Белоконов И.В., Болгов Е.А., Крамлих А.В., Собода С.А.

ЭКСПЕРИМЕНТ «НАВИГАТОР» НА БОРТУ КОСМИЧЕСКОГО АППАРАТА «ФОТОН-М2»: ЦЕЛИ, ЗАДАЧИ И ПРЕДВАРИТЕЛЬНЫЕ РЕЗУЛЬТАТЫ

В настоящее время спутниковая радионавигация активно используется для решения различных прикладных задач в космосе. Этому способствует большое разнообразие выпускаемых навигационных приемников (НП) сигналов от спутниковых радионавигационных систем (СРНС) ГЛОНАСС и GPS [1,2]. При этом коммерческие НП позволяют расширять или модифицировать свои функциональные возможности за счет подключения дополнительных унифицированных плат с соответствующим программным обеспечением [3].

Микрогравитационные космические платформы (МКП) типа «Фотон» предназначены для проведения научных и технологических экспериментов в условиях микрогравитации. Одним из возможных направлений модернизации МКП «Фотон» является совершенствование бортовых систем и навигационно-баллистического сопровождения для улучшения условий проведения научных и технологических экспериментов, в том числе и управления ими в процессе полета. Эго предъявляет повышенные требования по оперативности и точности координатно-временной привязки МКП «Фотон». Кроме того, желательно знание пространственной ориентации и динамики движения МКП, что позволит оценить реальную величину микроускорений, которые возникают на борту за счет центробежных сил в процессе неуправляемого полета [4].

Целью эксперимента «Навигатор» являнась демонстрация возможности построения педорогой вспомогательной навигационной системы с использованием неспециализирован-

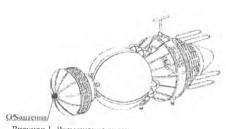


Рисунок 1. Размещение антенны навигационного присмника

ного одночастотного приемника для оперативного навигационного обеспечения комплекса научной и вспомогательной аппаратуры МКП «Фотон-М» и создание на его базе комплексной информационно-измерительной системы, ориентированной на обслуживание постановщиков экспериментов непосредственно в режиме полета.

Основной задачей эксперимента была

отработка принятых конструктивных решений по адаптации выбранного комплекта навигационной аппаратуры (приемника сигналов и антенны) к условиям эксплуатации в условиях космического пространства, проверка работоспособности выбранных измерительных средств и алгоритмического и программного обеспечения обработки получаемых данных как на борту, так и на Земле.

В качестве приемного навигационного устройства был выбран шестнадцатиканальный (ГЛОНАСС/GPS) приемник «МНП» Ижевского радиозавода, предназначавшийся для использования на Земле в условиях повышенной вибрации и ударных нагрузок.

При этом его адаптация к использованию на борту включала в себя следующие конструктивные доработки:

- меры по выдерживанию перегрузок и вибраций на участке выведения на орбиту;
- обеспечение требуемого температурного режима для антенны, которая размещалась снаружи на контейнере химических источников тока (рис.1);
- удовлетворение требований по питанию от бортовых источников тока;
- размещение дополнительной флэш-памяти для сохранения информации с частотой в 1 Гц с целью последующей послеполетной обработки на Земле;
- создание системы управления его работой в составе контролера, обеспечивающего его включение-выключение, сохранение данных, подготовку специальных накетов данных и пересылку их в телеметрическую систему для последующей передачи на Землю во врсмя сеансов связи.

Кроме этого был разработан комплекс алгоритмов и программное обеспечение, позволяющее проводить предварительную обработку измерений и оперативно привязывать ко времени и пространству все, что происходит на борту, а также послеполетную обработку информации по восстановлению реальных условий, в которых проводились научные эксперименты. НП был предварительно испытан на имитаторе сигналов от СРНС ГЛОНАСС и GPS, подтвердил соответствие паспортным характеристикам и по совокупности показателей (по надежности и точности получения радионавигационных параметров), предъявляемых к вспомогательному навигационному оборудованию для сопровождения научных экспериментов, был допущен для использования в полете на МКП «Фотон-М2». Рабочие характеристики приемника «МПП» представлены в табл. 1.

