Павлов В.Ф., Петрова Ю.Н., Денискина Е.А., Михалкина С.А., Катанаева Ю.А.

ИСПОЛЬЗОВАНИЕ КРИТЕРИЯ СРЕДНЕИНТЕГРАЛЬНЫХ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ ДЛЯ ПРОГНОЗИРОВАНИЯ ПРЕДЕЛА ВЫНОСЛИВОСТИ ПОВЕРХНОСТНО УПРОЧНЁННЫХ ДЕТАЛЕЙ

Для повышения сопротивления усталости деталей широкое применение на практике находят различные методы поверхностного упрочнения. После упрочнения в поверхностном слое деталей формируются сжимающие остаточные напряжения и наклёп. Экспериментально показано [1], что основное влияние на увеличение характеристик сопротивления усталости в результате упрочнения оказывают сжимающие остаточные напряжения. Для прогнозирования влияния поверхностного упрочнения на предел выносливости деталей с концентраторами напряжений используются два критерия [2].

Первым критерием, который использовался в работах [1-4], являются осевые остаточные напряжения на поверхности концентратора. Формула для прогнозирования приращения предела выносливости ΔP_R ($\Delta \sigma_R$ – растяжение-сжатие, изгиб; $\Delta \tau_R$ – кручение) поверхностно упрочнённой детали в этом случае имеет вид

$$\Delta P_R = \psi_P \cdot \left| \sigma_z^{noe} \right|,\tag{1}$$

где ψ_P (ψ_σ – растяжение-сжатие, изгиб; ψ_τ – кручение) – коэффициент влияния поверхностного упрочнения на предел выносливости по критерию σ_z^{nog} , σ_z^{nog} – осевые (меридиональные) остаточные напряжения на поверхности опасного сечения упрочнённой детали с концентратором напряжений.

При обработке деталей различными методами упрочнения весьма часто наблюдается подповерхностный максимум сжимающих остаточных напряжений, то есть к поверхности деталей остаточные напряжения снижаются. Этот спад бывает весьма существенным, иногда остаточные напряжения уменьшаются к поверхности до нуля и даже становятся растягивающими [5], однако повышение предела выносливости деталей наблюдается и в этих случаях.

Результаты этих экспериментов указывают на то, что критерий прогнозирования влияния поверхностного упрочнения на предел выносливости деталей с концентраторами напряжений должен учитывать характер распределения остаточных напряжений по толщине поверхностного слоя опасного сечения деталей.

При выборе второго критерия в статье [6] использовалось аналитическое решение [7] по определению дополнительных остаточных напряжений в наименьшем сечении поверхностно упрочнённой гладкой детали после нанесения на неё надреза полуэллиптического профиля. Выделив основную часть решения [7], был предложен критерий $\overline{\sigma}_{ocm}$ — критерий среднеинтегральных остаточных напряжений влияния поверхностного упрочнения на предел выносливости детали в виде

$$\overline{\sigma}_{ocm} = \frac{2}{\pi} \cdot \int_{0}^{1} \frac{\sigma_{z}(\xi)}{\sqrt{1 - \xi^{2}}} d\xi , \qquad (2)$$

где $\sigma_z(\xi)$ – осевые (меридиональные) остаточные напряжения в наименьшем сечении детали, $\xi = y/t_{\kappa p}$ – расстояние от дна концентратора до текущего слоя, выраженное в долях $t_{\kappa p}$, $t_{\kappa p}$ – критическая глубина нераспространяющейся трещины усталости, которая возникает в случае работы упрочнённой детали при напряжении, равном пределу выносливости.

Приращение предела выносливости упрочнённой детали с концентратором напряжений $\varDelta P_R$ при использовании критерия $\bar{\sigma}_{ocm}$ вычисляется по формуле:

$$\Delta P_R = \bar{\psi}_P \cdot \left| \bar{\sigma}_{ocm} \right|,\tag{3}$$

где $\overline{\psi}_P$ ($\overline{\psi}_\sigma$ – растяжение-сжатие, изгиб; $\overline{\psi}_\tau$ – кручение) – коэффициент влияния поверхностного упрочнения на предел выносливости по критерию $\overline{\sigma}_{ocm}$.

На основании многолетних и многочисленных экспериментальных и расчётных научных исследований, проведённых на кафедре сопротивления материалов и в научно-исследовательской лаборатории №31 Самарского национального исследовательского университета имени академика С.П. Королёва, установлено:

1. Для исследованных методов поверхностного упрочнения (гидро- и пневмодробеструйная обработка, обкатка роликом, алмазное выглаживане, обработка микрошариками, ультразвуковое упрочнение, азотирование, цементация, борирование), различных материалов (стали $30\mathrm{XFCA}$, $12\mathrm{X}18\mathrm{H}9$, $12\mathrm{X}18\mathrm{H}10\mathrm{T}$, $9\mathrm{U}961$, $9\mathrm{U}696$

приращением предела выносливости ΔP_R поверхностно упрочнённых деталей (формула (3)).

