АЭРОДИНАМИКА ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Председатель к.т.н. Шахов В.Г.

УДК 629.8

Елисов Н.А., Ломака И.А.

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ФОРМЫ НОСОВОЙ ЧАСТИ НА СРОК СУЩЕСТВОВАНИЯ НАНОСПУТНИКА

В настоящее время наиболее развивающимся классом космических аппаратов является класс наноспутников (НС). С помощью НС выполняются различные научно-технические задачи, например, дистанционное зондирование Земли, обеспечение связи, изучение космического пространства и многие другие. Несмотря на малые размеры НС, их орбита движения также подвержена влиянию атмосферы Земли, в связи с чем, возникает необходимость по оценке срока существования НС на орбите, который зависит от аэродинамических характеристик НС.

При проведении аэродинамических расчётов НС обычно используются два подхода: инженерный и численный. Инженерные подходы, основывающиеся на гипотезе локального взаимодействия [1], как правило, используются на этапе предварительного проектирования, как НС, так и его орбиты. Однако, для учёта особенностей свободномолекулярного течения, например, тепловой скорости молекул, химического состава атмосферы на определённой высоте и взаимодействия частиц с поверхностью необходимо использовать численные подходы, например, прямое моделирование Монте-Карло [2].

При проведении аэродинамических расчётов с использованием прямого моделирования Монте-Карло важную роль играет выбор модели взаимодействия частиц с поверхностью НС. Наиболее популярными моделями взаимодействия являются абсолютно неупругий удар частиц, зеркальное отражение и диффузное отражение, которое является наиболее точной. В свою очередь, модель диффузного отражения также имеет несколько вариаций, среди которых диффузнозеркальная модель Максвелла [3], модель Ночиллы [4] и модель Черчиньяни-Ламписа-Лорда (CLL) [5].

В работе рассматривается влияние формы носовой части НС на его срок существования на орбите. Исследование проводится с использованием прямого моделирования Монте-Карло с моделью взаимодействия частиц с поверхностью СLL [5]. Выбор данной модели обусловлен её наибольшей точностью по сравнению с другими. Рассматриваются НС без носовой части, с затупленной носовой частью, пирамидальной носовой частью и с цилиндрической носовой частью, представленные на рис. 1.

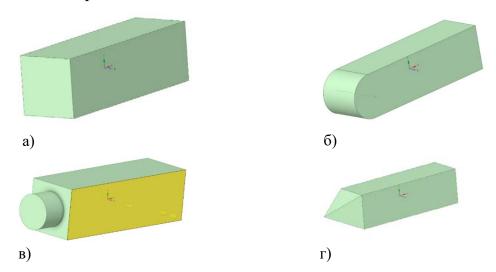


Рис. 1. НС (а) без носовой части, (б) с затупленной носовой частью, (в) с цилиндрической носовой частью и (г) с пирамидальной носовой частью

Аэродинамические расчёты проводятся в соответствии с параметрами, представленными в табл. 1. Химический состав атмосферы на рассматриваемой высоте приведён в табл. 2.

Таблица 1 – Исходные данные моделирования

Параметр	Значение
Высота орбиты H , κM	400
Коэффициент термической аккомодации, направленной по нормали α_n	0,9
Коэффициент аккомодации импульса, направленного по касательной σ_{τ}	0,9
Температура атмосферы T_{∞} , K	995,9
Температура поверхности НС T_w , K	300
Шаг по времени Δt , <i>нс</i>	2,7
Осреднённая концентрация частиц $n \cdot 10^{14}$, m^{-3}	1,057
Осреднённая масса частиц $m \cdot 10^{-26}$, κz	2,63

Таблица 2 – Химический состав атмосферы на высоте 400 км

Параметры частиц	N ₂	O_2	N	О	Не	Н
Массовая доля, %	13	0,50	0,50	84,25	1,3	0,45
Масса частицы <i>m</i> ·10 ⁻²⁶ , кг	4,65	5,31	2,33	2,66	0,66	0,17