Так как МКП «Фотон-М2» после выведения ориентируется своей продольной осью по вектору скорости, а навигационная антенна дополнительно затеняется конструктивными элементами МКП, то можно было заранее предположить, что решение навигационной задачи

ПП будет осуществляться в неблагоприятных условиях. Кроме того, как показал опыт полед предыдущего МКП «Фотон-12», он совершает колебательные движения (прецессионные в путационные), при этом продольная ось существенно отклоняется от первоначального положения. При колебаниях МКП, когда ось антенны движется к зенитному направлению, условия видимости навигационных спутпиков (НС) и качество работы НП улучшаются. Напротив, когда ось антенны движется по направлению к Земле, то условия видимости еще боле ухудишаются и в ряде случаев навигационные решения получить невозможно. На рис. 2 и 3 отображена информация о числе видимых НС на протяжении второго (31.05.05г.) и 73-го (05.06.05 г.) витков полета, соответственно. Там же отмечены моменты проведения сеансов измерений с КИПами (номера указаны внутри обозначений), а также вертикальными полос ками выделены моменты времени прекращения формирования навигационных решений Можно сделать вывод, что в среднем в видимости антенны НП находятся 8-9 НС, минимальное число видимых НС — 6, максимальное число достигало 15, то есть условия возможности навигационных определений выполняются.

Кроме получения параметров движения цептра масс МКП «Фотон-М2» возможно приближенное определение ориентации продольной оси МКП в процессе полета (в среднем с погрепностью до 15°) при использовании информации, формируемой НП о видимых и невидимых павигационных спутниках (НС), разделяемых плоскостью крышки контейнера химических источников тока, перпендикулярной вектору антенны НП. Эта плоскость ограничивает ппарипу диаграммы направленности приемной антенны диапазоном углов, близким к ±90°. При этом возможно пахождение области гарантированных положений продольной оси МКП пезависимо от бюджета ошибок измерений.

Во время полета МКП «Фотон-М2» проводились сеансы приема телеметрической информации наземными контрольно-измерительными пунктами (КИП), в том числе и расположенном в Самаре. По мере возникновения необходимости проводилась передача данных на борт с центров управления полетом (г. Королев) и управления экспериментами Европейского космического агентства (г. Кируна, Швеция). Сеансы связи КА «Фотон-М2» с российскими КИПами отражены в табл.2.

Согласно циклограмме работы, НП работал на протяжении первых пяти сугок полета пепрерывно по шесть часов с интервалом перерыва работы продолжительностью также шесть часов (реализованная циклограмма работы НП приведена в табл.3). Общее время работы ПП составило 60 часов с ежесекуплиым запоминанием навигационных решений и иной вспомогательной информации (отношений сигнал/шум и номеров спутников по каждому каналу, вторичных измерений — радиальной дальности и скорости ее изменения и т.д.).

Таблица 1. - Рабочие характеристики навигационного приемника «МНП»

	ГЛОНАСС	GPS		
Количество каналов	16	16		
Рабочие частоты, МГц	1598,0625 - 1615,5 1575,4			
Режимы работы	ГЛОНАСС, GPS, ГЛОНАСС + GPS			
Формируемые данные	Местоположение (долгота, широта, высота), в и дата UTC, измерения на тактовой и н			
Пользовательский интерфейс	Два перта RS-232 для обмена навигационным да дифференциальных попр			
Протокол обмена	Бинарный, IEC 61162 (NMEA-0183), RTCM SC-104			
Время первого определения нави	гационных параметров, с, не более:			
при отсутствии всех исходных данных				
при наличии альманаха				
при наличии альманаха и местоположения				
при наличии альманаха, местоположения и времени				
при наличии альманаха, местоположения, времени и эфемеридной информации				
Время восстановления слежения	за сигналами рабочего созвездия НС после потер	и слежения при вре-		
мени потери, с, не более:				
до 120 с		20		
до 10 мин				
Темп определения навигационных параметров, Гц				
Погрешность формирования секундной метки времени относительно единого времени UNC, мкс, не более				
Динамические условия эксплуата	ации:			
скорость, км/час		до 120		
	еских координат с вероятностью 0,95, м, не боле	e:1 15		
в обычном режиме				
при использовании спутниковой системы GPS режима селективного доступа		100		
	цифференциальной коррекции	3		
Напряжение питания, В		18 – 72		
Потребляемая мощность платы,		4		
Температурный режим работы, °С -				
Габаритные размеры, мм 160				

Принятие такой схемы работы НП было обусловлено следующими причинами:

