базиса I не измеряется, но он может быть вычислен по формуле: $\Lambda^c = \Lambda \circ Q$ при кватернионах Λ и Q, рассчитанных на основе физических измерений, Движения базиса Е относительно базисов І и В описываются кинематическими уравнениями: $\Lambda^c = \frac{1}{3}\Lambda^c \circ \Omega^c$ и $\mathbf{Q} = \frac{1}{3}(\mathbf{Q} \circ \Omega^c - \Omega \circ \mathbf{Q})$, соответственно, а движение базиса $\mathbb B$ относительно базиса I — уравнением: $\Lambda = \frac{1}{\pi} \Lambda \circ \Omega$. Кватернион Δ рассогласования базисов E и C_s $\Delta = \tilde{\Lambda}^{s} \circ \Lambda^{\circ}$ с кинематическим уравнением представляется в виде $\Delta = \frac{1}{5} \Delta \circ (\omega^e - \omega^s)$, где $\omega^s = \widetilde{\Delta} \circ (-\omega_s) \circ \Delta = A_b^e \cdot \omega^s$ является результатом проектирования вектора - о, в базис Е. В качестве меры близости ортов п и в принимается скалярная функция: $V = 1 - \langle n, s \rangle$, которая всегда принимает положительные значения при $n \neq s$ и обращается в нуль только при совпадении этих векторов. Представляя орты п и S в одном базисе (например в базисе E) и вычисляя производную V функции Лапунова V в силу всех указанных кинематических уравнений, приходим к соотношению: $V = (s_e \times n_e) \cdot (\omega^e - \omega_e^s)$ При формировании командной абсолютной угловой скорости базиса Е по закону: $ω^* = ω^*_* = ω^*_* - a \cdot (\mathbf{s}_a \times \mathbf{n}_e)$ с параметром a = const > 0 получаем: $V = -a \cdot (\mathbf{s}_a \times \mathbf{n}_e)^2 < 0$ πρи отличии ортов n и S, что доказывает асимптотическую устойчивость процесса приведения орта п к орту s. Сигнал командной скорости о°= о° базиса Е пересчитывается далее в угловые скорости γ_x , γ_z подвеса ПСБ по представленным выше аналигическим соотношениям с учетом ограничений на их модули.

Нелинейные цифровые алгоритмы управления основываются на структуре формирования вектора рассогласования $\varepsilon = \{\varepsilon_i\} = -(\mathbf{s} \times \mathbf{n})$, полученного при аналитическом синтезе непрерывных алгоритмов управления. Для повышения точности в установившемся режиме слежения рационально использование стандартного дискретного ПИ-регулятора: каждая компонента ε_{ik} вектора рассогласования $\varepsilon_k = -(\mathbf{s}_k \times \mathbf{n}_k)$ обрабатывается дискретным алгоритмом. $\mathbf{v}_{ik} = \mathbf{v}_{ik-1} + b_g(\varepsilon_{ik} + c_g \cdot \varepsilon_{ik-1})$ с постоянными параметрами b_g и c_g . Далее вектор $\mathbf{v}_k = \{\mathbf{v}_{ik}\}$ используется в формировании дискретного вектора $\mathbf{w}_{ik}^* = \mathbf{w}_{ik}^* + \mathbf{v}_{ik}^*$, который «пересчитывается» в командные скорости перемещения ПСБ u_{ik} , $i = \mathbf{x}, \mathbf{z}, k \in N_0$ по явным формулам: $u_{ik} = \mathbf{w}_{ik}^*$, $u_{ik} = \mathbf{w}_{ik}^*$, $u_{ik} = \mathbf{w}_{ik}^*$, $u_{ik}^* = \mathbf{$

УДК 531.01: 629.78: 681.51

Сомов Е.Я., Бутырин С.А., Антонов Ю.Г., Мантуров А.И.

АНАЛИТИЧЕСКИЙ СИНТЕЗ ПАРАМЕТРОВ ПРОСТРАНСТВЕННОГО ПОВОРОТНОГО МАНЕВРА КОСМИЧЕСКОГО АППАРАТА С КРАЕВЫМИ УСЛОВИЯМИ ОБЩЕГО ВИДА

Многоаспектная проблема прецизионного гиросилового управления пространственным движением маневрирующих космических аппаратов (КА) наблюдения уже более 20 лет исследуются авторами [1-8]. Так, в [2] доказана теорема, в соответствие с которой решение задачи пространственного поворотного маневра (ПМ) КА на заданном интервале времени