При проведении расчётов было использовано допущение, что поверхность НС имеет равномерную температуру. Так как прямое моделирование Монте-Карло является статистическим подходом решения уравнения Больцмана, то он будет давать «зашумлённое» решение. В связи с этим, результаты аэродинамических расчётов представлены в виде диапазона от минимального до максимального значений (рис. 1). Для НС, не имеющего носовую часть, максимальное значение $C_{xa} = 3$ достигается при угле атаки $\alpha = 32^{\circ}$ (рис. 2, a). Наличие затупленной и пирамидальной носовых частей (рис. 2,6 и рис. 2,г) привело к увеличению максимального значения коэффициента лобового сопротивления, которое составило $C_{xa} = 3,2$ и $C_{xa} = 3,4$ соответственно. Максимальное значение для НС с затупленной и пирамидальной носовыми частями достигается при углах атаки $\alpha = 22^{\circ}$ и $\alpha = 20^{\circ}$. Увеличение коэффициента лобового сопротивления при наличии вышеупомянутых носовых частях можно объяснить следующим образом. При отсутствии носовой части большинство частиц передаёт усилие по нормали к поверхности. Несмотря на то, что наличие сферического затупления или пирамидальной носовой части приводит к уменьшению передаваемого нормального усилия, в результирующее усилие начинают вносить заметный вклад касательные усилия. Наименьшее максимальное значение коэффициента лобового сопротивления имеет HC с цилиндрической носовой частью, которое составляет $C_{xa} = 2,78$ (рис. 2,в). Данное уменьшение связано с тем, что при взаимодействии частиц с цилиндрической поверхностью нормальные усилия снижаются, а касательные усилия вносят менее заметный вклад в результирующее усилие по сравнению с НС с затупленной и пирамидальной носовыми частями.

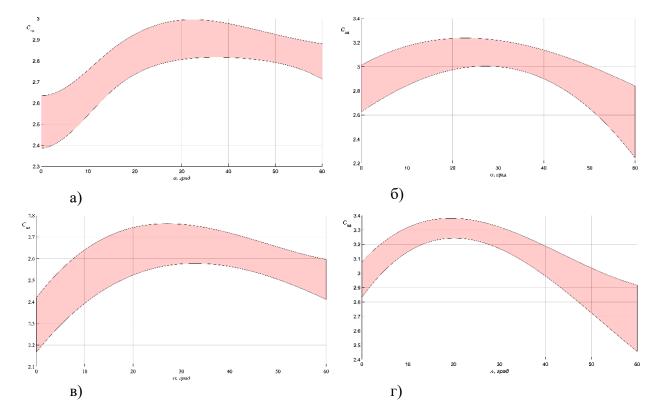


Рис. 2 – Разброс коэффициента лобового сопротивления C_{xa} , полученное для НС (а) без носовой части, (б) с затупленной носовой частью, (в) с цилиндрической носовой частью и (г) с пирамидальной носовой частью

Для наглядного сравнения коэффициентов лобового сопротивления, полученных в ходе аэродинамических расчётов для НС с различными носовыми частями, значения, представленные на рис. 2, были осреднены (рис. 3). Оказалось, что наименьшие значения коэффициента лобового сопротивления имеют НС без носовой части и с цилиндрической носовой частью. На нулевом угле атаки наибольшее значение коэффициента лобового сопротивления имеет НС с затупленной носовой частью. Однако, в диапазоне углов атаки $\alpha \in [4,5^{\circ}; 33,2^{\circ}]$ больший коэффициент лобового сопротивления имеет НС с пирамидальной носовой частью.

Время существования НС на орбите определяется из следующего соотношения:

$$t_{\text{сущ}} = \frac{F(H_0)}{\sigma},$$

где $F(H_0)$ — функция от начальной высоты, принятая равной 0,5389 для случая высокой солнечной активности; σ — баллистический коэффициент, определяемый соотношением $\sigma = \frac{C_{xa}S}{2m}$, где S — площадь миделя; m — масса наноспутника.