- ограниченностью выделенных энергетических ресурсов на питание анпаратуры;
- желанием проверить надежность НП в режиме многокрагных включений-выключений;
- потребностью изучить реальный переходный режим и оцепить время выхода на рабочий режим при «теплом» старте (когда сохранено системное время, альманах СРНС, используемый для первоначального поиска НС и обеспечения входа в режим синхронизации и приема навигационных кадров);
- необходимостью получить большой объем навигационных решений на протяжении интервала времени, достаточного для построения эталонной орбиты, оценки влияния на движение

КА «Фотон-М2» торможения атмосферой и определения величин микроускоре микроускоре ний, наблюдавшихся за время миссии (продолжительность непрерывного сеанса измерени) равнялась шести часам, что соответствовало четырем виткам полета).

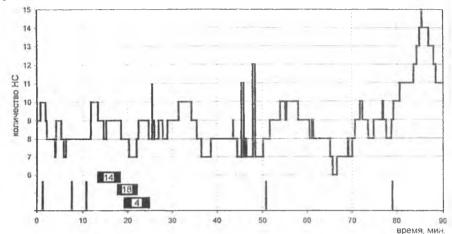


Рис. 2 Число видимых НС с указанием сеансов связи с КИПами и моментов прекращения формирования навигационных решений на втором витке полста (31 мая 2005 г.)

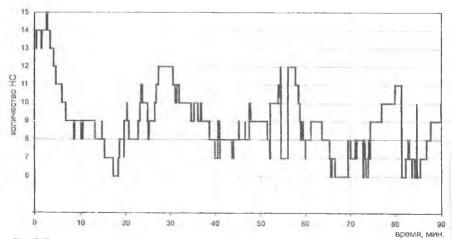


Рис.3 Число видимых НС с указанием сеансов связи с КИПами и моментов прекращения формирования навигационных решений на 73 витке полета (5 июня 2005 г.)

таблица 2. Циклограммы сеансов связи с КИПами во время полета КА «Фотон-М2»

Дата	Виток полета	Номер КИПа	Время на- чала сеанса ч:мм:сс	Время окончания сеанса ч:мм:сс	Число перерывов формирования нави- гационных решений	Общая продолжительность перерывов формирования нави- гационных решений, сек
31.05.2005	1	4	15:07:23	15:13:32	6	55
	1	17	15:12:08	15:18:23		
	2	14	16:34:15	16:39:05	5	40
	2	18	16:38:32	16:43:20		
	2	4	16:40:28	16:46:16		
	3	14	18:05:53	18:12:02	6	34
	3	14	18:10:05	18:15:49		
01.06.2005	17	4	15:08:11	15:14:15	6	16
	17	17	15:12:51	15:19:06		
	18	14	16:34:37	16:40:04	14	152
	18	18	16:39:01	16:44:08		
	19	14	18:06:50	18:12:51	11	554
	19	4	18:14:11	18:20:20		
02.06.2005	33	4	15:09:00	15:14:58	4	52
	33	17	15:13:34	15:19:49		
	34	14	16:34:59	16:40:54	9	214
	34	4	16:42:09	16:47:58		
	35	14	18:07:42	18:13:33	9	697
	35	4	18:14:54	18:21:08		
03.06,2005	50	14	16:35:24	16:41:30	11	112
	51	14	18:08:27	18:14:06	6	47
	52	14	19:42:01	19:47:06	7	1377
04.06.2005	65	17	15:14:36	15:20:44	0	0
	66	14	16:35:49	16:41:58	10	128
	67	14	18:08:05	18:13:31	5	48
	68	14	19:41:31	19:46.38	8	38

Таблица 3. Циклограмма работы навигационного приемника «МПП»

	ana 5. Lunano	i paisivia p	auura nasi	ат ационного	приемника «N	/11111//	
№ се- ан- са	Дата	Витки	Время вкл. НП ч:мм:сс	Время выкл. НП ч:мм:сс	Длительность работы НП ч:мм:сс	Длительность нерерыва в работе НП ч:мм:сс	Длительность переходного процесса ч:мм:сс
1	31.05.2005	1-4	12:10:47	18:22:53	6:12:06	6:08:43	0:00:55
2	01.06.2005	9-13	0:31:36	6:31:29	5:59:53	6:04:24	0:04:46
3_	01.06.2005	17-21	12:35:53	18:48:46	6:12:53	6:00:03	0:12:45
4	02.06.2005	25-29	0:48:49	6:48:44	5:59:55	6:04:23	0:08:28
5	02.06.2005	33-37	12:53:07	19:06:00	6:12:53	6:00:03	0:03:01
6	03.06.2005	41-45	1:06:03	7:05:57	5:59:54	6:00:05	0:06:13
7	03.06.2005	49-53	13:06:02	19:18:54	6:12:52	6:00:04	0:05:01
8	04.06.2005	57-61	1:18:58	7:18:52	5:59:54	6:04:24	0:04:17
9	04.06.2005	65-69	13:23:16	19:36:08	6:12:52	6:00:04	0:02:56
10	05.06.2005	73-77	1:36:12	7:36:06	5:59:54		0:11:04

