Белоконов В. М., Вечканов Д. А.

ВОЗМУЩЁННОЕ ДВИЖЕНИЕ НАВИГАЦИОННОГО АППАРАТА В ТОЧКЕ **ЛИБРАЦИИ L4 СИСТЕМЫ** «ЗЕМЛЯ-ЛУНА»

В последние годы выдвинут ряд предложений по размещению космических алларатов (КА) в районах точек либрации системы «Земля-Луна». Ставшие актуальными межпланстные пилотируемые перелеты требуют повышенной точности работы систем навигации к коррекции КА, особенно на этапе возвращения к Земле. При возвращении КА с Марса вознакает проблема уточнения навигации КА с целью попадания в коридор входа в атмосферу. Следовательно, существует необходимость создания навигационного аппарата (НА) в «удобном» для навигации месте. Также существует необходимость удешевления эксплуатации НА, то есть нужно обеспечить максимально длительное его пребывание в заданной области космического пространства с минимальными коррекциями орбиты. Для размещения НА делесообразно использовать одно из 2-х устойчивых лагранжевых решений ограниченной задачи 3-х тел в системе «Земля-Луна» Этими решениями являются треугольные точки либрации L4 и L5. Выбор двух данных точек основан на том, что только они являются устойчивыми в системе «Земля-Луна, а также для выполнения навигационных задач удобно НА размещать именно в них (рис.1). При этом имеются две «реперные» точки для уточнения навигации КА, возвращающегося с Марса, – Луна и НА в точке L4.



Рисунок 1 – Схема размещения НА в точке L4

Необходимо рассмотреть вопрос о возможности длительного пребывания НА в треугольных точках либрации без коррекции

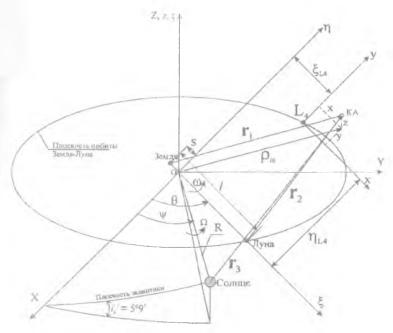


Рисунок 2 - Схема движения

Для моделирования задачи выберем математическую модель относительного движения. За основную систему координат примем декартову систему координат, связанную с точкой либрации L₄, поскольку относительно ее исследуется движение. Схема движения КА в окрестности точки L₄ представлена на рис. 2.

Движение рассматриваем в системе четырех притягивающих центров: Земли, Луны, Солнца и Юпитера. Примем следующие допущения:

- Луна относительно Земли движется по эллиптической орбите с эксцентриситетом е = 0,0549 и большой полуосью а = 384400 км;
- -- барицентр системы Земля Луна движется вокруг Солнца по круговой орбите,
- возмущениями от других тел Солнечной системы пренебрегаем.

Введем в рассмотрение следующие системы координат (О – барицентр системы Земля-Луна – вращается вокруг Солнца по круговой орбите радиуса R с угловой скоростью Ω (рис. 2)):

OXYZ – инерциальная система координат, ось ОХ направлена в точку весеннего равноденствия, плоскость XOY совпадает с плоскостью орбиты Земля-Луна,

 $O\xi$ ηζ - барицентрическая система координат, ось $O\xi$ которой направлена по линии Земля-Луна, вращающаяся относительно OXYZ с угловой скоростью ω (вектор ω совпадает с осью Z);

 L_4 хуz — система координат, связанная с точкой либрации и полученная из $O\xi\eta\zeta$ параллельным переносом на величины ξ_{L^4} и η_{L^4} в плоскости орбиты Земля-Луна.

Уравнение относительного движения в системе координат L4хуz будет иметь вид

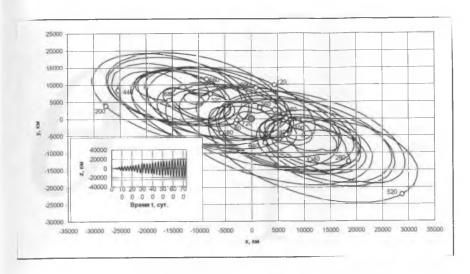
$$m\overline{W}_{r} = \sum_{i=1}^{s} \overline{G}_{i} + \overline{F}_{un}^{\epsilon(\omega)} + \overline{F}_{un}^{\kappa(\omega)} + \overline{F}_{un}^{\epsilon(\Omega)} + \overline{F}_{un}^{\kappa(\Omega)} + \overline{S}_{c}, \tag{1}$$

где т - масса КА;

 $\overline{W_r}$ – относительное ускорение KA,

 \overline{G}_i – гравитационные силы, где индекс i=1,2,3,4 соответствует притяжению Земли, Луны, Солнца, Юпитера;

 $\overline{F}_{un}^{e(\sigma)}$ — переносная сила инерции, возникающая в результате вращения линии Земля — Луна;


 $\overrightarrow{F}_{u\kappa}^{\kappa(\omega)}$ — кориолисова сила инерции, возникающая в результате вращения линии Земля — Луна,

 F_{uu} — переносная сила инерции, возникающая в результате вращения системы вокруг Солнца;

 $F_{w_i}^{\kappa(\Omega)}$ — кориолисова сила инерции, возникающая в результате вращения системы вокруг Солица;

 \bar{S}_C — сила солнечного давления.

Результаты численного интегрирования приведены на рис. 3. Из них следует, что аппарат действительно достаточно долго может пребывать в окрестности треугольной точки либрации L₄ без коррекций движения. Однако, под влиянием возмущений область движения (в основном вдоль оси z) постепенно увеличивается. Следовательно, периодические малые коррекции движения необходимы.

Рисунов 3 - Пассивное движение в течение двух лет с нулевыми начальными условиями

УДК 629.78

Белоконов И.В., Агафонова С.Е.

ПРЯНЦИЦЫ ПОСТРОЕНИЯ АЛГОРИТМИЧЕСКОГО ОБЕСПЕЧЕНИЯ АДАПТИВНЫХ НАВИГАЦИОННЫХ ПРИЕМНИКОВ СПУТНИКОВЫХ ЯАВИГАЦИОННЫХ СИСТЕМ GPS/ГЛОНАСС ПРИМЕВИТЕЛЬНО К КОСМИЧЕСКИМ АППАРАТАМ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ

1. Общая характеристика проблемы

В настоящее время наиболее перспективные навигационные технологии основываются на получении и использовании информации от спугниковых радионавигационных систем второго поколения типа ГЛОНАСС и GPS. Для них разработано большое количество типов приемной аппаратуры, позволяющей с высокой точностью определять коордикаты и ско-