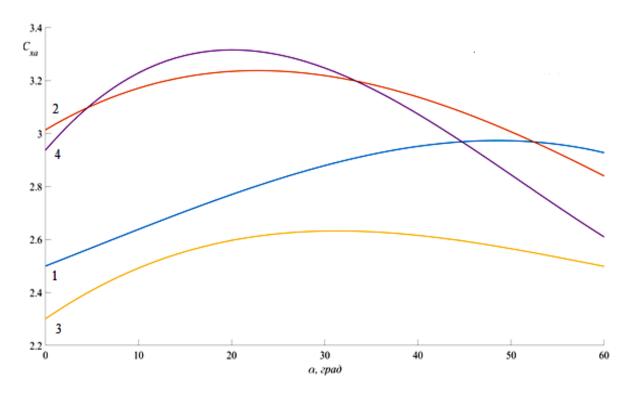


Рис. 3 — Сравнение коэффициентов лобового сопротивления, полученных для разных форм носовых частей: 1 — без носовой части; 2 — затупленная носовая часть; 3 — цилиндрическая носовая часть; 4 — пирамидальная носовая часть

Срок существования НС на нулевом угле атаки в зависимости от формы носовой части при площади миделя $S=0{,}01~{\it m}^2$ и массе НС $m=10~{\it \kappa}$ г представлен в табл. 3.

Таблица 3 – Срок существования НС в зависимости от формы носовой части

Форма носовой части	Время существования НС $t_{сущ}$, лет
Без носовой части	11,8
Затупленная носовая часть	10,1
Цилиндрическая носовая часть	12,8
Пирамидальная носовая часть	10,5

Исходя из полученных результатов, можно сделать вывод, что наиболее предпочтительной формой носовой части НС является цилиндрическая, так как с данной формой НС сможет просуществовать на орбите ≈ 13 лет. С другой стороны, наименее предпочтительной формой носовой части является затупленная. С затупленной носовой частью НС просуществует на орбите ≈ 10 лет.

Работа выполнена в рамках проекта 0777-2020-0018, финансируемого из средств государственного задания победителям конкурса научных лабораторий образовательных организаций высшего образования, подведомственных Минобрнауки России.

Библиографический список

- 1. Алексеева, Е.В. Локальный метод аэродинамического расчёта в разреженном газе / Е.В. Алексеева, Р.Г. Баранцев. Ленинград: Изд-во ЛГУ, 1976, 210 с.
- 2. Bird, G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows / G.A. Bird. Oxford: University Press, 1994. 479 p.
- 3. Maxwell, J.C. On Stresses in Rarified Gases Arising from Inequalities of Temperature / J.C. Maxwell // The Royal Society. 1878. Vol. 27. P. 304–308.
- 4. Nocilla, S. The Surface Re-emission Law in Free Molecular Flow / S. Nocilla // Proceedings of 3rd International Symposium on Rarefied Gas Dynamics.
- 5. Lord, R.G. Some further extensions of the Cercignani-Lampis Lord gassurface scattering kernel / R.G. Lord // Physics of Fluids. 1995. Vol. 7. P. 1159–1161.

УДК 531.533

Кусюмов А.Н., Кусюмов С.А.

О НЕКОТОРЫХ ЗАМЕЧАНИЯХ К РАСЧЕТУ СОПЛА ЛАВАЛЯ

Необходимым условием для создания сверхзвукового потока на выходе из сопла Лаваля является обеспечение в критическом сечении равенства местных скорости течения $V_{\rm kp}$ и скорости звука $\alpha_{\rm kp}$. Данное условие можно записать в виде [1]:

$$V_{\rm kp} = a_{\rm kp} = a_0 \sqrt{\frac{2}{k+1}},$$
 (1)

где k — показатель адиабаты газа. В выражение (1) входит также скорость звука заторможенного течения a_0 , которая определяется выражением

$$a_0^2 = kRT_0, \tag{2}$$

где T_0 — температура торможения газа, R — удельная газовая постоянная. Температура торможения связана с локальным значением температуры потока T выражением

$$T_0 = T\left(1 + \frac{k-1}{2}M^2\right). \tag{3}$$