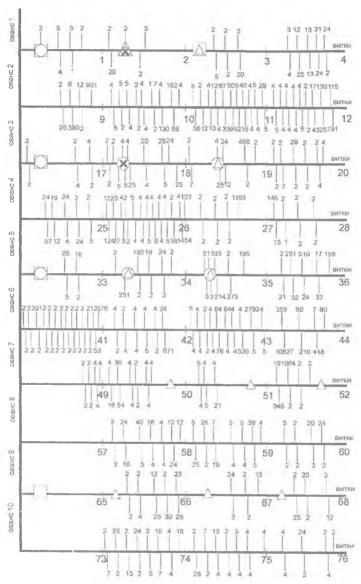


Рис. 4 Нарушения процесса формирования навигационных решений на протяжении всего времени работы НП

В табл.2 дополнительно приведены данные по количеству перерывов в процессе формирования навигационных решений и общая продолжительность перерывов на витках проведения сеансов передачи данных на КИПы. Рис. 4 иллострирует работоспособность НП во время всех десяти сеансов его непрерывной работы. Указаны области проведения сеансов приема телеметрической и научной информации во время пролета над соответствующими КИПами (□ – КИП №17, △- КИП 14, × - КИП 18, ○ – КИП 4). Там же отмечены моменты пропадания поступления навигационных решений от НП (вертикальные черточки). Над каждой из них в скобках указана продолжительность интервала времени пропадания навигационных решений. Все сеансы связи совпали с периодами работы приемника на МКП «Фотон-М» №2.

Приведенные результаты позволяют сделать следующие выводы:

- существует определенная нестабильность в формировании навигационных решений, и поэтому для последующего анализа точностных характеристик НП необходимо провести тщательный анализ полученных навигационных решений;
- выявленная нестабильность не связана с сеансами передачи телеметрической информации;
- существуют весьма продолжительные по времени интервалы, когда навигационные решения отсутствуют (табл.4), что может быть объяснено участками ориентации антенны, когда отсутствует видимость минимально необходимого числа НС.

Таблица 4 Стабильность работы НП

Номер сеанса работы НП	Число перерывов дли- тельностью более 20	Максимальная длительность пе-	
	сек	рерыва,	
		мин.	
ł	6	0,5	
2	18	15	
3	9	8	
4	11	7	
5	13	8,5	
6	18	18	
7	5	16	
8	8	0,7	
9	7	0,5	
10	4	0,5	

Выполнен анализ времени выхода НП на рабочий режим при «теплом» старте. Как следует из данных, приведенных в табл.3, время переходного процесса изменялось в диапазоне от 1 до 13 минут. Это может быть объяснено наложением на момент включения НП условий плохой видимости НС (ось антенны направле-

на в сторону Земли). Поэтому вследствие динамики МКП в течение некоторого времени задерживается выход НП на рабочий режим.

В статье использованы результаты работы, проводимой при финансовой поддержке РФФИ (грант РФФИ 06-08-00244а).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Глобальная навигационная спутниковая система ГЛОНАСС. Интерфейсный контрольный документ (третья редакция). М.: КНИЦ ВКС, 1995.
- 2. Global Positioning System. Standard positioning service. Signal specification. 2-nd editions. June 2, 1995.
- 3. Борговые устройства спутниковой радионавигации /И В. Кудрявцев, И.Н. Мищенко, А.И Волынкин и др. Под ред. В.С. Шабшаевича. Транспорт, 1998.
- 4. Абрашкин В.И. и др. Определение вращательного движения спутника «Фотон-12» по данным бортовых измерений магнитного поля Земли. Препринт Института прикладной математики им. М.В.Келдыша РАН, 2000, №60.