- 2. Прогнозирование приращения предела выносливости ΔP_R упрочнённых образцов и деталей (формула (1)) по критерию остаточных напряжений σ_z^{no6} на поверхности опасного сечения не представляется возможным, так как соответствующий коэффициент влияния $\psi_P(\psi_\sigma,\psi_\tau)$ в проведённых экспериментах в случае симметричного цикла изменяется в широких пределах от 0,030 до 1,143, то есть в 38 раз.
- 3. Критическая глубина $t_{\kappa p}$ нераспространяющейся трещины усталости в опасном сечении упрочнённых деталей с концентраторами напряжений зависит только от размеров поперечного сечения и не зависит от вида поверхностного упрочнения, материала, последовательности изготовления и упрочнения концентратора, наклёпа, вида и размеров концентратора, величины сжимающих остаточных напряжений, типа деформации и асимметрии цикла напряжений. Для сплошных цилиндрических образцов и деталей с концентраторами напряжений зависимость для $t_{\kappa p}$ имеет следующий вид:

$$t_{KD} = 0.0216D$$
,

где D – диаметр опасного сечения образца или детали.

- 4. Коэффициент $\overline{\psi}_P(\overline{\psi}_\sigma,\overline{\psi}_\tau)$ влияния поверхностного упрочнения на приращение предела выносливости образцов и деталей по критерию среднеинтегральных остаточных напряжений $\overline{\sigma}_{ocm}$ зависит от типа деформации (изгиб, растяжение-сжатие и кручение), асимметрии цикла напряжений и степени концентрации напряжений. По результатам экспериментальных исследований разработаны методики учёта влияния этих факторов на коэффициент $\overline{\psi}_P(\overline{\psi}_\sigma,\overline{\psi}_\tau)$.
- 5. На основе критерия среднеинтегральных остаточных напряжений $\bar{\sigma}_{ocm}$ для случая асимметричного цикла напряжений разработана методика построения диаграммы предельных амплитуд цикла напряжений и определения предельной амплитуды для упрочнённых образцов и деталей с концентраторами напряжений.
- 6. На основе экспериментальных исследований, проведённых на гладких и корсетных образцах, показано, что критерий среднеинтегральных остаточных напряжений $\bar{\sigma}_{ocm}$ представляется возможным использовать и для прогнозирования предела выносливости поверхностно упрочнённых гладких деталей, но лишь в тех случаях, когда сжимающие остаточные напряжения не релаксируют под действием переменных напряжений.

7. Критерий среднеинтегральных остаточных напряжений $\bar{\sigma}_{ocm}$ можно применять и при работе детали при повышенной температуре, но в этом случае в расчёте следует использовать остаточные напряжения детали в конце её ресурса, то есть с учётом релаксации. Эти напряжения можно определить экспериментально с использованием термоэкспозиции.

Таким образом, на основании проведённых расчётно-экспериментальных исследований с использованием критерия среднеинтегральных остаточных напряжений $\bar{\sigma}_{ocm}$ разработан метод прогнозирования влияния поверхностного упрочнения на многоцикловую усталость (предел выносливости) деталей машин с концентраторами напряжений с различными размерами поперечного сечения, при различных деформациях, при симметричном и асимметричном циклах напряжений.

Библиографический список

- 1. Иванов, С.И. Влияние остаточных напряжений и наклёпа на усталостную прочность / С.И. Иванов, В.Ф. Павлов // Проблемы прочности. 1976. №5. С. 25-27.
- 2. Павлов, В.Ф. Прогнозирование сопротивления усталости поверхностно упрочнённых деталей по остаточным напряжениям: монография / В.Ф. Павлов, В.А. Кирпичёв, В.С. Вакулюк. Самара: Издательство СНЦ РАН, 2012. 125 с.
- 3. Кравченко, Б.А. Обработка и выносливость высокопрочных материалов / Б.А. Кравченко, К.Ф. Митряев. Куйбышев: Куйбышев. книж. изд-во, 1968. 131 с.
- 4. Серенсен, С.В. К вопросу об оценке сопротивления усталости поверхностно упрочнённых образцов с учётом кинетики остаточной напряжённости / С.В. Серенсен, С.П. Борисов, Н.А. Бородин // Проблемы прочности. − 1969. − №2. − С. 3-7.
- 5. Школьник, Л.М. Повышение прочности шестерён дробеструйным наклёпом / Л.М. Школьник, В.П. Девяткин // Вестник машиностроения. 1950. №12. С. 7-12.
- 6. Павлов, В.Ф. О связи остаточных напряжений и предела выносливости при изгибе в условиях концентрации напряжений / В.Ф. Павлов // Известия вузов. Машиностроение. -1986. -№8. -C. 29-32.
- 7. Иванов, С.И. Влияние остаточных напряжений на выносливость образцов с надрезом / С.И. Иванов, М.П. Шатунов, В.Ф. Павлов // Вопросы прочности элементов авиационных конструкций. Куйбышев: КуАИ, 1974. Вып.1. С. 88-95.